

Title	PERIODIC VARIATION OF EXCHANGE CURRENT DENSITY OF HYDROGEN ELECTRODE REACTION WITH ATOMIC NUMBER
Author(s)	KITA, Hideaki
Citation	JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 13(2), 151-168
Issue Date	1966-01
Doc URL	http://hdl.handle.net/2115/24799
Туре	bulletin (article)
File Information	13(2)_P151-168.pdf

J. Res. Inst. Catalysis, Hokkaido Univ., Vol. 13, No. 2, pp. 151 to 168 (1965)

Note

PERIODIC VARIATION OF EXCHANGE CURRENT DENSITY OF HYDROGEN ELECTRODE REACTION WITH ATOMIC NUMBER

By Hideaki KITA*'

(Received September 5, 1965)

The works on hydrogen electrode reaction have been increasingly accumulated during the last decade. These works are much more reliable than earlier ones, in-asmuch as the special precaution has been taken against contaminations of solution and electrode surface. Survey of the results shows that the activity of metals for the reaction in terms of the exchange current density, i_0 (Acm⁻²), varies in a wide range, namely from $\log i_0 = -1.2$ on Pd to -12.9 on Pb and even on the same metal, from -3.15 to -7.04 on Au (cf. Table 1).

Such variations in the activity may be caused by several factors such as bulk property of electrode material, surface state of the electrode and solution.

The present note is concerned with the relation of the exchange current density of various metals to their position in the Periodic Table and with the decision of the determining factor of the activity.

Review of the Experimental Results

Table 1 shows results of observations as well as their experimental conditions reported mainly during these ten years.^{1~61} The exchange current density, i_0 , was determined by extrapolating the current density, i, at $\eta = 0$ according to the TAFEL equation

 $\eta = a + b \log i ,$

where \mathcal{V} is the overvoltage^{**)} and *a* or *b* the constant. Logarithm of the exchange current density is plotted in Fig. 1 against the atomic number of electrode material, where \prec , \times or \odot represents the values obtained respectively in acidic, alkaline or neutral solution. In case where two linear parts appear in $\mathcal{V}\sim\log i$ plot, i_0 was determined by extrapolating *i* from the part of the lower $\mathcal{V}.^{**}$

Table 1 and Fig. 1 are commented upon as follows.

^{*)} Res. Inst. for Catalysis, Hokkaido Univ., Sapporo, Japan.

^{**)} Overvoltage is defined in this paper as the negative of potential of the test electrode referred to that of the reversible hydrogen electrode in the same environment.

Electrode		Sol	Temp.		
Metal	Form	Treatment	Concn.	Pre-electrolysis	(°C)
<u> </u>		• · · · · · · · · · · · · · · · · · · ·	1.0 N HCl	$\begin{array}{c} 1 \text{ A} \cdot \text{cm}^{-2}, \ 3.1 \\ \times 10^4 \text{ Coulomb} \end{array}$	Room temp.
	Wire	Chem. polished, heated in H ₂ at 600°C for $2\sim3$ hr.	5 N HCl	1 A·cm ⁻² , 10⁵ Coulomb	
	Wire	Chem. polished	1 N H₂SO₄	conducted, no details	
	Wire	Sealed into glass bulb	1 N NaOH	10 mA·cm ⁻² , 20 hr.	30
	Wire	Heated in H ₂ at 700°C for 1 hr., sealed into glass bulb	0.4 N HCl	10 mA·cm ⁻² , 60 hr.	23 ± 2
Ag	Wire	Sealed into glass bulb	0.1 N NaOH	$10 \text{ mA} \cdot \text{cm}^{-2}$, > 2 days, 0.1 A· cm ⁻² , 36 hr.	25
	Single or poly- crystal	Electropolished, held in hot H_2 for a few days, gently anodized	2 N H2SO4	conducted, no details	Room temp.
	Wire	Sealed into glass bulb	0.1 N HCl 0.1 N DCl	0.1 A·cm ⁻² , 24~36 hr.	26 ± 1
	Foil	Heated in H₂ at 450°C for 24 hr., sealed with paraffin	$2 \text{ N H}_2 \text{SO}_4$	0.1 A, 60 hr.	Room temp.
	Wire	Sealed by Teflon, anodic, cathodic polarizations	1.11 or 0.26 N NaOH	30 mA, 60 hr.	21 ± 2
	Wire	Anodic polarization	$8 \text{ N H}_2 \text{SO}_4$		
	Bead	Anodic, cathodic polari- zations (40 mA, 200 sec.)	$2 \text{ N H}_2 \text{SO}_4$	50 mA, a week	29 ± 1
Au	Wire	Sealed into glass bulb	0.1 N HCl 0.1 N NaOH	27 mA·cm ⁻² , 42 hr. 180 mA·cm ⁻² , 43 hr.	
	Foil	Cleaned chemically	0.1 N HCl	conducted, no details	
	Wire	Sealed into glass bulb	0.1 N DCl 0.1 N HCl	0.1 A·cm ⁻² , 24~36 hr.	26 ± 1

TABLE 1. List of reported values of

-

Rest potential ^{a)}	Range of ob- servation in log i (A·cm ⁻²)	b (mV)	$\log i_0 (A \cdot cm^{-2})$	$\log i^{\mathrm{b})}$ (A·cm ⁻²)	Reference
	-6~-1	$\begin{array}{c} 60\pm5\\ 130\pm5\end{array}$	$ \begin{vmatrix} -5.4 \pm 0.4 \\ (-3.7 \pm 0.4) \end{vmatrix} $		Bockris & Conway 1 (1952)
	-3 ~ +2	120	-5.3		BOCKRIS & AZZAM 2 (1952)
	- 4 ~ -2	110	-5.7*		GERISCHER & MEHL 3 (1955)
	-7.5~-3	120	-6.50		Ammar & Awad 4 (1956)
	-7~-3	$57\pm2\\101\pm9$	-6.6 -5.35		Bockris, Ammar & Huq 5 (1957)
	-7~-2	122	-6.5		DEVANATHAN, BOCK- RIS & MEHL 6 (1959)
+0.35~ +0.45 V, occasio- nally 0~ +18 mV	-7.5~-2.7	59 116	6*		Antoniou & Wet- More 7 (1959)
	-5.5~ -2	$\begin{array}{c c} 72\pm7\\ 12(5)\pm5\\ 72\pm7\\ 122\pm5 \end{array}$	$\begin{array}{c} -6.10\pm 0.2\\ -4.80\pm 0.15\\ -7.05\pm 0.2\\ -5.40\pm 0.15\end{array}$		Conway 8 (1960)
	-2.3~-1.3	120	-5.4		Gossner, Löffler & Schwab 9 (1961)
$\begin{array}{c} 4.5\pm0.9\\mV \end{array}$	$-5 \sim +1$	$\begin{array}{c} 43\pm2\\ 309\pm5 \end{array}$	-5.35 ± 0.4		YAMAZAKI & KITA 10 (1965)
	-3~-1	130	-3.15		BREITER, KAMMER- MAIER & KNORR 11 (1956)
	−3 ~ −0.5	27	-3.4*		Schuldiner & Hoare 12 (1957)
Value of r. h. e.	-5.63~-2.41 # -5.92~-3.68 #	71 97 119	(6.83) 5.64 7.04		Pentland, Bockris & Sheldon 13 (1957)
Value of r. h. e.	-6~-3	123	-5.5*	5	Ives 14 (1959)
	-5~-1.5	$\begin{array}{c} 120\pm5\\ 110\pm5\end{array}$	$\begin{array}{c} -6.23 \pm 0.22 \\ -5.60 \pm 0.18 \end{array}$		Conway 8 (1960)

 $\log i_0$ and b on various metals.

E		Electrode	Sol	Temp.	
Metal	Form	Treatment	Concn.	Pre-electrolysis	(°C)
	Wire	Sealed with paraffin or araldite, scraped with sharp glass bar	2 N H₂SO₄		20
Bi	Plate	Previously polarized	0.9 N HCl 0.9 N H ₂ SO ₄ 0.9 N HClO ₄	conducted, 20~25 hr.	
Cd	Wire	Heated in H ₂ at 200°C	0.5 N H ₂ SO ₄	$1 \text{ mA} \cdot \text{cm}^{-2},$ 15~20 hr.	Room temp.
Cu	Wire	Sealed into glass bulb	0.1 N HCl 0.01 N NaOH	75 mA·cm ⁻² , 37 hr. 0.36 mA·cm ⁻² , 14 hr.	
	Wire	Heated to red hot in H_2 , sealed into glass bulb	0.1 N HCl	0.25 A·cm ⁻² , 24 hr.	38 ± 1
		Sealed into glass bulb	0.1 N HCl 0.1 N DCl	$\begin{array}{c} 0.1 \text{ A} \cdot \text{cm}^{-2}, \\ 24 \sim 36 \text{ hr.} \end{array}$	
	Wire	Sealed into glass bulb	0.01 N HCl 0.1 N NaOH	18 mA·cm ⁻² , 36 hr. 25 mA·cm ⁻² , 35 hr.	
Fe	Wire	Sealed into glass bulb	0.5 N HCl 0.5 N DCl	$15 \text{ mA} \cdot \text{cm}^{-2}$, 20 hr.	
	Cylindri- cal	Mounted on Teflon hol- der, etched in 0.5 M H ₂ SO ₄	0.5 M H₂SO₄	conducted, no details	25.00 ± 0.03
0	Solid Liquid		0.1 N HCl	conducted, no details	20.5 35
Ga	Solid Liquid		1 N H₂SO₄		28 32
	Pool	Redistillation	1.005 N HCl		25 ± 0.02
	Pool	Triply distilled, then distilled in vacuum	0.1 N HCl	conducted, no details	21 ± 0.1
Hg	Pool	Purified in vacuum apparatus	0.1 N HCl	conducted, no details	0
	Pool		0.1 M HCl solution of H ₂ O, CH ₃ OH, C ₂ H ₅ OH, n-C ₃ H ₇ OH		20 ± 0.5

•

Rest potential ^{a)}	Range of ob- servation in $\log i$ (A·cm ⁻²)	b (mV)	$\log i_0 \\ (\mathbf{A} \cdot \mathbf{cm}^{-2})$	$\log i^{\rm b)} (\rm A \cdot \rm cm^{-2})$	Reference
	-3 ~ -1	116 ± 4	-5.36		Gossner & Löffler 15 (1963)
	-7 ~ -1	$ \begin{array}{c} 118 \pm 5 \\ 101 \pm 5 \\ 100 \pm 5 \end{array} \\$	$ \begin{array}{r} -9.32 \\ -10.45 \\ -10.4 \end{array} $	-5.07* -5.2* -5.35* at $\eta = 0.5$ V	Palm & Past 16 (1964)
	-5~-2	135 ± 12	-10.77 ± 0.75		BOCKRIS & SRINIVA- SAN 17 (1964)
	-4.51~-3.47# -5.19~-3.75#	114 ± 8 107 ± 6	-6.84 -6.09		Pentland, Bockris & Sheldon 13 (1957
	-5~-1		-6.21*		Conway, Beatty & DeMaine 18 (1962)
	$-5.5 \sim -2$ -5.5 ~ -2	$\begin{array}{c} 120\pm5\\ 120\pm5\end{array}$	$-6.7 \pm 0.15 \\ -7.6 \pm 0.15$		Conway 8 (1960)
	-4.06~-3.19 [±] -4.09~-2.16 [±]	118 ± 15 120 ± 2	-6.29 -6.06		Pentland, Bockris & Sheldon 13 (1957
		$\begin{array}{c} 133\pm4\\ 134\pm4 \end{array}$	$-5.18 \pm 0.1 \\ -5.77 \pm 0.14$		BOCKRIS & KOCH 19 (1961)
	-3.9~-1.6	118	-5.65*		Kelly 20 (1965)
	-6~-3	113 93	-10.0 -10.1		Christov & Rajćeva 21 (1962)
	-5~-3	95 95	-9.9* -10.0*		SABO & BAGOTSKAJA 22 (1963)
	-4.6~-1	118 ± 2	-11.53 ± 0.05		BÉTHUNE 23 (1949)
	$-6 \sim -1$	116	-12.11*		Post & Hiskey 24 (1950)
	-11~-8	$\alpha = 0.54$ $\alpha = 1.54$			Mituya 25 (1956)
		117 107 104 102	$-11.8 \\ -11.5 \\ -10.8 \\ -10.8$		Мімс & Sobkowski 26 (1959)

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

Electrode		Sol	Temp.		
Metal	Form	Treatment	Conen.	Pre-electrolysis	(°C)
	Drop	Triply distilled	0.1 N HClO4	1 mA·cm ⁻² , overnight	25
Hg (cont'd)	Pool	Redistilled, anodic polarization in HNO ₃ - Hg ₂ (NO ₃) ₂ , distillation in vacuum	1 N HCl solution of CH ₃ OH 1 N DCl solution of CH-OD	conducted, no details conducted, no details	27
			0.1 M HClO4	1 mA·cm ⁻² , overnight	25
In	Cylindri- cal	Electropolished in 2:1 mixture of CH ₃ OH and HNO ₃ at 0.3 mA·cm ⁻² , cathodic polarization at $\eta = 1$ V overnight	0.1 M HClO₄ 0.01 M HClO₄	10 mA, 16 hr.	30.0 ± 0.2
Mo	Wire	Flushed in vacuum, sealed into glass bulb	0.1 N HCl 0.1 N NaOH	75 mA·cm ⁻² , 37 hr. 0.24 A·cm ⁻² , 71 hr.	1
			1 N HCl		
	Plate	Polished with emery paper, cathodic polarization (5 mA·cm ⁻² , 1 hr.)	1 N H₂SO₄ 1 N NaOH	10 mA·cm ⁻² , 6 hr.	
Nb		Polished with emery paper, cathodic polarization (5 mA·cm ⁻² , 96 hr.)	1 N H₂SO₄ 1 N NaOH	10 mA·cm ⁻² , 6 hr.	
	Sheet (passive state)	Purified by a zonerefin- ing method, mounted in Teflon holder, cleaned in HCl	0.145 N HCl	4∼5 mA, 50 hr.	25 ± 0.1
	Wire	Sealed into glass bulb	1.0 N HCl 0.1 N NaOH	0.1 A·cm ⁻² , 18 hr.	20 ± 0.5
ĺ	Disk	Electrodeposition 15 mA·cm ⁻² , 10 min.	0.5 M NiSO4		45 ± 0.05
Ni	Single cr (100) (110) (111)	rystal Anodic treatment in 70% H ₂ SO4	0.1 N HClO4 0.15 N HClO4 0.15 N HClO4		25
	Cross section of rod	Polyethylene sleeved	2N NaOH	25 mA, 3~4 hr.	26 ~ 28
	Wire	Sealed into glass bulb	0.1 N HCl 0.1 N DCl	0.1 A·cm ⁻² , 24~36 hr.	25

Rest potential ^{a)}	Range of ob- servation in $\log i$ (A·cm ⁻²)	<i>b</i> (mV)	$\log i_0$ (A·cm ⁻²)	$\log i^{\mathrm{b})}$ $(\mathrm{A}\cdot\mathrm{cm}^{-2})$	Reference
	<i>−</i> 4 <i>~−</i> 1.7	118	-11.82		BUTLER & MAKRIDES 27 (1964)
1	- 4 ~ -2	119*	-10.8*		Conway & Salomon
	-4 ~ -3	119*	-11.3*		28 (1964)
	-3.5~-1.15	118	-11.85	-2.75 at 7=1 V	BUTLER & MAKRIDES 29 (1964)
 	-6.3 ~ -2.8	$lpha = 0.530 \\ \pm 0.04 \\ lpha = 0.48 \\ \pm 0.02$	-11.19 ± 0.07 -10.8 ± 0.3	,	BUTLER & DIENST 29 a (1965)
	$-5.52 \sim -3.48^{\sharp}$ $-3.34 \sim -1.80^{\sharp}$ $-4.74 \sim -3.72^{\sharp}$ $-3.58 \sim -2.10^{\sharp}$	$\begin{array}{c} 80\pm 4 \\ 104\pm 4 \\ 80\pm 3 \\ 116\pm 8 \end{array}$	-7.30 -6.40 -7.35 -6.35		Pentland, Bockris & Sheldon 13 (1957)
	$-3 \sim -1$	110	-9*		BOCKRIS 62 (1947)
	-5 ~ -2.3	low 130 low 140	-6.75 -7.50		Rotinyan & Kozhevnikova 29 b (1963)
· · · · · · · · · · · · · · · · · · ·	-5~-2.3	low 120 low 140	-6.33 -6.15	· · · · · · · · · · · · · · · · · · ·	·
	-6~-2	57 343	-8.06		Joncich, Stewart & Posey 29 c (1965)
	$-6 \sim -2.3$ -7.7 ~ -3.3	109 ± 9 101 ± 4	-5.4 ± 0.1 -6.4 ± 0.2	$\begin{array}{r} -3.56^{*} \\ \text{at} \eta = 0.2 \text{ V} \\ -4.7^{*} \\ \text{at} \eta = 0.2 \text{ V} \end{array}$	Bockris & Potter 30 (1952)
	-3~-1.3	120	-6.1		YEAGER, Cels, YEAGER & HOVORKA 31 (1959)
	-6~-3	100 155 150	4.85 5.2 5.2	-3.0^{*} -3.9^{*} -3.9^{*} at $\eta = 0.2 \text{ V}$	Piontelli, Bicelli & Vecchia 32 (1959)
	-6~-1	100*	-4.9*	-2.9* at $\eta = 0.2$ V	Devanathan & Sel- varatnam 33 (1960)
· · · ;	$-5 \sim -1.35$	$\begin{array}{c} 118\pm3\\ 124\pm3 \end{array}$	$-5.87 \pm 0.15 \\ -6.35 \pm 0.15$	-4.3* -4.7* at η =0.2 V	Conway 8 (1960)

.

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

	Electrode		Solı	Temp.	
Metal	Form	Treatment	Concn.	Pre-electrolysis	(°C) [*]
	au	Heated to red hot in H_2 , sealed into glass bulb	0.1 N HCl	0.25 A·cm ⁻² , 24 hr.	38 ± 0.1
	Cylinder	Anodic $(10-100 \text{ mA} \cdot \text{cm}^{-2})$ and cathodic $(2 \text{ mA} \cdot \text{cm}^{-2}, 5 \text{ min.})$ polarization	0.1 N NaOH	$10 \sim 15 \text{ mA} \cdot \text{cm}^{-2},$ $18 \sim 124 \text{ hr.}$	30
	Small sphere	Sealed into glass bulb	0.95 N NaOH	3.5 mA, 48∼72 hr.	22 ± 1
Ni (cont'd)	Cross section of rod	Mounted in Pyrex holder by Kel-F wax, polishings, treated by chromic acid/sulfuric acid	1 M HClO ₄ pH=0.04 1 M NaClO ₄ + 0.01 M NaOH pH=10.8	30 mA, 6 hr.	25 ± 0.1
!	Single c (100) (110) (111)	rystal Chem. polished	4 N KOH		
	Wire	Heated in H2 at 700°C	0.5 N H ₂ SO ₄ 0.5 N NaOH	$1 \text{ mA} \cdot \text{cm}^{-2},$ $15 \sim 20 \text{ hr.}$	Room temp.
:	Evapo- rated film	ann • , •••••• • • • • • •	NaOH pH = 13.68	$20 \sim 30 \text{ mA} \cdot \text{cm}^{-2},$ $30 \sim 50 \text{ hr.}$	Room temp.
		Cathodic polarization $(0.1 \sim 1 \text{ mA} \cdot \text{cm}^{-2})$	0.1~0.01 N H ₂ SO ₄		20
Pb			1 N H ₂ SO ₄ 1 N HCl		
	Wire	Chem. polished	0.5 N H₂SO₄ 0.5 N NaOH	1 mA·cm ⁻² , 40 hr. 1 mA·cm ⁻² , 16 hr.	Room temp.
	Wire	Anodic polarization	$2 \text{ N H}_2 \text{SO}_4$		Room temp.
!		Anodic (5 mA, 15 min.), cathodic (50 mA, 30 min.)	$1.05 \text{ N H}_2\text{SO}_4$ pH = 0.40	conducted, no details	39 ± 1
;	Bead β -phase	polarizations Anodic (10 mA, 30 min.), cathodic (50 mA, 30 min.) polari- zations	$0.514 \text{ N } \text{H}_2\text{SO}_4 + 0.5 \text{ N } \text{Na}_2\text{SO}_4 \text{ pH} = 0.84$	conducted, no details	39 ± 1
Pd	Memb- rane, α-phase	Anodic polarization (10 mA, 45 min.)	$\begin{array}{l} 2 \ N \ H_2 SO_4 \\ pH = 0 \\ 0.3 \ N \ H_2 SO_4 + \\ 0.7 \ N \ Na_2 SO_4 \\ pH = 0.9 \end{array}$	conducted, no details	31 ± 2
	Wire	Sealed into glass bulb	0.1 N HCl 0.1 N NaOH	0.24 A·cm ⁻² , 13 hr. 0.12 A·cm ⁻² , 38 hr.	

Range of ob- servation in $\log i$ (A·cm ⁻²)	b (mV)	$\log i_0 (A \cdot cm^{-2})$	$\log i^{\mathrm{b})}$ (A·cm ⁻²)	Reference
-5~-1	95*	-5.24	-3.1^* at $\eta = 0.2$ V	Conway, Beatty & DeMaine 18 (1962)
-6~-2.5	89	-5.03	-2.73^{*} at $\eta = 0.2$ V	Makrides 34 (1962)
-3~+2	104 ± 9	-5.32	-3.7* at $\eta = 0.2$ V	KITA & YAMAZAKI 35 (1963)
-6~-1.2	125	-5.7	-4.1*	HUO & ROSENBERG
$-5 \sim -1.5$	105	-5.0	-3.05^* at $\eta = 0.2$ V	36 (1964)
- 5.5 ~ -2	89~93	-5.0	-3.0* at η =0.2 V	Weininger & Brei- ter 37 (1964)
	$\begin{array}{c} 124\pm10\\ 96\pm10 \end{array}$	$-5.22 \pm 0.53 \\ -6.10 \pm 0.10$		BOCKRIS & SRINIVA- SAN 17 (1964)
-4.8~-0.8	90*	-5.1*	-2.9^{*} at $\eta = 0.2 \text{ V}$	Matsuda & Ohmori 38 (1962)
$-6.6 \sim -2.8$	118	-12.9*		Jofa 39 (1945)
-4.2 ~ −0.5	120 117	$-12.7 \\ -12.9$		PALM & PAST 40 (1962)
-5~-1.3	125 ± 14 129 ± 4	-11.33 ± 1.40 -6.47 ± 0.26	-2.9 at $\eta = 0.2$ V	Bockris & Sriniva- san 17 (1964)
-4.4~0	29 0	-2.7	·	Clamroth & Knorr 41 (1953)
-2.0~-0.5	40 0			HOADE & SCHULDL
-2.0~-0.6	42 126	-1.25*	-0.9* at $\eta = 0.05$ V	NER 42 (1955)
$-4.5 \sim +0.5$	$\begin{array}{c} (42) \\ 124 \end{array}$	-1.2*	-0.75*	Hoare & Schuldi-
<i>−4.5</i> ~+1.4	(30) 125	-1.85*	at $\eta = 0.05 \text{ V}$ -1.4* at $\eta = 0.05 \text{ V}$	NER 43 (1957)
-2.89~-1.41 #	99	-3.25		PENTLAND, BOCKRIS
-4.13~-3.08*	125	-5.01		& Sheldon 13 (1957)
	Range of ob- servation in $\log i$ (A·cm ⁻²) $-5 \sim -1$ $-6 \sim -2.5$ $-3 \sim +2$ $-6 \sim -1.2$ $-5 \sim -1.5$ $-5 \sim -1.5$ $-5 \sim -1.5$ $-4.8 \sim -0.8$ $-4.8 \sim -0.8$ $-4.2 \sim -0.5$ $-5 \sim -1.3$ $-4.2 \sim -0.5$ $-5 \sim -1.3$ $-4.4 \sim 0$ $-2.0 \sim -0.5$ $-2.0 \sim -0.6$ $-4.5 \sim +0.5$ $-4.5 \sim +1.4$ $-2.89 \sim -1.41^{\sharp}$ $-4.13 \sim -3.08^{\ast}$	Range of ob- servation in log i (A·cm ⁻²) b (mV) $-5 \sim -1$ 95* $-6 \sim -2.5$ 89 $-3 \sim +2$ 104 ± 9 $-6 \sim -1.2$ 125 $-5 \sim -1.5$ 105 $-5 \sim -1.5$ 105 $-5 \sim -1.5$ 105 $-5 \sim -1.5$ 105 $-5.5 \sim -2$ 89 ~ 93 124 ± 10 96 ± 10 $-4.8 \sim -0.8$ 90* $-6.6 \sim -2.8$ 118 $-4.2 \sim -0.5$ 120 117 $-5 \sim -1.3$ 125 ± 14 $-2.0 \sim -0.5$ 0 $-2.0 \sim -0.5$ 40 $-2.0 \sim -0.6$ 126 $-4.5 \sim +0.5$ 124 $-4.5 \sim +1.4$ 125 $-2.89 \sim -1.41^{\sharp}$ 99 $-4.13 \sim -3.08^{*}$ 125	Range of ob- servation in log i (A·cm ⁻²) b (mV) log i ₀ (A·cm ⁻²) $-5 \sim -1$ 95* -5.24 $-6 \sim -2.5$ 89 -5.03 $-3 \sim +2$ 104 ± 9 -5.32 $-6 \sim -1.2$ 125 -5.7 $-5 \sim -1.5$ 105 -5.0 $-5.5 \sim -2$ $89 \sim 93$ -5.0 $-5.4 = 0.8$ 90^* -5.1^* $-6.6 \sim -2.8$ 118 -12.9^* $-4.2 \sim -0.5$ 120 -12.7 $-4.2 \sim -0.5$ 120 -12.7 $-5 \sim -1.3$ 125 ± 14 -11.33 ± 1.40 129 ± 4 -6.47 ± 0.26 $-4.4 \sim 0$ 29 -2.7 $-2.0 \sim -0.6$ 42 -1.25^* $-4.5 \sim +0.5$ 124 -1.2^* $-4.5 \sim +1.4$ 125	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

				Temp.	
Metal	Form	Treatment	Concn.	Pre-electrolysis	(°C)
	Wire α -phase	Sealed into glass bulb	0.1 N HCl 0.1 N DCl	0.1 A·cm ⁻² , 24∼36 hr.	26 ± 1
Pd (cont'd)	Mem- brane	· · · · · · · · · · · · · · · · · · ·	2 N H2SO4		20
	Wire	Palladized	1.0 N HCl		25 ± 0.2
	Bead	· · · · · · · · · · · · · · · · · · ·	0.05 M NaOH+ 0.22 M Na ₂ SO ₄	5~10 mA, a week	25 ± 1
	Wire	1	$1 \mathrm{N} \mathrm{H}_2 \mathrm{SO}_4$		20
	Wire	Heated in H ₂ at 600°C for 10 min., anodic polarization (0.1 A·cm ⁻² , 10 sec.)	1 N HCl	0.1 A·cm ⁻² , 10 hr.	23 ± 2
	Wire	Anodic (0.01 Coulomb- cm ⁻²), cathodic polariza- tions	0.1 N NaOH	$10 \text{ mA} \cdot \text{cm}^{-2},$ 25~30 hr.	25
-	Bead	Anodic polarization	1 N H₂SO₄	5∼10 mA, overnight	25 ± 1
			1 N H ₂ SO ₄	conducted, 15 hr.	25.0
Pt	Small sphere	Soaked in chromic+sul- furic acid mixture for 24 hr., anodic and cathodic polarization (0.1 A·cm ⁻² , 5 sec.)	0.5 M HCl	10 mA·cm ⁻² , 18 hr.	25 ± 0.5
	Wire	Platinized .	0.1 N HCl 0.1 N DCl	0.1 A·cm ⁻² , 24∼36 hr.	26 ± 1
· · · · · · · · · · · · · · · · · · ·	Wire	Heated in H_2 , sealed into glass bulb, anodic polari- zation (10 mA · cm 2 , 10 sec.)	0.5 N HCl 0.5 N DCl	15 mA·cm ² , 20 hr.	
	Foil	Anodic polarization (1~ 2 mA·cm ⁻²), cathodic polarization ($i < 1$ mA· cm ⁻²) till potential rea- ched the value of r. h. e.	0.1 N Na ₂ CO ₃ pH=11	conducted, 15 hr.	25 ± 0.5
	Wire	Anodic polarization	0.5 N H₂SO₄ 0.5 N NaOH	$1 \text{ mA} \cdot \text{cm}^{-2}$, $15 \sim 20 \text{ hr.}$	Room temp.
Re	Wire	Mounted in Teflon holder, cleaned in HCl	0.037 N HCl 0.145 N HCl	4~5 mA, 50 hr.	25 ± 0.1
Rh	Wire	Sealed into glass bulb	0.01 N HCl 0.01 N NaOH	conducted, no details 6 mA·cm ⁻² , 20 hr	

•

Rest potential ^{a)}	Range of ob- servation in $\log i (A \cdot cm^{-2})$	b (mV)	$\log i_0 \\ (\mathbf{A} \cdot \mathbf{cm}^{-2})$	$\log i^{\mathrm{b})}$ $(\mathrm{A}\cdot\mathrm{cm}^{-2})$	Reference
	$-5 \sim -1.5$ $-5 \sim -2.2$	$\begin{array}{c} (25\pm3) \\ 110\pm10 \\ (25\pm3) \\ 120\pm10 \end{array}$	-2.8* -3.7*	$\begin{array}{c} -2.4^{*} \\ \text{at } \eta = 0.05 \text{ V} \\ -3.3^{*} \\ \text{at } \eta = 0.05 \text{ V} \end{array}$	Conway 8 (1960)
	-4~-2	120	-3.2*	-2.7* at $\eta = 0.05$ V	Shiratori 44 (1961)
1	-3.4~0	29.5	-2.5*	at $\eta = 0.05 \text{ V}$	Barton & Lewis 45 (1962)
$\pm 0.5 \text{ mV}$	-4.8~-2.2	126	-3.25*		SCHULDINER 46 (1954)
<+2 mV	-7~- 2	129	-3.65*		VETTER & OTTO 47 (1956)
	-3~-1	29±1	-3.0		Bockris, Ammar & Huq 5 (1957)
	-5~-3	114±11	-4.17		Ammar & Darwish 48 (1959)
$\pm 0.5 \ mV$	-4~-0.6	25	-3.1*		SCHULDINER 49 (1959)
	-4~-0.4	26*	-3.6*		YEAGER 50 (1959)
Value of r. h. e.	-3.4~-1	27.8 ± 1.4	-2.59 ± 0.09		Parsons 51 (1960)
		$\begin{array}{c} 30\pm2\\ 31\pm2\end{array}$	$-3.16 \pm 0.1 \\ -3.33 \pm 0.1$		Conway 8 (1960)
		29 ± 3 26 ± 6	-3.33 ± 0.14 -3.62 ± 0.45		BOCKRIS & KOCH 20 (1961)
	-5.5~-1	$58\pm2\\260\pm60$	-3.83 -2.58		Hisano 52 (1963)
		$\begin{array}{c} 30\pm1\\ 117\pm8 \end{array}$	$-3.53 \pm 0.05 \\ -4.06 \pm 0.09$		BOCKRIS & SRINIVA- SAN 17 (1964)
	$-6 \sim -2$	43 29.2	-4.95 -5.14		Joncich, Stewart & Posey 29 c (1965)
Value of r. h. e.	$-3.38 \sim -3.08^{\#}$ $-4.18 \sim -3.51^{\#}$	55 ± 3 119 + 3	-3.80 -4.85		Pentland, Bockris & Sheldon 13 (1957)
	****************	110 ± 0	00.1		-1

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

Electrode		Solu	Temp.		
Metal	Form	Treatment	Concn.	Pre-electrolysis	(°C)
Rh	Bead	Anodic, cathodic polarizations	1 M H ₂ SO ₄	conducted, no details	27 ± 1
	Bead	Anodic, cathodic polari- zation (0.3 A·cm ⁻² , 90 min.)	2 N H₂SO₄		25 ± 1
	Wire	Anodic polarization $(10 \text{ mA} \cdot \text{cm}^{-2})$	$0.5 \text{ N H}_2\text{SO}_4$	$1 \text{ mA} \cdot \text{cm}^{-3}$, $15 \sim 20 \text{ hr.}$	Room temp.
Si	Single crystal (111)	Treated with solutions; HE \cdot HNO = 1 \cdot 2 and	$2 \text{ N H}_2 \text{SO}_4$		20
01	n and p types	42% HF	2.5 N HF		1
Te	Rod		1 N HCl	30~40 mA·cm ⁻² , 20 hr.	30
			0.5 M NaCl		30
Ti	Wire	10 min. in hot 1 N NaOH, $1 \sim 2$ min. in hot 2 N H ₂ SO ₄ , polished with glass powder	1 N H ₂ SO ₄ 1 N HCl		
ſ	Plate	10 min. in hot 1 N NaOH, $1 \sim 2$ min. in hot 2 N H_2SO_4 , cathodic polariza- tion in 2 N H_2SO_4 (5 mA·cm ⁻² , 1 hr.)	2 N H ₂ SO ₄		
	Wire	Heated in H ₂ at 600°C for $2 \sim 3$ hr.	5 N HCl	1 A·cm ⁻² , 10 ⁵ Coulomb	25
	Wire	Heated in vacuum at 3000° C for 1 min., in H ₂ at 1000° C for $2 \sim 3$ min.	0.1 N HCl	10 mA·cm ⁻² , 60 hr.	23 ± 2
W		Cleaning with molten NaNO3	0.5 N HCl 0.5 N DCl	15 mA·cm ⁻² , 20 hr.	
	Wire	Cleaning with molten NaNO ₃ , heating in H_2 at 200°C	0.5 N H₂SO₄ 0.5 N NaOH	$1 \text{ mA} \cdot \text{cm}^{-2},$ 15~20 hr.	Room temp.
Zn			1 N H ₂ SO ₄		20

*; Values estimated from figures.

(); Uncertain values.

#; The region where a straight TAFEL line is observed.

a); Values of rest potential are referred to the reversible hydrogen electrode (r. h. e.) in the same solution and hydrogen atmosphere.

¢

b); Values of this column are those at a given overvoltage.

Rest potential ^{a)}	Range of ob- servation in log <i>i</i> (A·cm ⁻²)	b (mV)	$\log i_0 (A \cdot cm^{-2})$	$\begin{vmatrix} \log i^{\mathbf{b}} \\ (\mathbf{A} \cdot \mathbf{cm}^{-2}) \end{vmatrix}$	Reference
	-5~-0.5	27.5	-3.0*	-1.3* at $\eta = 0.05$ V	SCHULDINER 53 (1960)
	-3.5~0	120	-1.85*	-1.75^{*} at $\eta = 0.05$ V	Hoare 54 (1960)
		28 ± 2	-3.22 ± 0.06		Bockris & Sriniva- san 17 (1964)
	-6~-1	180	-6.0	-3.9^{*} at $\eta = 0.5$ V	EFIMOF & ERUSALIM- CHIK 55 (1959)
	-6~-1	170	-7.7*	-4.7^* at $\eta = 0.5$ V	EFIMOF, ERUSALIM- CHIK & SOKOLOVA 56 (1962)
	$-6 \sim -2$	53 115	-10.1* - 6.4*	-2.1* at $\eta = 0.5 V$	Ammar & Awad 57 (1956)
	-5.7~-2.7	154	-8.45*	-5.1^{*} at $\eta = 0.5$ V	Hackerman & Hall 58 (1954)
	-5 ~ -2.5	135	-6.07	-2.5*	Kolotyrkin & Petrov 59 (1957)
		130	-6.30	-2.4^{*} at $\eta = 0.5 V$	
	-5~-1.5	119	-8.15*	-4.0^{*} at $\eta = 0.5 \text{ V}$	Petrenko 60 (1962)
	-3 ~ +2	110	-5.0		Bockris & Azzam 2 (1952)
		$\begin{array}{c} 60\pm3\\ 105\pm13 \end{array}$	-6.11 -5.55		Bockris, Ammar & Huq 5 (1957)
		$\begin{array}{c} 70\pm 5\\ 112\pm 9\\ 69\pm 6\\ 101\pm 4 \end{array}$	$\begin{array}{c} -7.87 \pm 0.31 \\ -6.30 \pm 0.23 \\ -8.34 \pm 0.27 \\ -7.10 \pm 0.42 \end{array}$		Bockris & Koch 20 (1961)
		$\begin{array}{c} 84 \pm 6 \\ 116 \pm 3 \\ 80 \pm 1 \\ 100 \pm 4 \end{array}$	$\begin{array}{c} -6.63 \pm 0.22 \\ -5.90 \pm 0.09 \\ -7.53 \pm 0.10 \\ -6.60 \pm 0.26 \end{array}$		Bockris & Sriniva- san 17 (1964)
	-4.6~-1.8	120	-10.8*		Rotinyan, Fedotiefi & Sok 61 (1957)

.

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

Fig. 1. Log i₀ as a function of atomic number.
+; Values in acidic solution, ×; Values in alkaline solution,
⊙; Values in neutral solution.

(1) Periodicity of the activity:

The results on the same metal flucuate considerably, especially in case of Rh, Pd, W, Au and Pb but still the $\log i_0$ -values of the respective metals studied are basically a periodic function of the atomic number as shown by the dotted lines in Fig. 1 for the three long periods of the Periodic Table; in other words, the activity increases first with increase of atomic number, reaches the maximum at metals of Group VIII, decreases quite sharply with the minimum at metal of IIB or IIIB, and then increases again with further increase of the atomic number. The activity varies quite similarly in the second and the third long periods, revealing a precise periodicity. It may be noted that the third metal of the triad of Group VIII shows a tendency to have the highest activity.

The similar periodicity has been suggested by $BOCKRIS^{62}$ and recently by KHO-MUTOV⁶³ with regard to the hydrogen overvoltage of metals at a certain definite current density. However, in the former work, the periodicity in the first long period is incomplete because of lack of observations and in the latter, those only in hydrochloric or sulfuric acid are included. Moreover, only one or two values for each metal are used in their works, which appears insufficient in view of the following points, (2) and (3).

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

(2) Effect of the composition of solution on the activity:

The log i_0 value of the same electrode metal fluctuates by *ca*. 2 in most of the cases apparently without correlation with pH, whereas the log i_0 values of Rh, Pd and Pb in alkaline solution deviate from those in acidic solution by *ca*. 6 at most. The latter group of metals might need be re-examined, their observations in alkaline solution being extremely scanty. The activity is apparently independent of anion of acids within the fluctuation as seen for example, in the case of Ni in Table 1, where the values of log i_0 are $-5.4 (1 \text{ N HCl})^{30}$, -5.78^{8} and $-5.24^{18} (0.1 \text{ N HCl})$, $-5.22 (0.5 \text{ N HclO}_4)^{32}$, $-4.85 (0.1 \text{ N HclO}_4)^{32}$, $-5.2 (0.15 \text{ N HclO}_4)^{32}$ and $-5.7 (1 \text{ M HclO}_4)^{36}$.

The activity appears to have similarly no correlation with the solvent of electrolyte solution as exemplified by $\log i_0$ -value of mercury electrode, *i. e.* -11.8, -11.5, -10.8 or -10.8 respectively in 0.1 M HCl solution of water, methyl alcohol, ethyl alcohol or n-propyl alcohol.²⁶⁾ The values of $\log i_0$ in heavy water are, however, smaller in all cases than those in ordinary water and the difference on the same metal varies from the greatest value, 0.95 of Ag to the least one, 0.17 of Pt, being 0.55 on an average.^{8,20)}

(3) Effect of treatment of electrode:

Electrode of nickel, which is one of the metals studied most in detail, has a wide variety of treatment as seen from the third column of Table 1, *i. e.* reduction of wire in hydrogen atmosphere, electrodeposition of Ni from NiSO₄ solution, anodic or chemical polishing of single crystal, quenching of the melt in helium atmosphere, evaporation of Ni on glass wall, *etc.* It is noticed from Fig. 1 that the values of $\log i_0$ of nickel electrodes of the above treatments are not largely different from each other. Hence, the activity appears to depend not so much on the treatment as on the atomic number. The same is the case with most of other metals.

PIONTELLI *et al.*³²⁾ and WEININGER *et al.*³⁷⁾ observed TAFEL lines individually on (100)-, (110)- and (111)-lattice planes of f. c. c. crystal of Ni; the observation of the former with anodically treated electrodes leades to $\log i_0$ -values of the respective lattice planes which differ by 0.34 at most, while that of the latter with chemically polished electrodes to the practically coincident values.

(4) Homogeneity and heterogeneity of surface:

It is of interest that the activity of mercury conforms to the periodicity as seen in Fig. 1, since the surface of liquid metal is taken to be homogeneous, whereas that of solid metals possibly heterogeneous, owing to grain boundaries, steps, kinks, inperfections, *etc.* In the case of gallium, the activity is of little difference at temperatures slightly above or below the melting point of 29.78°C as shown in Table 1 and in conformity with the periodicity as well.

These facts indicate that the heterogeneity of surface, if any, could not be a predominant factor of hydrogen electrode as the active center theory suggests.

Discussion

The above mentioned points lead us to conclude that bulk property of the electrode is the determining factor of the activity of hydrogen electrodes. In other words, the activity of a metal depends not so much on solvent, electrolyte and its composition as on the atomic number of the electrode material. The activity also does not depent within the fluctuation of results on the surface treatment as well as on liquid or solid state of the electrode. Hence, the geometry of the surface is also of the secondary importance.

HORIUTI and the present author⁶⁴⁾ have studied theoretically the difference of activity among the principal lattice planes, *i. e.* (110)-, (100)- and (111)-lattice planes of Ni and concluded that the current density is exceedingly large on the (111)-lattice plane over the region of overvoltage where the TAFEL line is experimentally observed, suggesting an importance of the geometrical factor. This conclusion may be reconciled with that of the present paper referring to the experimental results of GOMER *et al.*⁶⁵⁾ and GERMER *et al.*⁶⁶⁾ that the three principal lattice planes are nearly equally exposed in area, since then the observed current density is approximately the average of the current densities on the individual principal lattice planes but not one of the latter current densities which are theoretically⁶⁴⁾ considerably different from each other. This proposition requires that even in the case of experiments as reported to have been conducted with a single lattice plane, the exposed surface is not the single lattice plane in atomic scale, which ought to be further investigated.

Now the question arises from the above conclusion as to what property of metal effects essentially the activity. Many physical properties such as latent heat of sublimation, melting-point, density, metallic radius and work function are known to show periodic gradations on passing through the long period. The correlation between the activity and the properties of metal is now under investigation in this laboratory.

Acknowledgement

The author wishes to express his sincere gratitude to Emeritus Prof. J. HORIUTI for his useful discussions given through this work.

Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction

References

- 1) J. O'M. BOCKRIS & B. E. CONWAY, Trans. Faraday Soc., 48, 724 (1952).
- 2) J. O'M. BOCKRIS & A. M. AZZAM, Trans. Faraday Soc., 48, 145 (1952).
- 3) H. GERISCHER & W. MEHL, Z. Elektrochem., 59, 1049 (1955).
- 4) I. A. AMMAR & S. A. AWAD, J. Phys. Chem., 60, 1290 (1956).
- 5) J. O'M. BOCKRIS, I. A. AMMAR & A. K. M. S. HUQ, J. Phys. Chem., 61, 879 (1957).
- 6) M. A. V. DEVANATHAN, J. O'M. BOCKRIS & W. MEHL., J. Electroanal. Chem., 1, 143 (1959).
- 7) A. A. ANTONIOU & F. E. W. WETMORE, Can. J. Chem., 37, 222 (1959).
- 8) B. E. CONWAY, Proc. Roy. Soc., A 256, 128 (1960).
- 9) K. GOSSNER, Chr. LÖFFLER & G. M. SCHWAB, Z. phys. Chem., 28, 229 (1961).
- 10) T. YAMAZAKI & H. KITA, This Journal, 13, 77 (1965).
- 11) M. BREITER, H. KAMMERMEIER & C. A. KNORR, Z. Elektrochem., 60, 454 (1956).
- 12) S. SCHULDINER & J. P. HOARE, J. Phys. Chem., 61, 705 (1957).
- 13) N. PENTLAND, J. O'M. BOCKRIS & E. SHELDON, J. Electrochem. Soc., 104, 182 (1957).
- 14) D. J. G. IVES, Can. J. Chem., 37, 213 (1959).
- 15) K. GOSSNER & C. LÖFFLER, Z. Phys. Chem. N. F., 37, 123 (1963).
- 16) U. W. PALM & V. E. PAST, Zhur. Fiz. Khim., 38, 773 (1964).
- 17) J. O'M. BOCKRIS & S. SRINIVASAN, Electrochim. Acta, 9, 31 (1964).
- 18) B. E. CONWAY, E. M. BEATTY & P. A. DEMAINE, Electrochim. Acta, 7, 39 (1962).
- 19) J. O'M. BOCKRIS & D. F. A. KOCH, J. Phys. Chem., 65, 1941 (1961).
- 20) E. J. KELLY, J. Electrochem. Soc., 112, 124 (1965).
- 21) St. G. CHRISTOV & L. RAJĆEVA, Z. Elektrochem., 66, 486 (1962).
- 22) K. SABO & I. BAGOTSKAJA, Doklady Akad. Nauk SSSR, 149, 139 (1963).
- 23) A. J. DE BÉTHUNE, J. Am. Chem. Soc., 71, 1556 (1949).
- 24) B. POST & C. F. HISKEY, J. Am. Chem. Soc., 72, 4203 (1950).
- 25) A. MITUYA, This Journal, 4, 228 (1956).
- 26) S. MINC & J. SOBKOWSKI, Bull. Akad. Polon. Sci., 8, 29 (1959).
- 27) J. N. BUTLER & A. C. MAKRIDES, Trans. Faraday Soc., 60, 938 (1964).
- 28) B. E. CONWAY & M. SALOMON, J. Chem. Phys., 41, 3169 (1964).
- 29) J. N. BUTLER & A. C. MAKRIDES, Trans. Faraday Soc., 60, 1664 (1964).
- 29 a) J. N. BUTLER & M. DIENST, J. Electrochem. Soc., 112, 226 (1965).
- 29b) A. L. ROTINYAN & N. M. KOZHEVNIKOVA, Zhur. Fiz. Khim., 37, 1818 (1963).
- 29 c) M. J. JONCICH, L. S. STEWART & F. A. POSEY, J. Electrochem. Soc., 112, 717 (1965).
- 30) J. O'M. BOCKRIS & E. C. POTTER, J. Chem. Phys., 20, 614 (1952).
- 31) J. YEAGER, J. P. CELS, E. YEAGER & F. HOVORKA, J. Electrochem. Soc., 106, 328 (1959).
- .32) R. PIONTELLI, L. P. BICELLI & A. LaVECCHIA, Accad. Nazionale Dei Lincei VIII, 27, 312 (1959).
- 33) M. A. V. DEVANATHAN & M. SELVARATNAM, Trans. Faraday Soc., 56, 1820 (1960).
- 34) A. C. MAKRIDES, J. Electrochem. Soc., 109, 977 (1962).
- 35) H. KITA & T. YAMAZAKI, This Journal, 11, 10 (1963).

- 36) A. K. M. S. HUQ & A. J. ROSENBERG, J. Electrochem. Soc., 111, 270 (1964).
- 37) J. L. WEININGER & M. W. BREITER, J. Electrochem. Soc., 111, 707 (1964).
- 38) A. MATSUDA & T. OHMORI, This Journal, 10, 203 (1962).
- 39) S. JOFA, Zhur. Fiz. Khim., 19, 117 (1945).
- 40) W. PALM & V. PAST, Doklady Akad. Nauk SSSR, 146, 1374 (1962).
- 41) R. CLAMROTH & C. A. KNORR, Z. Elektrochem., 57, 399 (1953).
- 42) J. P. HOARE & S. SCHULDINER, J. Electrochem. Soc., 102, 485 (1955).
- 43) idem: ibid., 104, 564 (1957).
- 44) H. SHIRATORI, Denkikagaku (Electrochemistry), 29, 765 (1961).
- 45) J. C. BARTON & F. A. LEWIS, Z. Phys. Chem., 33, 99 (1962).
- 46) S. SCHULDINER, J. Electrochem. Soc., 107, 426 (1954).
- 47) K. J. VETTER & D. OTTO, Z. Elektrochem., 60, 1072 (1956).
- 48) I. A. AMMAR & S. DARWISH, J. Phys. Chem,. 63, 983 (1959).
- 49) S. SCHULDINER, J. Electrochem. Soc., 106, 891 (1959); ibid., 108, 384 (1961).
- 50) E. YEAGER, Trans. of the Symposium on Electrode Processes, John-Wiley (1961).
- 51) R. PARSONS, Trans. Faraday Soc., 56, 1340 (1960).
- 52) T. HISANO, Denkikagaku (Electrochemistry), 31, 98 (1963).
- 53) S. SCHULDINER, J. Electrochem. Soc., 107, 452 (1960).
- 54) J. HOARE, J. Electrochem. Soc., 107, 820 (1960).
- 55) E. A. EFIMOF & I. G. ERUSALIMCHIK, Doklady Akad. Nauk SSSR, 124, 609 (1959).
- 56) E. A. EFIMOF, I. G. ERUSALIMCHIK & G. P. SOKOLOVA, Zhur. Fiz. Khim., 36, 1005 (1962).
- 57) I. A. AMMAR & S. A. AWAD, J. Electrochem. Soc., 103, 182 (1956).
- 58) N. HACKERMAN & C. D. HALL, Jr., J. Electrochem. Soc., 101, 321 (1954).
- 59) Ya. M. KOLOTYRKIN & P. S. PETROV, Zhur. Fiz. Khim., 31, 659 (1957).
- 60) A. T. PETRENKO, Zhur. Fiz. Khim., 36, 1527 (1962).
- 61) A. L. ROTINYAN, N. P. FEDOTIEFF & Li Un Sok, Zhur. Fiz. Khim., 31, 1259 (1957).
- 62) J. O'M. BOCKRIS, Trans. Faraday Soc., 43, 417 (1947).
- 63) N. E. KHOMUTOV, Zhur. Fiz. Khim., 39, 532 (1965).
- 64) J. HORIUTI & H. KITA, This Journal, 12, 122 (1964).

Sec.

- 65) R. WORTMAN, R. GOMER and R. LUNDY, J. Chem. Phys., 27, 1099 (1957).
- 66) L. H. GERMER, E. J. SCHEIBNER and C. D. HARTMANN, Phil. Mag., 5, 222 (1960).
 L. H. GERMER and C. D. HARTMANN, J. Phys. Chem. Solid, 14, 75 (1960).