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NOTES ON HORIUTI'S METHOD OF STATISTICAL­

MECHANICAL CALCULATIONS 

Part I. HORIUTI's Statistical-Mechanical Functions 

By 

Takashi NAKAMURA *) 
(Received September 28, 1967) 

Abstract 

HORIUTI has developed "a method of treating equilibrium and chemical reaction (rate) 

by introducing a set of conjugate statistical-mechanical functions defined as the factor of 

multiplication of the Zustandsumme (= partition function) caused by increasing a certain con­

stituent of the assembly of interest or by imposing a microscopic constraint upon the ele­
mentary state of the constituent" (quoted from his article, 1. Research Inst. Catalysis, 

Hokkaido University, 1, 8 (1948)), and has applied it to calculations of adsorption equilibria 

and of rates of heterogeneous reactions. The present notes, which are based on a series of 

lectures given by the author at the Research Institute for Catalysis, Hokkaido University 

in 1965-1966, are devoted to the exposition of HORIUTI's method with the purpose of filling 

in a gap which seems to exist between his papers and what is found in the current textbooks 

of statistical mechanics. In order to elucidate the significance of HORIUTI's statistical­

mechanical functions and certain related concepts, a simple spin system and the sitewise 

(= localized) adsorption of a one-component gas are discussed at considerable length in Part 

I. The discussion of a few examples of equilibrium calculations and the treatment of 

chemical reaction rates along the same lines are left for· Parts II and III. 

§ 1. Introduction 

HORIUTI has done a number of statistical-mechanical calculations relating 
to adsorbed phase, most of which are concerned with the effects of the inter­
actions between adsorbed atoms (molecules) on thermodynamic properties of 
an adsorbed phase. He has also applied his method of statistical-mechanical 
calculations to the derivation of absolute rate expressions for chemical reactions 
taking place in adsorbed phases, namely heterogeneous reactions. Although his 
theory is of much interest and importance, a considerable number of students 
seem to find it difficult to familiarize themselves with HORIUTI's theory for 
the reason that the way of theoretical development and also the mathematical 
notation used in his papers are quite different from those they find in the 

*) Research Institute for Catalysis, Hokkaido University, Sapporo, Japan. 
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current textbooks on statistical mechanics. I do not think however that the 
difference is as big as the students are likely to think; there is nothing 
basically different or particularly unusual in his theory. The present notes 
have been written in the hope that they will help students to find the connection 
between HORIUTI'S theory and what is found in the textbooks. Here it is 
not attempted to discuss all the important aspects*) of HORIUTI'S statistical­
mechanical method; these notes are intended simply as a guide to his papers. 

T. L. HILL'S "Introduction to Statistical Thermodynamics" (1960) is of 
established reputation as an up-to-date, introductory textbook of statistical 
mechanics. Throughout the present notes, therefore, his book will be used 
as the general reference. 

§ 2. Thermodynamical Consideration of 
Chemical Equilibrium 

In these notes we shall have a few occasions to discuss, as an illustration, 
the equilibrium of the chemical reaction, 

A+B~2C, (2.1) 

taking place in a fluid mixture of three components A, Band C. The pressure, 
volume and temperature of thi5 mixture will be denoted by p, V and T, re­
spectively. The equilibrium of (2.1), although a very simple one, furnishes 
a good example showing important features of the thermodynamical or statistical­
mechanical theory of chemical equilibrium. 

Perhaps any discussion of chemical equilibrium should start with a thermo­
dynamical consideration. In fact, classical thermodynamics has long been, and 
will continue to be, a frame of reference in the theory of macroscopic systems 
in equilibrium. The well-known, thermodynamical condition for equilibrium of 
a system kept at constant temperature and pressure is that the GIBBS free 
energy G of the system is minimum. In the case of chemical equilibrium it 
IS customary to express this condition as 

AG=O. (2.2) 

Let us first suppose that the above mixture is a perfect gas mixture 
(DENBIGH,I) p. 112). In this particular case the whole story will be a very 
simple one. For one thing, the "additivity" of thermodynamic functions holds 
for this mixture; for example, the GIBBS free energy G of the mixture is 
additive in the sense that 

*) For instance, I shall not argue about his theoretical analyses of various experimental 
results. 
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(2.3) 

On the right hand side of (2.3), nA is the number of moles of A in the 
mixture, YA is the molar GIBBS free energy of pure A at temperature T and 
pressure PA, where PA is the partial pressure of A in the mixture; the remaining 
symbols are defined in a similar fashion. The expre&sion for .JG to be used 
in (2.2) is likewise simple; corresponding to the stoichiometry of (2 . .1), it is 
written as 

(2.4) 

Also we can make use of the well-known relation between the pressure and 
free energy of a perfect gas, namely, 

YA = yl +RTlnh etc., (2.5) 

where yl is a function only of temperature. Combining (2.2) with (2.4) and 
(2.5), we get an important relation which holds when the reaction (2.1) is III 

equilibrium: 

P~/PAPB = exp (-.JGo / RT), 

where .JCO is defined by 

.JGo = 2y~ - Yl- y~. 

(2.6) 

(2.7) 

It follows from (2. 7) that the right hand side of (2.6) is constant at a con­
stant temperature; hence it is called the equilibrium constant of the reaction 
(2.1) at temperature T and denoted by Kp. In other words, the partial pressure 
quotient on the left hand side of (2.6) is equal to the equilibrium constant Kp. 

Expressions such as (2.4) or (2.6) is elementary and well-known. It is to 
be remembered however that their application is limited to perfect gas mixtures. 
Let us therefore turn to the case in which the above mixture is not "perfect"; 
in other words it may be a mixture of imperfect gases or may be a liquid 
mixture (solution). Although the condition (2.2) for equilibrium always remains 
true (of course, under the condition of constant pressure and temperature), the 
additivity relation (2.3) now ceases to be true. A very general relation how­
ever holds instead of (2.3); namely (cf. DENBIGH,I) p. 99), 

(2.8) 

where the chemical potentials, P.A etc. appear in place of the molar Gibbs free 
energies, YA etc. in (2.3). Also the left hand side of (2.2), namely .JG, now 
ought to be computed by using the expression, 

(2.9) 
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(DENBIGH,I) Chapter 4) rather than the relation (2.4) which is appropriate to 
perfect gas mixtures. Eqs. (2.8) and (2.9) might look as simple as (2.3) and 
(2.4), but their contents are in actual fact much more complicated. First of 
all, the chemical potential Ih of A depends on the nature and amounts of B 
and C coexisting in the mixture, whereas the molar GIBBS free energy gA of 
pure A evidently does not. Interpreted in molecular terms, the coexisting B 
and C affect the chemical potentital of A through the interactions between the 
molecules B and A, and between C and A. A similar thing can be said of 
PB and pc· In short the above complication has its origin in the molecular 
interactions (= interactions among molecules). We shall consider this point in 
more detail later in Part II, where the same problem will be discussed in 
statistical-mechanical language. 

It is instructive to consider an imperfect gas mixture in particular. We 
know that an imperfect gas reduces to a perfect gas in the low density limit 
(namely p~O); as a gas is rarefied, the molecular interactions are reduced in 
effect. In this connection we are reminded of the concept of activity (fugacity) 
and activity coefficient (fugacity coefficient) for an imperfect gas. The activity 
coefficient r J of the component J (J = A, B or C) is defined by 

(2.10) 

where fJ~ is the standard chemical potential of J, which is a function only of 
temperature (DENBIGH,1) p. 123), and rJ~l in the low density limit. In place 
of (2.6) and (2.7), the following relations (2.11) and (2.12) result from (2.2), 
(2.9) and (2.10): 

p
2 (r2 )-1 (AGO) 

PA;B = rA~B exp - RT ' (2.11) 

where AO is defined by 

(2. 12) 

The standard change of free energy AGO in (2.11) as well as that in (2.6) is 
a function only of temperature. However, on account of the activity coefficient 
quotient (n/r ArB), the right hand side of (2. 11) is not constant at a constant 
temperature, unlike that of (2. 6). The activity coefficient r A of the component 
A depends on the nature and amounts of the partner components Band C; 
much the same can be said of the activity coefficients r Band r c . In this 
sense the concept of the equilibrium constant Kp is not applicable to an im­
perfect gas mixture. Only in the low density limit, where the gas imperfection 
vanishes, will the chemcical potentials, fJA etc, become numerically equal to the 
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molar GIBBS free energies, gA etc. ; then (2.8) and (2. 9) will reduce to (2.3) 
and (2.4), the activity coefficient quotient to unity and the equality (2.11) to 
the equality (2. 6). We shall come back to the molecular (statistical-mechanical) 
interpretation of the activity coefficients r J in Part II. 

It remains to say something about the case of liquid solutions. Empirically 
we know that there exists a certain class of liquid solutions, called ideal 
solutions, for which the chemical potential of every component is related to 
its mole fraction XJ by the simple relation, 

(2.13) 

where pj is a fucntion of temperature and pressure only (DENBIGH,1) Chapter 
8). The expression (2.13) is reminiscent of (2.5). In fact, from (2.2), (2.9) 
and (2.13) we obtain 

X~!B = exp ( - ~C;) , (2.14) 

where AG* is given by 

AG* = 2p'b-pi-p:. 

The relation (2.14) is very similar to (2.6); the right hanci side of (2. 14) is 
a constant at constant temperature and pressure. In other words, the right 
hand side of (2.14) is the equilibrium constant. It should be remembered 
however that (2.14) is again of limited applicability since it is based on the 
special relation (2.13). Solutions for which (2.13) holds over the whole range 
of composition are very exceptional. In this connection the concept of activity 
coefficient is often very useful also in the theory of liquid solutions. In any 
event, the theory of chemical equilibrium in liquid solution is much more 
complicated than that in gas. In liquid, whose density is much higher than 
that of gas, the molecular interactions have a decisive influence; were it not 
for the molecular interactions, there would exist no liquid at all. 

In. his important papers published in 1935-36 EYRING has shown that the 
statistical-mechanical calculation of chemical reaction rates is essentially that 
of the equilibrium constant between activated complex and reactants of the 
reaction (GLASSTONE et at.,3) Chapter IV). This means that the theory of 
absolute reaction rate of EYRING et al. has a great deal in common with the 
statistical-mechanical theory of chemical equilibrium. In formulating his theory, 
EYRING started with what is to be regarded as the statistical mechanics of 
perfect gases; consequently his rate expressions are, strictly speaking, applicable 
only to reactions in perfect gas mixtures. On the basis of the close similarity 
between the theory of reaction rate and that of chemical equnibriu1III., he...claimed 
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however that their applicability could at once be extended to reactions in 
imperfect gases, liquid solutions, adsorbed phase, etc. by giving adequately 
modified interpretations to the partition functions involved in them and by 
introducing, when necessary, activity cefficients into them in much the same 
way that the coefficients rJ have been introduced into equilibrium expressions 
such as (2.11) (see GLASSTONE et ai.,3) Chapters VII and VIII). In so doing, 
it seems to me, he had to rely on a sort of plausibility argument and/or certain 
particular models. Most ingeneous as his theory of absolute reaction rate was, 
the question therefore remained: how can the whole theory of absolute reaction 
rate be founded on the basis of the general theory of statistical mechanics? 
One of HORIUTI'S efforts has been to answer this question; we shall come 
back to this point in Part III. 

§ 3. Canonical Distribution 

The central subject matter of Parts I and II of the present notes is the 
statistical mechanical treatment of chemical (or adsorption) equilibrium. In 
Sections 3-6 I shall however make a somewhat lengthy excursion and discuss 
the statistical mechanics of a simple spin system. The reason is: (1) this spin 
problem is of particular importance in its own right, that is, as the basis of 
the theory of magnetism; (2) there is a close relationship (if. Section 7 and 
Appendix D) between ~he statistical mechanics of a spin system and that of 
adsorbed phase, the latter being the central subject of HORIUTI'S theory; (3) 
a detailed discussion of such a spin system is of much pedagogical value for 
introducing some important concepts or principles of statistical mechanics (see 
below). 

Our spin system consists of N identical spins, each having spin 1/2 and 
a magnetic moment m (cf. HILL/) Section 12.4). Further we suppose that the 

system is placed in a uniform external magnetic 
field, and that the spins (=magnetic moments) 
are attached to N sites which in turn form a 
rigid lattice. Let these sites be numbered 1,2, ... , 
N. As is well-known each of the spins has two 

Fig. 1. quantum states, t and L, which signify the spin 
being parallel and antiparallel, respectively, to the external field. In other 
words, the spin is a "two-level molecule" having the two energy levels, 

e I = -mH for the t state, (3. 1) 

and 

ej=mH for the L state, (3.2) 
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where H is the strength of the magnetic field. (See Fig. 1.) Any elementary 
account of the theory of paramagnetism, ferromagnetism, antiferromagnetism, 
ESR or NMR starts with this kind of simple spin system. 

First we assume that the interactions among the spins are so weak as to 
be negligible in the statistical calculation of spin distribution. This assumption 
suffices to calculate the spin distribution in paramagnetic substances. Then 
each spin is regarded as practically independent; in fact, on this basis can we 
speak of the "private" energy (3.1) or (3.2) of each spin and calculate the 
probability Pi or P j of any spin in the system being in the t or t state by 
the BOLTZMANN distribution law, 

(3.3) 

where T is the temperature of the spin system*) and q is the partition function 
of the spin, 

q = exp( -cr/kT)+exp( -cdkT). (3.4) 

Let <N i ) be the mean number of i-spins (that is, spins in the i state) and 
let <N j ) be that of t-spins. These numbers are given by 

<Ni)=NPi= ~ exp (- ;~), <Nj)=Npj= ~ exp (- ;~), 
hence it follows that 

<N j ) = EL = exp (-cj/kT) 
<Ni) Pi exp (-cr/kT) 

<Ni)+<N j ) =N. 

(3.5) 

The temperature or field dependence of the paramagnetism of this system is 
readily calculated from (3.5); that is, the mean total magnetic moment M of 
the system is given by 

M = m<Nr) +( -m)<N j ) = (mNJq) [exp( -cr/kT)- exp( -cd kT)] 

Using (3.1), (3.2) and (3.4), we thus have the well-known result (HILL,4) Section 
12.4; WANNIER,ll) Section 15.1), 

M = mN tanh (mH/kT) , (3.6) 

*) Here we suppose that our spin system is a macroscopic one, that is, N_102o or more. 
What is termed a system in the present notes has been called an assembly by FOWLER.2) 
HORIUTI and RUSHBROOKE have followed FOWLER. My usage of the term "system" is 
in agreement with that in thermodynamics and that employed in many papers or text­
books on statistical mechanics (of course, except those by FOWLER, RUSHBROOKE and 
HORIUTI). See in this connection RUSHBROOKE,lOa) p. 4. 
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which is the quantum mechanical version of the LANGEVIN formula. 
So far the discussion has been quite elementary, since we have neglected 

the interactions among spins. Now let us see how the interactions among spins 
change everything. We shall start with the simplest possible case. Imagine 
the hypothetical situation in which there is an appreciable interaction between 
a pair of spins in the system, say the spins on the neighboring lattice sites 
1 and 2, which we shall call spins 1 and 2 for short, but the interaction between 
the pair and the remaining N-2 spins is so weak as to be negligible (Fig. 2). 
Since spin 1 (or 2) is no longer independent, the probability Pl1 or plj (P21 or 
P2l) of its being t or ~ can not be computed by using (3.3). In this case it is 

2 

f j 
-----­inter-
action 

3 4 N-j N-

f f --------------- f I 
Fig. 2. 

appropriate to speak of the energy of the pair (see below) but not of the 
"private" energy of spin 1 (or spin 2). We therefore take the spin pair, rather 
than individual spins, as the statistical unit to which the BOLTZMANN distribu­
tion law similar to (3.3) is applied, because the pair has been assumed to be 
practically independent of the remaining N-2 spins. The number of quantum 
states of this pair is four; they are t j, H, Hand H. (The symbol H, for 
instance, means that spins 1 and 2 are ~ and j, respectively.) We assume that 
the energies of these states of the pair are given by 

e(tt) = 2el -J, 

e(H) = dH) = el +el +J, 

e(H) = 2el -J, 

(3.7) 

where J is a positive constant (cf HILL,4) p. 250) and el and el are given 
by (3.1) and (3.2). Eqs. (3.7) indicate that there is negative interaction energy 
- J between parallel spins (t t or ~ ~) and a positive interaction energy J 
between antiparallel spins (H or t ~). In other words, the interaction tends 
to stabilize the parallel pair and to destabilize the antiparallel pair; if, for 
instance, spin 2 is t, spin 1 is tempted to be t rather than ~. This type of 
interaction between electronic spins is known to be the origin of ferromagnetism 
(WANNIER,Il) Chapter 15). Anyway the probability P(tt) of the pair being 



Method of Statistical-Mechanical Calculations 

in the tt state is, according to the BOLTZMANN distribution law, given by 

In (3.8), qpair is the partition function of the pair defined by 

qpair = L: exp [ -cU)1 kT] , 
j 

(3.8) 

(3.9) 

where the summation L: runs over all the four states (that is, j = tt, H, U and 
j 

H). The other probabilities P(H), P(H) and P(U) are obtained in much the 
same way. Now the above-mentioned probability Pl) of spin 1 being t IS 

readily calculated. The elementary theory of probability shows us that Pl) IS 

given by 

(3.10) 

since spin 1 is t when and only when the pair IS m the tt or t t state. 
Similary, 

Pl! = P(H)+P(H) , 

P2) = P(tt)+P(H) , P2j = P(H)+P(H)· 

(3.11) 

(3.12) 

Now it is very easy to prove, using Eqs. (3.7)-(3.12), that in the limit 
of J~O (vanishing interaction), 

Pl j = P2 j = P j' Pl) = P2) = p) , 

(3.13) 

(3.14) 

(3.15) 

where P j' p) and q are given by (3.3) and (3.4). Take, for instance, one of 
the above relations, P( it) = P jp). It indicates that the probability P( t t) for 
the pair is written as the product of the probabilities P j and p) for individual 
spins. This is what we expect since, in the absence of the interaction (that is, 
J = 0), the orientation of spin 1 and that of spin 2 are independent events (in 
other words, there is no correlation between them), 

We have just considered the statistical mechanics· of two interacting spins. 
The treatment can be readily extended to the case of three (or more) inter­
acting spins. However what we are really interested in is the problem of N 
interacting spins, where N if:> the number of the spins constituting a macro­
scopic spin system (see the footnote on p. 133). In (3.8) we have applied the 
BOL TZMANN distribution law to a spin pair rather than to a single spin. Can 
we apply anything like the BOLTZMANN law to the whole system of N spins? 
The answer is, 'yes"; according to the general theory of statistical mechanics 
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(DENBIGH,t) Section 11. 9), the probability P(/) of the system being in its I-th 
quantum state having energy E(/) is given by 

P(/) = ~ exp [ -E(/)j kT] , (3.16) 

provided that the system is an isothermal system with constant volume, that 
is, it is in contact with environment (or more precisely, a heat bath) of tempera­
ture T and its volume is kept constant. In (3.16), Q is the partition function 
of the system given by 

Q = I; exp [ - E (I) j kT] , 
I 

(3.17) 

where the summation runs over all the quantum states of the system. The 
distribution given by (3.16), appropriate for an isothermal system with con­
stant volume, is called canonical distribution (DENBIGH,l) Chapter 11; HILL,4) 
Chapter 1). Indeed the relation (3.16) is of fundamental importance in statistical 
mechanics. Using the distribution (3.16) we can calculate the mean values 
(canonical ensemble averages) of various physical quantities of the system. 

Our spin system may be regarded as a two-component system consisting 
of i -spins and ~-spins. The transition of a spin between the t and t states 
may be regarded as an isomerization reaction, namely 

t -spin ~ ~ -spin (3.18) 

Suppose that when the system is in the I-th quantum state, its "composition" 
is given by NT (I) and Nl (I), which stand for the number of i-spins and that 
of t-spins respctively. Evidently, 

NT (/)+Nl (I) = N. 

Then the mean values of these numbers are given by 

<NT) = I; Nd/)P(/), <Nl ) = I;Nl (/)P(/). (3.19) 
I I 

Now our task is to extend the above two-spin calculation, centering around 
(3.8), (3.9), etc., to the N-spin case. To do this we start with the basic formula 
(3.16) and the expression (3.25) below for the energy levels of the N-spin 
system. The problem we are going to deal with is known as the ISING problem, 
which is treated in many textbooks on statistical mechanics. (See, for example, 
HILL/) Chapter 14 and W ANNIER,ll) Chapters 15 and 16.) Eq. (3.25) implies 
that each spin has only two quantum states, i and t, and that there is an 
interaction energy ± J between each nearest-neighbor pair of spins (HILL,4) 
p. 250; W ANNIER,ll) Section 15.4). A close study of the statistical-mechanical 
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treatment of this sort of spin system, whose energy levels are given by the 
simple, transparent expression (3.25), indeed has the pedagogical advantage that 
good insight into the effect of the interactions on a statistical distribution is 
obtained relatively easily from it. (See Part 11.) Since we are going to deal with 
very many spins, it is convenient to introduce a new variable Sj which can take 
on just two values, -1 and + 1; more specifically S j = -lor + 1 signifies 
that spin j is t or t respectively. It is found that the number of quantum 
states of the N-spin system is 2N

, and these states are described by a set of 
N variables, (Sl' S2, "', S N)' In order to illustrate this, let us consider the rather 
trivial case N = 2. As we have seen above, there are 22 quantum states, t t, 
H, t t and U, which are described by (Sl' S2) = (1,1), (-1,1), (1, -1) and (-1, 
-1), respectively. In terms of the Sj variables the energy expressions (3.7) 
for two interacting spins are unified into the single equation, 

S(SIS2) = -slmH-s2mH-s1s2J, 

and (3.9) is rewritten as 

qpair = L: L; exp [ -e(SIS2)/ kT] . 
8 1 8 2 

(3.20) 

Returning to the N-spin case, we observe that the quantum number I in (3.16) 
and (3.17) can be replaced by the set of N variables (Sl' S2,"',SN); thus (3.16), 
(3.17) and (3.19) are rewritten as 

P(SIS2"'SN) = ~ exp [ -E(S~S2"'SN)/ kT] , 

Q = L: L: ... L: exp [ -E(SIS2"'SN)/ kT] , 
8 1 8 2 8N 

<Nt> = L: L: ... L: Nt (SIS2' "SN)P(SIS2" 'SN) , 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The energy of our N-spin system is assumed to be given by an expression 
similar to (3.7) or (3.20): 

N 

E(SIS2"' SN) = - L: sjmH - L: SjSkJ , (3.25) 
j~l (j,k) 

where the summation L; runs over all nearest-neighbor pairs of spins. Eq. 
(j,k) 

(3.25) implies therefore that there is an interaction energy ±J (see the dis-
cussion following (3.7)) between nearest-neighbor spins while second-neighbor, 
and higher, interactions are negligible. I shall not delve into a detailed dis­
cussion of the energy expression (3.25), which is usually called the ISING model 
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expression, because its derivation is a business of quantum mechanics (cf. 
WANNIER,ll) Chapter 15) rather than that of statistical mechanics. 

The important probability P(SI S2··· SN) is a function of the N variables, 
Sl> S2, ... , S N, each of them assuming one of two discrete values, -1 and l. 
We shall be much interested in the probability that a certain spin, say spin 
1, in the spin system be in the t or t state. As is shown below this proba­
bility can be derived from P(SI S2··· SN) in essentially the same way that the 
probabilities PIT and PIl have been calculated from P(j) (j = t t, t t, t t and t t) 
by means of (3.10)-(3.11). To do this we introduce the following function 
of the t variables SIS2 ... St (t<N): 

P(t) (SI S2·· ·St) == I: I: ... I: P(SI S2·· ·SN) . (3. 26) 

This function P(t)(SIS2···St) is very much like the specific distribution function 
extensively used in the distribution function theory of fluids (HILL A,5) p. 182). 
In (3.26) the N-spin distribution function P on the right hand side is "reduced" 
to the t-spin distribution function pit) on the left hand side by the (N-t)-fold 
summation I: I: ... I: . The significance of the "reduced distribution function" 

8'+1 8t+2 8N 

pit) can be best understood by considering P(!) (SI) and P(2) (SI S2) as typical 
examples. Evidently P(1)(I) is the probability of spin 1 being t; in other 
words, PI)(I) is the same thing as PIT in (3.10). Similarly P(1)( -1) is the same 
thing as PIl in (3.11). P(2) (1, -1) is the probability that spin 1 is t and 
spin 2 is t at the same time. 

It immediately follows from the definitions (3.21)-(3.22) and (3.26) that 
the following relations hold when the interactions among spins are absent 
(J=O): 

(3.27) 

(3.28) 

P(2)(SI S2) = q-2 exp (slmH/ kT) exp (s2mH/ kT) = p(1) (SI)P(1) (S2) , 

(3.29) 
t t 

P(t)(SIS2···St) = II q-I exp (sjmH/ kT) = II P(l)(Sj) , (3.30) 
j~1 j~1 

N N 
P(SI S2·· . S N) = II q-I exp (s j mH / kT) = II P(I) (s j) , (3.31) 

j~1 j~1 

where q is defined by (3.4). These equations are to be regarded as the 
extension of (3.13)-(3.15) to the N-spin case. 

Provided that all the N spins are equivalent, the important ratio <N1 )/<NT) 
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is expressed in terms of the probability PO) (SI) of spin 1 being t or ~ (see 
Appendix A) as 

PO) (-1) 
PO) (1) 

(3.32) 

When the interactions among the spins are absent, the relation (3.32), by virtue 
of (3.28), reduces to 

<NI ) _ exp(-mH/kT) - [( )/kT] 
---'-c~_ - - exp - el -el 
<NI) exp(mH/kT) , 

(3.33) 

which is nothing but the simple BOLTZMANN distribution law (3.5). 

So far our discussion has been just that of well-known, elementary proba­
bility relations; it might seem formal and rather empty of any real content. 
In Part II, I shall however show that the right hand side of the general 
relation (3.32) is rewritten as follows: 

exp [-(el +w 1)/ kT] 
exp[ -(el +wI)/kT] 

(3.34) 

This expression bears a formal resemblance to (3.33), but the quantities WI 

and WI occurring on the right hand side of (3.34) are of very complicated 
nature. They arise from the interactions among spins and have the properties 
of free energy. Hence they are temperature dependent whereas e I acld e I are, 
of course, not. In passing we note that (3.34) is rewritten as 

(3.35) 

It is interesting to compare the relations (3.33) and (3.35) for the "reaction" 
(3.18) with the earlier relations (2.6) and (2.11) for the reaction (2.1); the 
factor exp (-wdkT)/exp (-wdkT) on the right hand side of (3.35) becomes 
unity in the limit J~O (vanishing interactions) and is indeed reminiscent of 
the activity coefficient quotient r A r B/r~ occurring in (2.11). I shall discuss 
this point more sharply in Part II. 

§ 4. Constraints on System and Partition Functions 

In Section 3 I have defined the partition function Q of the spin system 
by (3.17), where the sum is taken over all the 2N quantum states of the 
system. According to the general theory of statistical mechanics (HILL,4) 
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Chapter 1; DENBIGH,1) Chapter 11) the HELMHOLTZ free energy*) F of the 
system is related to the partition function Q by 

F= -kTlnQ. (4.1) 

In this section we shall define three other partition functions, Q(l) (Sl) , Qn 
and Q~l)(Sl)' and consider their significance.**) Let us begin with Q(l)(Sl), where 
Sl is the variable we have introduced in Section 3; hence it takes on two 
values, -1 and 1. First let Sl be -1. We pick out, from the above 2N 
states, only those states in which Sl is -1 (that is, those states in which spin 
1 is n and construct the partition function Q(1) (-1) as 

(4.2) 

where the superscript Sl = -Ion 1; indicates that the sum is taken over only 
I 

those states in which Sl is -1. The number of such states is 2N
-\ which 

fact is most easily seen from (4.6) below. Thus Q(1) (-1) defined by (4.2) is 
what might be termed a "partial-sum-over-states" as against Q which is defined 
by (3. 17) and called a sum-over-states (Zustandsumme). In Section 3 we have 
considered the probability PCI) (-1) of spin 1 being t, which is equal to the 
probability of the system being in any of the 2N - l states with Sl = -1. Since 
P(I) given by (3.16) is the probability of the system being in the I-th state, 
the probability P(1) (-1) is expressed as 

PCI)( -1) = 1;8,"-1 P(I) = Q(1)( -l)/Q. (4.3) 
I 

Much the same applies to the case Sl = 1, and therefore we write 

(4.4) 

(4.5) 

In passing it is to be noted that the relations (4.2) and (4.4) are conveniently 
rewritten in terms of the set of variables Sl, S2,"', S N as 

*) In the present notes, the HELMHOLTZ and GIBBS free energies are denoted by F and G, 
respectively, which conforms to the IUPAP (and IUPAC) recommendation but deviates 
from HILL4)S) and the practice of American chemists. In magnetic problems such as 
the one we are dealing with, some authors prefer to give different names to the free 
energy F given by (4.1), where the partition function Q is defined by (3.22), and there 
is a good reason for this. However the discussion of this matter is beyond the scope 
of the present notes. (HILL A,S) Section 41; W ANNIER,11) Sections 8.2 and 15.4) 

**) The definitions of these partition functions can be best understood by considering the 
special case N = 3, which is described in Appendix B. 
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(4.6) 

Notice that the summation on the right hand side of (4.6) is (N-1)-fold (that 
is, we do not sum with respect to SI), whereas that on the right hand side of 
(3.22) is N-fold. Comparing the above expression (4.6) for Q(I)(SI) with (3.22), 
(3.26) and (3.21) we readily see that 

8 2 8 3 8 \ 1 
(4.7) 

Q = .L:; Q(1)(SI) = Q(1)(l)+Q(1)( -1), 
8, 

P(I)(l) + P(1)( -1) = 1 . 

The second equation coincides with (4.3) and (4.5), and the third is what it 
should be. 

Next we define the partition function Qn (0::;; n::;; N) by 

(4.8) 

where the subscript n attached to I; implies that the sum is taken over those 
I 

states which satisfy the condition N j (1) = n, that is, the condition that the 
number of i -spins is n. The number of such states is N! / n! (N-n)!, since 
there are N!/n! (N-n)!, ways of choosing n sites for i-spins from the N 
sites. Now let Pn be the probability of the spin distribution being (n, N - n), 

that is, the probability that the number of i-spins in the system is n (thus the 
number of t -spins is N - n); Pn is obtained from P(1) in much the same way 
that P(1)( -1) has been obtained from P(I) by means of (4.3): 

(4.9) 

We easily find that the summation .L:; is equivalent to the double summation 
I 

N 

.L:; L:n and therefore the second equation of (3.19), for example, is rewritten as 
n=O I 

(4.10) 

Finally the partition function Q~) (± 1) is defined by 

(4.11) 

The super- and subscripts, SI = ± 1 and n, attached to I; on the right 
I 

hand side of (4.11) have the same meaning as in (4.2), (4.4) and (4.8); there-
fore the sum runs over only those states which satisfy the· conditions, SI = ± 1 
and N j (J)=n, simultaneously. The number of the states satisfying both the 
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conditions, sl=1 and N j (1)=n is (N-1)!/n!(N-n-1)!; the number of the 
states satisfying both Sl= -1 and N j (1) = n is (N-1)!/(n-1)! (N-n)!. It 
should be noted that relations analogous to (4.7) hold; namely, 

Qn = Q;.l) (+ 1) +Q~)( -1), 

Now we define, in analogy with (4.1), the following quantities: 

F(l)(±1) = -kTln Q(I)(±1) , 

Fn= -kTlnQn, 

F~I)(±1) = -kTln Q~I)(±1). 

(4.12) 

(4.13) 

In the following we shall consider the physical significance of these quantities. 
We have calculated the partition function of the spin system by (3.17), which 
is based on the fact that all the 2N quantum states are available to the system. 
Let us imagine a certain constraint which limits the number of available 
(accessible) states. (cf. HILL,4) Section 2.3). For example, let the constraint 
be such that spin 1 is locked in the t state. When this constraint is imposed 
on the system,· only the 2N

-
I states with Sl = -1 are available to the system 

(that is, the remaining 2N
-
I states with Sl = 1 are inaccessible states), and there­

fore its partition function and free energy are respectively given by Q(I) ( -1) 
and FCI)( -1) instead of Q and F. Thus*) 

F(l)(-1)-F= -kTln[Q(I)(-1)/Q] = -kTlnPCI)(-1) (4.14) 

IS the free energy increment due to the addition of this constraint to the 
system. Using the language of thermodynamics one may call the free energy 
increment (4.14) the isothermal reversible work, or reversible work for short, 
required to lock spin 1 in the t state. (Cf. HILL,4) p. 307). 

If, on the other hand, the system is subjected to a constraint such that 
the number of t-spins in the system is held fixed, say at n, then the states 
available to the system are those appearing in the summation :En on the right 

I 

hand side of (4.8). Hence we see that Qn and Fn are the partition function 
and free energy of the spin system whose "composition" (see Section 3) is 

*) Phrased in HORIUTI's way, the partition function ratio Q(I)(-l)/Q in (4.14) is the factor 
of multiplication of the partition function Q caused by imposing the above constraint 
upon the state of spin 1. See Section 6 and HORIUTI,7) p. 8. 
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fixed by the constraint. Finally the meaning of Q~)(s!) or F~l)(s!) should be 
evident from the above discussion. 

The constraints considered in this section are "fictitious" ones. Any 
experimental (macroscopic) method of imposing these constraints on the system 
does not have to exist. For example, we know of no method of locking spin 
1 in the t state because of the "microscopically detailed nature" (see HORIUTI,7) 

p. 16) of this constraint. The terms, constraint and reversible work, in this 
section are used simply to give convenient "physical" interpretations to certain 
mathematical relations. 

§ 5. Most Probable Distribution and Minimum Free Energy 

The probability Pn is that of the spin distribution being (n,N-n); in other 
words, it determines the fluctuation in the "composition" (Section 3) of the 
spin system. Since the spin system we are dealing with is a macroscopic 
system, this kind of fluctuation is actually very small so that we can completely 
ignore it. Consequently we can assume that the most probable distribution 
practically determines the equilibrium properties of the spin system; in other 
words, the value which n (= the number of t-spins) assumes in equilibrium 
can be regarded as equal to n*, where n* is the most probable value of n, that 
is, the value of n which maximizes Qn and therefore Pn • (See HILL,4) Sections 
2.1 and 10.3; MAYER-MAYER,IO) Section 3e.) Thus Qn* and Pn* are respec­
tively the maximum values of Qn and Pn. According to (4.13), Qn* in turn 
corresponds to Fn*, which is the minimum value of the free energy Fn. 
Since the spin system we are working with is macroscopic, this number n* 
as well as N can be assumed to be very large numbers, say 1020 or more. 
Consequently: (1) Taking In Qn to be a smooth function of a continuous vari­
able n (OsnsN), we can determine the most probable distribution (n*, N-n*) 
from the condition, 

or ( aFn ) = 0 
on n=n* ' 

(5.1) 

where the suffix n = n* implies that we set n equal to n* after the differentia­
tion; (2) since n* ~ 1, the above derivative of In Q is expressed as 

(~ In Qn) = InQn*+!-ln Qn* = In (Qn*+dQn*) an n~n* (5.2) 

= -In A(n*) 

{HILL/) p. 307; KIRKWOOD,9) p. 302) where A(n) is defined by 

A(n) = Qn/Qn+! . (5.3) 
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Hence the condition (5.1) for the most probable distribution or for 
minimum free energy is now expressed as 

In A(n*) = 0 , 

that is, 

(5.4) 

To determine the equilibrium point of a chemical reaction or an adsorption 
process we shall later have recourse to relations very similar to (5.4). (See 
Section 7 and Part II.) 

I have already mentioned that the fluctuation of n around the most probable 
value n* is extremely small. In other words the probabilities Pn of all distri­
butions which are appreciably different from the most probable one (n*, N-n*) 
are extremely small. For this reason, (4.10) is rewritten as 

N N N 

<N j ) = .L; nPn = .L; n*Pn =n* ~ Pn = n* . 
n=O n=O n·=O 

A similar relation for <NT) is immediately obtained, and it is thus shown that 

(5.5) 

which imply that the mean values coincide with the corresponding most probable 
values. 

According to (4.3) and (4.5) we can write 

(5.6) 

that is, 

.L;81~±lexp[ -E(J)j kT] 
pll) (± 1) = ~I __ ----,-_---c-___ _ 

.L; exp [ - E(J) j kT] 
(5.7) 

I 

In calculating the right hand side of (5.7), we shall resort to the maximum 
term method (HILL,4) pp. 10 and 251). In other words, in the sums in the 
numerator and denominator on the right hand side of (5.7), we shall ignore all 
terms except those corresponding to the most probable distribution (n*, N-n*). 
This is quite justified since all the equilibrium properties of the system are, as I 
have said above, expressed by the properties of the most probable distribution. 
(See also MAYER-MAYER/O) Section 3e.) In terms of the symbols defined in 
connection with (4.11), the probability P(I)(±l) is thus expressed as 

.L;~I.~±lexp[ -E(J)j kT] 
P(1) (± 1) = _I'-----_______ _ 

.L;n.exp[ -E(J)j kT] 
Q~J(±l) (5.8) 

I 
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which relation implies that the ratio Q(l) (± 1) / Q on the right hand side of 
(5.6) can be replaced by a similar ratio, Q~l;(±l)/Qn" appropriate to the most 
probable distribution. 

§ 6. HORIUTI's Statistical Mechnical Functions 

In Sections 3-5 I have discussed a few important relations between pro­
babilities and partition functions, and between partition functions and free 
energies. From (3.32), (5.6) and (4.12) we have 

<N j ) = P(l)(-l) =exp(-W/kT) (6.1) 
<N

1
) P(l) (1) , 

where W is the free energy change given by 

W = -kTln Q(l)( -l)/Q(l)(l) = F(l)( -l)-F(l)(l) , (6.2) 

As I have stated in Section 4, W may be interpreted as the reversible work 
required to convert, on site 1, a t-spin into a ~-spin. Comparing (6.1) with 
(3.34) we find 

W = (ej +wd-(el +Wl), (6.3) 

which in the limit J~O (the absence of the interactions) becomes 

W=ej -el. (6.4) 

The right hand side of (6.4) is the separation LIe of the two energy levels e j 

and el (Fig. 1). In (5.8) we have observed that the probability P(l)(±l) can 
be expressed also in terms of the partition functions Q~lj (± 1) appropriate to 
the most probable distribution. Insofar as n* is a very large number, the 
difference between n* and n* + 1 can be regarded as extremely small; hence 
the numerical value of the ratio Q~lj(±l)/Qn' in (5.8) is practically unaffected 
by changing the suffix n* attached to Q into n* + 1. Thus we have 

P(l)(±l) = Q~l.!(±l)/Qn' = Q~l)tl(±l)/Qn'+l . (6.5) 

It follows from (6.1) and (5.8) that 

W = -kTln Q~lj( -l)/Q~.!(l) = F~!l( -l)-F~!)(l). (6.6) 

Now we are in a position to consider the connection between HORIUTI'S 

theory and what we have discussed in the preceding sections, and to see how 
things are expressed in HORIUTI'S language. Throughout the rest of this 
section, we shall use his notation by adapting it for our spin problem. In 
Table 1 a set of new symbols we are going to use are listed and correlated 
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with those in the preceding sections. *) First note that the partition functions 
Qn and Qn+l are now denoted by OC and OC+; that is,**J the spin system 
consisting of n ~ -spins and N - nt-spins is called C and that consisting 
of n + 1 t -spins and N - n -1 t -spins is called C+, and the corresponding 
partition functions are denoted by OC and OC+. In Section 4 we have 
considered a constraint relevant to the state of the spin on site 1 (namely, 
spin 1), and in this connection the partition functions Q(l)(±l) and Q~)(±l) 
have been defined. In the new system of symbols, the imposition of this 
constraint on the systems C and C+ is represented by the suffix aU) or a(t), 
which means that the spin on site a (== site 1) is t or t. Thus (see Table I) 
the partition functions Q~l)(-l), Q~l)(l) and Q~l~l(-l) are now denoted by 
OC.( I)' OC.( i) and OC~ I) respectively. Table 1 also lists the statistical­
mechanical functions po, q:, e.(j) and 61.( i) defined as the ratios of the above 
partition functions. They are the spin problem version of HORIUTI'S "conjugate 
statistical mechanical functions defined respectively as the factor of multiplication 
of the partition function caused by increasing a certain constituent of the 
assembly (= system) of interest or by imposing a microscopic constraint upon 
the elementary state of the constituent" (HORIUTI,1) p. 8; see also the footnote 
on p. 142 of the present notes).***) It is readily seen that the function p+ 
is nothing but the reciprocal of A(n) defined by (5.3) and there exists the 
following interrelation: 

e'(j) = q: (6.7) 
e'(i) p+ 

The functions 61.( I) and ea( i) are functions of the variable n. In the fol­
lowing we shall be interested in the important case n = n*. Then, by virtue 
of (6.5), we have 

ea( I) = Q~lL( -l)/Qn+l = Q~~~l( -l)/Qn*+l = P(l)( -1), (6.8) 

ea(i) = Q~l)(l)/Qn = Q~l,j(l)/Qn' = P(1)(l). (6.9) 

In other words, with the understanding that n is set equal to its most probable 
value n*, 61.( j) and e.CiJ in Table 1 are respectively identified with the proba­
bilities P(1)(-l) and P(1)(l) introduced earlier. Thus it follows from (3.32), 
(6.1) and (6.7) that 

* } See also Appendix B. 
**) The superscript + on C will appear on other symbols in the following, and is to be 

understood to mean a change such that the spin system loses one i-spin and gains 
one J-spiri instead, namely, the change in the spin distribuion, (n, N-n)-+(n+l, N-n-l). 

***) For example, the function p+ is "the factor of multiplication of the partition function 
OC caused by the change represented by the superscript +." 
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(Nj ) = P(1)(-I) = e.(j) = q.+ 
(N;) P(1)(I) eo(;) pc 

W = -kTln q; +kTlnp+ . 

(6.10) 

(6.11) 

As we shall see in Section 7 and Part II, a relation which is essentially the 
same as (6.7) or (6.10) is used as an important basic relation in HORIUTI'S 

statistical-mechanical calculations. Since the functions q; and p+ are defined 
as partition function ratios, both - kT In q; and - kT In p+ may be interpreted 
as free energy increment or reversible work (cf. Section 4 and Appendix B)_ 
Remembering the relation (5.4) which is expressed as 

p+ = 1, when n = n*, (6.12) 

we find however that -kTlnp+ vanishes when n=n*. Thus (6.11) implies 
that -kTln q; equals the reversible work W required to convert, on site (J, 

a t -spin into a t -spin. 

OC 

OC+ 

"New" 

p+ = OCt/DC 

oCa(j) 

OC.(I) 

OC:(j) 

q: = OC:( j )/oCa( ; ) 

e.( j ) = OC:( j /OC+ 

e a( ; ) = oCa( ; )/OC 

TABLE 1. 

Sections 4-5 

Qn 

Qn+l 

1/ l(n) = Qn+l/Qn 

Q},l'(-l) 

Qi,v (1) 

Q~;'d-l) 

Q~;'d -1) / Qil' (1) 

Q~;'d-1)!Qn+l 

Q~l)(1)/Qn 

One may easily verify that the following relations hold In the limit J~O 
(that is, the absence of the interactions): 

ac = Qn = N! (emH/kT)N(e-J.fkT't, (6.13) 
n!(N-n)! 

aCt = Qnrl = N! (emH/kT)N(e-J'/kT)n+l, 
(n+l)! (N-n-l)! 

(6. 14) 

p+ = aCt = _1_ = N-n e- J ./kT , 
ac A(n) n+l 

(6. 15) 

ac, j) = Q~)( -1) = (N-l)! (emH/kT)N(e-J./kT)n, 
(n-l)! (N-n)! 

(6.16) 
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DC.(1) = Q~l)(l) = (N-1)! (emH/kT)N(e-4./kT)n, (6.17) 
n!(N-n-1)! 

DC,;'(n=Q~~l(-l)= (N-1)! (emff/kT)N(e-4./kT)n+I, (6.18) 
n!(N-n-1)! 

q+ = DC,;'() = Q~111 (-1) = e-4./kT , (6. 19) 
• DC.(1) Q~l)(l) 

e - DC,;'(n - n+1 (6 20) 
.(j)- DC+-~' . 

e - DC,,(I) - N-n (6.21) 
·(1)- DC -~' 

where Ac=cj -Cl =2mH (Fig. 1). Combining (6.15) with (5.4) or (6.12) we 
find*) 

that is, 

e- J·/
kT =n* /(N-n*) , 

e-4 ./kT 
n*=N----

1 +e-J ·/kT 

Also it follows from (6.10)-(6. 12) and (6.19) that 

~~;; =qd+ = e- 4
./

kT 

and 

W=Ac, 

which are in agreement with (3.33) and (6.4). 

§ 7. Adsorption Equilibrium 

(6.22) 

(6.23) 

In Section 4 we have seen that the probability of nt-spins being found 
in the spin system is expressed, in terms of the partition functions, as 

(7. 1) 

where Qn is the partition function of the spin system with fixed "composition" 
(cf. p. 142) and is related to Q by 

N 

Q = L: Q". (7.2) 
n=O r 

*) Remember that unity is completely negligible as compared with n*. 



Method of Statistical-Mechanical Calculations 

It is well-known that the statistical-mechanical theory of the spin system de­
scribed in the preceding sections parallels very closely that of localized adsorp­
tions (= sitewise or immobile adsorption). Therefore many of the statistical­
mechanical expressions for the spin system obtained so far are readily transcribed 
into those for the adsorption problem. 

Suppose that we place a solid adsorbent and a one-component gas consisting 
of N molecules in a container having a fixed volume V and immersed in 
a heat bath at temperature T (Fig. 3), and that a portion of the gas is adsorbed 
on the adsorbent surface. In the following we shall be concerned with this 
system consIstmg of the gas phase, adsorbed phase and adsorbent, and shall 
refer to it as the system AG. 

T,V 

G 

Fig. 3. System AG 

Let Q(n, m) be the partition function of the system AG in the situation 
where n molecules are adsorbed on the adsorbent and m molecules remain in 
the gas phase. Although the total number of the molecules N (= n +m) in 
AG is constant, the number n and therefore the number m (= N - n) actually 
fluctuate, just as the number of t-spins n does in the above spin system. 
Hence the partition function of AG is written as 

M 

Q= "E.Q(n, N-n) , (7.3) 
n=O 

where M is the largest possible number of adsorbed molecules. In other words, 
we assume that there are M adsorption sites on the adsorbent surface and 
each site is capable of adsorbing one molecule at a time. The probability of 
the number of adsorbed molecules being n is given by 

Pn = Q(n, N-n)/Q. (7.4) 

The above equations (7.3) and (7.4) are much the same as (7.2) and (7.1) of 
the spin problem. From (7.3) and (7.4) we can calculate the mean value <n) 
of the number of adsorbed molecules: 

149 



150 

Takashi NAKAMURA 

M M 

<n) = L. nPn = L. nQ(n,N-n)/Q. (7.5) 
n=O n=O 

However, as far as the system AG is macroscopic (hence Nand Mare 
very large numbers), the fluctuation in n eventually turns out to be extremely 
small. Thus we find the important relation, 

the equilibrium value of n = n* = <n) , (7.6) 

which is just the kind of thing we have already seen in Section 5. See also 
MA YER-MA YER,I°) Section 3 e or HILL/) Chapter 2. The surface coverage 
(fraction of sites occupied) 0 in the equilibrium state is thus given by 

0= n*/M= <n)(M. (7.7) 

In analogy with (5.1) or (5.4), the most probable value n* is determined from 
the condition, 

(~ In Pn ) = 0, that is, [~ln Q(n, N-n)] = 0, (7.8) 
an n~n* an n~n* 

or 

A(n*) = 1 , 

where A(n) is defined by 

A(n) = Q(n, N-n)/Q(n + 1, N-n-1). 

(7.9) 

In the following the conditions (7.8) and (7.9) will be rewritten In a more 
familiar form. 

The derivative on the left hand side of (7.8) is brought into the form, 

~lnQ(n,N-n)=~lnQ(n,m)+ am _a-InQ(n,m) 
an an an am 

= ~ In Q(n, m)- _a_In Q(n, m), 
an am 

with the understanding that m is set equal to N - n after differentiation. In 
analogy with (5.2), we can write 

a -In Q(n, m) = -In AA(n, m), 
an 

a -In Q(n, m) = -In AG(n, m), 
am 

where AA (n, m) and AG(n, m) are defined by 

AA(n, m) = Q (n, m) , AG(n, m) = Q(n, m) 
Q(n+1,m) Q(n,m+1) 

(7. 10) 

Therefore (7.8) becomes 
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[~ In Q(n, m)]n~n* = [~o~ In Q(n, m)]n~n* , 
on m~N~n* om m~N~n* 

(7.11) 

or 

(7.12) 

Let us remember the relation between partition function and HELMHOLTZ 
free energy (Section 4). We immediately find that F(n, m) defined by 

F(n, m) = -kTln Q(n, m) (7.13) 

is the HELMHOLTZ free energy of the system AG under the condition that there 
are n molecules in the adsorbed phase and m molecules in the gas phase. 
Therefore PA(n, m) and PG(n, m) defined by the following equations are the 
chemical potentials of the adsorbed phase and that of the gas phase, respectively: 

PA(n, m) = No~F(n, m) = -RT ~ In Q(n, m) = RTln AA(n, m), (7.14) 
on on 

PG(n, m) = No~o~F(n, m) = -RT ~ In Q(n, m) = RTlnAG(n, m), (7.15) 
om om 

where No is the AVOGADRO number. It is to be understood that in (7.14) we 
differentiate with respect to the number of adsorbed molecules n holding m, T 
and V fixed. Much the same applies to the partial differentiation with respect 
to the number of gaseous molecules m in (7.15). In books or papers on 
statistical mechanics another definition of chemical potential, which differs from 
that in (7.14) or (7.15) by a factor of No, is very often used (for example, 
HILL,4) Eq. 1. 36 and p. 26); in that case (7.14) and (7.15) should read 

PA(n, m) = ~F(n, m) = kTlnAA(n, m), 
on 

o PG(n, Ul) = -F(n, m) = kTln AG(n, m) . 
om 

However the definition employed in (7.14) or (7.15) agrees with common ther­
modynamic practice and also with that used in Section 2. It turns out from 
(7. 14) and (7. 15) that AA (n, m) and AG(n, m) defined by (7.10) are the absolute 
activity of the adsorbed phase and that of the gas phase, respectively. Thus 
our conclusion is: The condition (7.11) or (7.12) is equivalent to saying that 
the chemical potential (or absolute activity) of the adsorbed phase is equal to 
that of the gas phase, that is, 

PA(n*, N-n*) = PG(n*, N-n*), (7. 16) 
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(7.17) 

To shorten the notation the values of the variables, n* and N-n*, attached 
to p or A will often be suppressed in the following, then (7.16) and (7.17) read 

(7.18) 

(7.19) 

Now we are ready to see how HORIUTI formulates his statistical-mechanical 
theory of localized adsorption. He starts with a set of statistical-mechanical 
functions which are very similar to those we have encountered in Table 1. 
The partition functions Q(n, m), Q(n + 1, m) and Q(n, m + 1) appearing in (7.10) 
are now denoted by DC, DC and DC", respectively, where the superscript 
Q represents the addition of one adsorbed molecule 8 to the system (that is, to 
increase the number of adsorbed molecules from n to n + 1) and the superscript 
8' indicates the addition of one gas molecule 8' (that is, to increase m by one). 
HORIUTI'S p-functions are defined as shown in Table 2, from which we at 
once find that the functions P' and p" are just the reciprocals of the absolute 
activities AA and AG, and the condition for the adsorption equilibrium (7.17) or 
(7.19) is equivalent to the equation, 

(7.20) 

(Cf, HORIUTI,7) Eq. 6.1 and p. 36; HORIUTI-NAKAMURA,8) Eq. 11.11). 

TABLE 2. 

Horiuti Eq. (7.10) 

o.C Q(n, m) 

nco Q(n+l, m) 

nco' Q(n, m+l) 

o.CS 

[.lA(n, mW
1 = 

Q(n+l, m) 
}>"=--

Q(n,m) o.c 
nco' 

[.lG(n, mW
I = 

Q(n, m+l) p"=--
Q(n,m) o.c 

It"'remains to introduce a few more functions, namely, 

DCq(o), DC'(6)' DC!(o), DC;(6)' q!, 8'(0)' 8.(6)' 

and also the following interrelations among them: 

q! = DC!(o) / DC.(o) , 

(7. 21) 

(7.22) 

*) Phrased in HORIUTI's way (cf. p. 146), the superscript 0 or 0' represents "to increase a 
certain constituent of the assembly (= system)." 
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8 a(0) = GC(O) / GC , (7.23) 

8 a(0)/8a(0) = q;/po. (7.24) 

The analogs of the functions (7.21) and the relations (7.22)-(7.24) have already 
appeared in Section 6. First we are going to define the first four functions 
in (7.21), in terms of which the remaining three functions in (7.21) are defined 
by (7.22) and (7.23); the relation (7.24) immediately follows from the definitions 
(7.22) and (7.23). In Section 6 we have been concerned with a particular site, 
called (J, of the lattice of spins, and have calculated the probability of the spin 
on (J being t or t. Here we proceed in a similar way to calculate the probability 
that a particular site, also called (J, on the adsorbent sudace is occupied by 
an adsorbed molecule. 

We start with the partition function of the system AG, 

GC = Q(n, m) = L: exp [ -E(n, m; J) /kT] , 
J 

(7.25) 

where E(n, m; J) is the energy of the J-th quantum state of AG, the symbols 
nand m in the parentheses specifying that n molecules are adsorbed and m 
molecules are in the gas phase. In defining the partition function GCa(O) we 
come back to the concept of constraints we have introduced in Section 4. 
(See also HORIUTI,1) Sections 2 and 3.) Suppose the system AG is subjected 
to a constraint such that the site II is kept vacant; the partition function of 
AG in this particular situation is denoted by GC(O). In short ,oCtO) is the 
partition function of AG in the situation in which the site II is vacant. Similarly 
GCea) is that in the situation in which the site II is occupied by an adsorbed 
molecule, called (5. Referring back to the expression (7.25) we may express 
the foregoing somewhat differently. The partition functions GCa(O) and GCa(a) 
are defined as "partial" sum-over-states (see Section 4), which are related to 
the sum-over-states GC by 

DCa(o) + GCa(a) = GC . (7.26) 

The ~um in (7.25) is supposed to run over all the quantum states of AG. 
However, when this sum is taken over only those states in which the site II 

is vacant, GCa(O) is obtained; on the other hand, when the sum is over those 
states in which (J is occupied by an adsorbed molecule, GCa(a) results.*) Con­
sequently the relation (7.26) holds. In analogy with (7.25) we can write 

GCo=Q(n+1,m)= ~exp[ -E(n+1,m;J)/kT]. (7.27) 

*) The "partial" summation to be carried out here is illustrated by a few examples given 
in Appendix E, where more explicit mathematical expressions for the functions in (7.21) 
are given. 
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The sum in (7.27) is divided up into two partial sums in much the same way 
as above, and we obtain the partition functions DC!(o) and DC!(o) , which of 
course satisfy the relation, 

DC!(o) + DC!(o) = DC'. (7.28) 

Since, in practice, the number of adsorbed molecules n is very large, we have 

DC(o) _ DC!(o) - 8 
DC - DC. - '(0)' 

(7.29) 

in analogy with (6.5) (cf. HORIUTI,7) Eq. 4.2). In Section 4 we have seen 
that a statistical-mechanical probability is expressed*) as the ratio of a partial 
sum-over-states to a sum-over-states. In the present case, the partition function 
ratios DC.(o)/DC (= 8.(0») and DC(o)/DC (= 8'(0») in (7.29) are found to be the 
probability of the site a being vacant and the probability of a being occupied 
by an absorbed molecule, respectively, in the situation where there are n 
absorbed molecules on the adsorbent. In the following we shall be concerned 
with the case where~,equals its most probable value n*, that is, the case 
where the adsorption equilibrium has been attained between the adsorbed phase 
and the gas phase. If all the M sites are equivalent (that is, 11;[ sites are of 
the same kind), the probability, 8.(J) , of the site a being occupied is related to 
<n) by**) 

M8"(o) = <n). 

Hence using (7.7) we have 

8.(0) = 0 , 8 a(0) = 1-0 . (7.30) 

Since the relation (7.20) holds in the state of adsorption equilibrium, the re­
lation (7.24) becomes 

8 qO 
~ = -f- = q;Aa = q! exp (Pa/ RT). 
8 0 (0) P 

(7.31) 

In the special case where (7.30) holds, the above relation reads 

o ", 0 m 
1-0 = q;Aa = q. -----;- , (7.32) 

where Eq. (C.5) of Appendix C has been used. This equation (7.32) IS 

essentially identical with HORIUTI,1) Eq. 17.3. 

Let A represent any of po, q!, 8.(0) and 8.(0). Then A is the ratio of a 
partition function to another partition function. For the reason we have already 

*) Cj. Eqs. (4.3), (4.5), (4.9) and (5.8). 
**) The proof is easy. Cj. the relation (7.47) below, which is proved in Appendix A. 
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considered in Section 4, the quantity - kT In A is the free energy increase rele­
vant to or the reversible work required for a certain process. (Cf. also HORIUTI, 
Section 7.) When A==-po, for instance, -kTln A is the free energy increase 
due to the addition of an adsorbed molecule to the &ystem AG or, in other 
words, the chemical potential of the adsorbed phase divided by the AVOGADRO 
number No (see above). Another example is -kTln q!, which equals 

-kTln OC!(o)-( -kTln OCq(O»). (7.33) 

The first or second term of (7.33) represents the free energy of the system 
AG in the particular situations specified by the sub- and superscipts, 0, u(o) 
and u(O), attached to ~C. Thus HORIUTI calls -kTlnq! or (7.33) "the 
reversible work required to bring up the molecule 0 from its standard (=reference) 
state to the preliminarily evacuated site u" (see HORIUTI,7) Section 7). 

The system AG consists of the adsorbent solid and a large number of 
adsorbed and gaseous molecules. Therefore such a thing as the energy level 
E(n, m; J) of AG appearing in (7.25) necessarily has very complicated con­
tents. In order that the above theoretical formulation of the adsorption problem 
is of much practical value, certain approximations or simplifying assumptions 
relating to E(n, m; J) have to be introduced, which is done in Appendix C. 
In the rest of this section we are going to take a look at some of important 
results which follow from the simplified energy expression, Eq. (C.9) of 
Appendix C. 

Specializing to the case where the JV1 sites are equivalent, we find that 
the partition function OC is written as 

(7.34) 

where R"" Zo, z and ]<n) are the partition functions for the gas phase, the 
adsorbent, an adsorbed molecule and the interaction energy among adsorbed 
molecules, respectively, their precise definitions being given in Appendixes C 
and E. Hence the Helmholtz free energy of AG is given by 

F(n, m) = -kTln OC = -kTln Q(n, m) = F:"(J) +P<8) +(F~a) +F~I)), 

(7.35) 

where F:"G) , F(s!, and (F~a) + F~I)) are the contributions of the gas phase, 

adsorbent, and adsorbed phase, respectively, to the free energy F(n, m). 
These F's are defined by 

F~,!)= -kTlnR"" F(8) = -kTlnZo, (7.36) 

*) Accordingly he gives a particulary lengthy name to the function q~ itself: namely, "the 
Boltzmann factor of the reversible work required to bring up the molecule 0 from its 
standard state to the preliminarily evacuated site a." 
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M! 
F~a)= -kTln------nkTlnz, 

(M-n)! n! 
(7.37) 

(M-n)!n! 
M! 

F~I) = -kTln Jln) . (7.38) 

The Jln) is often called the configurational partition function. Notice 
that as shown in Appendix E, in the absence of interactions between adsorbed 
molecules Jln) equals M!/(M-n)!n! and consequently F~I) vanishes. In other 
words, F~a) is the free energy of the adsorbed phase in the absence of the 
interactions.*) Also it is shown in Appendix E that the pd and q! functions 
are expressed as 

pJ = z(Jln+I)/J<n») , q! = z(I.(c~)l)IIJ(~D, (7.39) 

where the quotients in the parentheses are the parts of p; and q! which depend 
on the interaction energy among adsorbed molecules. In the absence of the 
interactions they take on the following values: 

I(n+l) I Jln) = (M-n)/(n + 1), I (n+ I) II(n) - 1 
.(0) .(0) - • 

From the second equation of (7.39) we have 

-kTlnq!= -kTlnz+wn, 

where 

kT I (I (n+I)II(n») 
Wn = - n .(iI) .(0). 

(7.40) 

(7.41) 

In other words, the free energy increase (or reversible work) - kT In q! splits 
into two parts, -kTlnz and W n. According to (7.40) the second part Wn 

vanishes in the absence of the interactions; thus HORIUTI calls Wn the "free 
energy of repulsion" in some of his papers.**) 

It is also shown in Appendix E that the statistical-mechanical functions 
for the spin system discussed in Section 6 are expressed in much the same 
way as (7.34) and (7.39): 

DC = Qn = yNxnJln) 

p+ = x(Jln+l) I ICn») , q: = x (IJtt/) II:NJ , 

where y and x are defined by***) 

y = emH
/ kT , 

(7.42) 

(7.43) 

(7.44) 

*) The above division of the free energy of the adsorbed phase into FAa) and F,iIl is in 
line with FOWLER and GUGGENHEIM. See FOWLER-GUGGENHEIM,2) pp. 429-430. 

**) In most cases he has treated adsorbed phases in which repulsive interactions exist be­
tween adsorbed molecules (atoms). Hence the name, free energy of repulsion. 

***) See Fig. 1. 
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(7.45) 

The I-functions (configurational partition functions) appearing III (7.42) and 
(7.43) are very similar to those in (7.34) and (7.39) and depend on the spin-spin 
interaction energy J. Finally let us remember some of the relations we have 
obtained in Section 6. The relation (6.7) in the spin problem is the counterpart 
of (7.24) in the adsorption problem. Since the relation (6.12) holds in the 
equilibrium state (n = n*), the relation (6.7) reads 

ea(j) = q: 
ea(r) 

(7.46) 

Using (5.5), (6.8), (6.9) and the relation proved III Appendix A, we have 

Neal!) = NP(l>( -1) = <N j ) = n* , 

Nea(!) = NP(l)(l) = <Nr ) = N-n*. 

Thus (7.46) becomes 

~_= <N j ) 

N-n* <Nr) 
=q; , 

which is to be compared with (7.32). 

(7.47) 

(7.48) 

(7.49) 

The calculation of equilibrium amount of adsorption fJ or the equilibrium 
number of t-spins n* requires the evaluation of the function q! in (7.32) or 
q: in (7.49). In the absence of the interactions between adsorbed molecules 
or between spins, 

q!=z, q:=x=exp[-(ej-er)/kT]; 

hence we have 

fJ m z 
1-fJ - Va --;:0' 

(7.50) 

N~*n* = exp [ -(ej -er)/ kT] , (7.51) 

where rO=r/Va and Va is the volume of the gas phase (in other words, rO is 
the partition function of the gas molecule per unit volume). Since the ratio 
z/ro is independnt of the amount of adsorption fJ and the density of the gas 
m/Va (see Appendix C for the definitions of z and r), the right hand side of 
(7.50) is proportional to the gas density m/Va ; that is, (7.50) is essentially 
the LANGMUIR adsorption isotherm. As we have seen in Section 3, (7.51) is 
nothing but the BOLTZMANN distribution law; that is, (7.51) gives the field and 
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temperature dependence of paramagnetism expressed by (3.6). In the presence 
of the interactions we are confronted with a big difficulty, which is related to 
the treatment of the I-functions in (7.34), (7.39), (7.42) and (7.43). This is 
the problem of n interacting molecules or spins on lattice sites, and n is a very 
large number-lOIs or more. This kind of "n-body problem" is known as the 
problem of lattice statistics, which is very important in connection with the 
theories of ferromagnetism (antiferromagnetism), phase transition, etc. In 
1940's and 1950's a great deal of important work was done in the area of lattice 
statistics by theoretical physicists (KRAMERS, WANNIER and ONSAGER-to 
name just a few), but the discussion of these sophisticated theories (W ANNIER,ll) 
Chapter 16; HILL A,S) Chapter 7) is beyond the scope of the present notes. 
Two approximate methods, the BRAGG-WILLIAMS approximation and the 
BETHE-PEIERLS approximation, can be applied to the treatment of the above 1-
functions. They are rather rough approximations, in which the above n-body 
problem is reduced essentially to one-body calculation (the BRAGG-WILLIAMS 
approximation) or to several-body calculation (the BETHE-PEIERLS approxima­
tion); however they are found very useful in many important cases. This 
matter will be discussed in full in Part II. 
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Appendix A 

Here the proof of the relation (3.32) is given. Let us start with the 
relation (3.23) and notice that the number of t-spins Nr(slsz"'SN) is expressed as 

(A. 1) 

where fr (Sj) is a function of Sj such that 
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when Sj = 1 

when Sj = -1. 

Substitution of (A. 1) into (3.23) yields 

<N1) = f:. [L; L;'" L;fl (Sj) P(SI Sz" ,ss)] . 
)=1 8 1 8 2 8N 

(A. 2) 

(A. 3) 

So far as the N spins are equivalent (see p. 138), the quantity in the brackets 
on the right hand side of (A.3) actually does not depend on j, and therefore 
(A. 3) is rewritten as 

(A. 4) 

It follows from the definitions (3.26) and (A.2) that the right hand side of 
(A. 4) is nothing but NP(l) (1 ). We can show in a similar way that <Nj ) 

=NP(l)(-I). Thus (3.32) is proved. 

Appendix B 

The construction of the partition functions appearing in Sections 4 and 6 
are illustrated by considering the trivial case N=3 (3-spin system). We suppose 
that the three spins are arranged on equilateral-triangular lattice sites as shown 
in Fig. B 1. There are 23 quantum states of this spin system, which are labeled 
with 1= 1, 2, " ,,8 and listed in Table B 1. It follows at once that 

4 8 
Q(l) ( -1) = L; e-E(I)/kT , Q(1) (1) = z:; e-E(I)/kT , 

I~l I~5 

Q = Q(l)( -1)+Q(l)(I). 

Next we consider the partition function Qn (== DC) and a few related functions 
introduced in Sections 4 and 6. Let n = 2, for instance; then 

DC = Qz = e-E(Z)/kT + e-E (3)/kT + e-E(5 )/kT = 3e-mH/kTe-J/kT, 

DC+ = Q3 = e-E(l)/kT = e-3mH/kTe1J/kT , 

DC.()) = Q~l) (-1) = e-E (2)/kT + e-E (3)fkT = 2e-mH/kTe-J/kT , 

DC.( 1) = Q~l) (1) = e-E (5)fkT = e-mH/kTe-J/kT , 

DC';;)) = Q~l)( -1) = e-E(l)/kT = e-3mHlkTe3J/kT, 

p+ = Q3/QZ = +e-2mH/kTe4J/kT, 

q; = Q~l)( -1)/Q~l)(I) = e-2mH/kTe4J/kT. 

When J = 0, these results are in agreement with (6.13)-(6.19). As stated III 
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the text, both 

-kTlnp+ = 2mH-4J +kTln 3 (B. 1) 

and 

-kTlnq: = 2mH-4J (B. 2) 

may be called a reversible work required to cause the change + (see the 
footnote on p. 146). It is left to the students to explain the difference kT 
In 3 between (B.2) and (B. 1). Finally one word of caution is necessary: Some 
of the relations derived in Sections 5 and 6 rely on the supposition that N is 
a very large number, and therefore they do not apply to the present case, 
N=3. For small N the fluctuation is very large. 

TABLE Bl. 

I spin state n 51 E(l) 

1 2 3 
1 I I 3 -1 3mH-3J 
2 2 -1 mH+J 
3 2 -1 rnH+J 
4 1 -1 -mH+J 
5 2 1 mH+J 
6 1 1 -mH+J 

2 J 3 7 1 1 -mH+J 
Fig. Bl. 8 0 1 -3mH-3J 

Appendix C 

In this Appendix we shall go further with the calculation of the partition 
function Q(n, m), which plays a pivotal role in the statistical-mechanical theory 
of the adsorbed phase developed in Section 7. Suppose that the system AG 
is divided into two subsystems, namely the gas phase part G and the part A 
consisting of the adsorbent and adsorbed phase. In the statistical-mechanical 
calculation the mechanical coupling between the subsystems A and G may be 
regarded as very weak, which fact has the following consequence. The energy 
E(n, m; J) of the system AG (cf. Fig. 3) splits into two parts: 

E(n, m; J) = EA(n: JI)+EG(m; JII), 

where the first and second terms on the right hand side are the energy of A 
and that of G. Thus the partition function Q(n, m) is written as the product 
of the two partition functions, Zn for the subsystem A and Rm for the sub-
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system G (HILL,4) p. 61); that is, 

Q(n, m) = Jj exp [ -E(n, m; J)I kT] 

= ?;; ~,exp [ -EA(n; J')I kT] exp [ -Ea(m; J")I kT] 

= ZnRm , (c. 1) 

where 

Zn = F, exp[ -EA(n;J')lkT], 

Rm = F exp[ -Ea(m;J")/kT]. 

Now the expression (7.10) for the absolute activity of G becomes 

Aa(n,m)= ZnR,,~=~, 
ZnRm+l R m-;l 

(C. 2) 

which indicates that Aa and therefore fla actually do not depend on n. There­
fore we shall write Aa (m) for Aa (n, m). Much the same applies to AA: 

(C. 3) 

When the gas phase G can be regarded as a perfect gas, the partition 
function Rm can be expressed as 

R",=rmlm! (C. 4) 

(cf. HILL,4) Eq. 8.3). In (C. 4), r is the partition function for a single gas 
molecule and is written as 

3 

r = rint Va (277"MkT)z I h 3
, 

where Va is the volume of the gas phase, and M and rint are the mass and 
partition function for the internal degrees of freedom, respectively, of the 
molecule. It follows from (C.2) and (C.4) that 

Aa(m)=(m+1)/r. 

In practice the number of molecules m is very large compared with unity; 
therefore the right hand side of the above equation can be replaced by m I r . 
With this understanding we have 

Aa(m) = mlr, fla(m) = RTln (mlr). (C. 5) 

These relations for the absolute activity and chemical potential of a perfect 
gas are well-known (cJ. HILL,4) Eq. 4.22, etc.). 
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In this connection, it is interesting to consider a special situation where the 
total number of molecules N is extremely large as compared with the largest 
possible number, M, of adsorbed molecules. Provided that the number j does 
not exceed M, N - j can be regarded as very close to N and we can to a good 
approximation write 

AG(N) = AG(N-l) = AG(.N-2) = ... = AG(N-j). 

Thus in the limit of very large N, 

R.v-n = [AG(N)f RN = AnRN, 

where we have written A for AG(N). Thus it follows from (7.4), (7.3) and 
(C. 1) that 

(n':;;'M) . 

That is, 

(c. 6) 

where B is the grand partition function of the subsystem A, defined by 

M 

B = 1: )jZj. (c. 7) 
j~O 

The distribution of n of the form (C.6) is known as the grand canonical 
distribution (cf. HILL/) 1. 62). In the above case the number of gas molecules 
N-n is so large that the absolute activity of the gas phase G or, what amounts 
to the same thing, the chemical potential of G is practically held fixed irre­
spective of the number of adsorbed molecules or, in other words, regardless 
of how many molecules go into the adsorbed state. Thus the gas phase G 
acts as a reservoir of molecules and the grand canonical distribution is es­
tablished (HILL/) p. 132). There exist a well-known relation between the mean 
value of n given by (7.5) and the grand partition function B; namely, 

(c. 8) 
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which is often used to calculate the surface coverage (j defined by (7.7) (c/. 
HILL,4) Eq. 7.16). 

Now let us turn to Zn, the partition function of the subsystem A (= the 
adsorbent plus n adsorbed molecules). In (C.1), EA (n ; J') is the energy of 
the J'-th quantum state of A, the number n in the parentheses indicating 
that the subsystem A involves n adsorbed molecules. In current statistical­
mechanical calculations of localized adsorptions (including those by HORIUTI), 
it is customary to rely on the following simpifying assumption regarding the 
energy EA(n;J'): We write 

oce oce 

EA (n; J') = E j + L: c(s) (ks ) + L: Cst, (C. 9) 
8 (s,t) 

where E j represents the energy of the adsorbent and the second and third 
terms on the right hand side represent the energy of adsorbed molecules. 
More precise description of these quantities is given below. 

Let E j denote the energy levels of the adsorbent solid, which are assumed 
to be essentially unperturbed by the presence of n adsorbed molecules.*) Next 
suppose that one of the gas molecules is adsorbed on site s. The energy 
levels of this molecule, in the absence of the interactions between it and other 
adsorbed molecules, are represented by c(S)(k.), where ks is the quantum number 
specifying its quantum state. The interaction energy between the molecules 
adsorbed an sites sand t is assumed to depend only on the distance between 
the centers of sites sand t, and is denoted by Cst. The interaction is repulsive 
or attractive depending on whether Cst is positive or negative. The energy 
expression (C.9) is obtained by adding the energies E j , C(8) (ks ) and Cst together, 

in which case the summation I: is taken over all occupied sites and the sum-
s 

occ 

mation L: over all pairs of occupied sites. Hence the second and third terms 
(s,t) 

on the right hand side of (C.9) depend on the way of choosing n occupied 
sites out of the M sites on the adsorbent surface. Note that there are 
M!/(M-n)! n! ways of doing this or, in other words, M!/(M-n)! n! ways 
of distributing n identical molecules among M sites, which fact should be taken 
into account in constructing the partition function Zn of the subsystem A in 
the following. 

It would be interesting to explore how far the approximation (C.9) remains 

*) Thus we suppose, for example, that the lattice structure and/or lattice vibrations of the 
adsorbent solid are essentially unaffected by the adsorbed molecules. This assumption 
is closely connected with the concept of inert adsorbent used in the thermodynamical 
theories of adsorption (cf. HILL B,6) pp. 245, 248 and 252). 
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good one· or in what cases it fails, but its detailed discussion is beyond the 
scope of the present notes. In substituting (C.9) into (C.1) we note that the 
summation L: over all the quantum states of A is equivalent to taking multiple 

J 

summation over quantum numbers j and k:s and also over all the M!/(M-n)! 
n! configurations of n adsorbed molecules (see above). Hence after a bit of 
algebra we obtain 

(
OCC) (OCC ) 

Zn = Zo L:ll z. exp - L: est/ kT , 
(n] s (s,t) 

(C. 10) 

where L; indicates the summation over all the possible configurations of n 
(n] 

occ 

adsorbed molecules, the product LJ is taken over all occupied sites, and Zo 
8 

and Zs are the partition function of the adsorbent and that of the adsorbed 
molecule on site s, respectively, which are defined by 

Zo = L: exp (-Ej/kT) , 
j 

Zs = L: exp [-e(S)(ks)/kT] . 
k8 

When the M sites are equivalent (that is, the M sites are of the same kind), 
we have Zl = Z2 = ... = ZM; hence omitting the subscript s appended to Z we can 
write 

OCC 
U Zs = zn. 
s 

In this particular case, (C. 10) reads 

( 

occ ) 
Zn = ZOzn L: exp - L: est/kT . 

en] (8,t) 
(C. 11) 

If, furthermore, the interactions between adsorbed molecules are absent, the 
exponential function on the right hand side of (C.lI) equals unity and Zn 

becomes 

Z =Zo M! zn. 
n (M-n)! n! 

This implies that the partition function of the adsorbed phase IS 

M! 
---c---c- zn , 
(M-n)! n! 

(C. 12) 

which is in agreement with HILL, Eq. 7.4. From (C.12) and (C.3) the absolute 
activity ,{A is calculated as 
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and the condition for adsorption equilibrium (7.17) becomes 

n*+l _~ = ~G' 
M-n* Z 

(C. 13) 

(C. 14) 

Since, in practice, n* is a very large number as compared with unity, (C.14) 
leads to 

o I-iF = AGZ = Z exp (PG/RT), (c. 15) 

where (7.7) has been used. The relation (C.15) is equivalent to HILL'S4) Eq. 
7.8, from which the well-known LANGMUIR adsorption isotherm is immediately 
derived. Substitution of (C.12) into (c. 7) yields 

M M' B = I: . (AZ)n Zo = (1 + AZ)MZo . 
n~O (M-n)! n! 

Using (7.7) and (C.8) we thus obtain 

that is, 

0= (n) =~A~lnB= 
M M OA 

o --=AZ 
1-0 ' 

AZ 
l+Az 

which is the same as (C.15) (see also HILL,4) Eq. 7.16). 

Appendix D 

Let us start with the expression (C.lO) of Appendix C for the partition 
function Zn, which reduces to (C.Il) when the M sites are identical. For 
some purposes it is convenient to rewrite (C.lO) or (C. 11) in a slightly different 
form. We define a function fn (t) such that 

f,,(t) = { ~ when t= n 

otherwise, 

and also variables tp (p = 1, 2, ... , M) which take on two values 1 or 0 depending 
on whether site p is occupied by a molecule or not. Evidently the number 
of adsorbed molecules equals t] + t2 + ... + tM , so that (C.lO) becomes 

Zn = Zo I: I: ... I: fn (t1 +t2 + ... +tM )[ IT (zpjtp] exp (- I: tptqspq / kT) , 
',t, tM p~l (p,q) 
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(D. 1) 
and (C. 11) becomes 

Zn = Zo L: L: ... L:fn(t1 + t2 + ... + tM)Zt,+t,+ ... +tM exp( - L: tptqepq/kT) . 
t, t, tM (p,q) 

(D. 2) 

On the right hand side of (D.1) or (D.2),fn(t1+t2+···+tM) has been inserted 
in order to pick out only those terms which fulfil the condition that t1 + t2 
+ ... + tM = n, and the sum L: is taken over all pairs of sites. If we assume 

(p,q) 
that the interactions vanish except between adsorbed molecules on a nearest­
neighbor pair of sites, then (D.2) takes the form, 

Zn = Zo L: L: ... L:fn(t1 +t2 + ... +tM)Zt ,+t,+ ... +tM exp (- L: tptqW / kT) , 
t1 t2 tM (p,q) 

(D. 3) 

with the understanding that the sum L: is taken over all nearest-neighbor 
(p,q) 

pairs of sites and W is the nearest-neighbor interaction energy. 
Substitution of (D.3) into (C.7) yields 

M 

E = L: J.nZn = Zo L: L: ... L: (ZJ.y1 +t,+···+tM exp (- L: tptqW / kT) . 
n=O t1 t2 tM (p,q) 

(D. 4) 

It is interesting to compare (D.3) and (D. 4) with the expressions of the 
partition functions for the spin system derived in Sections 3 and 4. The 
variable tp in (D.1)-(D.4) is an analog of the variable Sp used in the spin 
problem. Setting y=exp(mH/kT) and remembering that -ls1-ls2- .. ·-lsN 
+IN equals the number of ~-spins, we obtain, from (3.17), (3.22), (3.25) and 
(4.8), 

Q = L: L: ... L: y8 ,+8' +"'ISA.- exp (L: spSqJ/kT) (D. 5) 
8 1 8 2 s~v (p,q) 

and 

Qn = L: L: ... L:fn (-~S1-~S2-'" -~SN+~N) 
8 , 8 , 'N 2 2 2 2 

X y,,+8'+"'+8N exp (L: SpSqJ/ kT), (D. 6) 
(p,q) 

with 

y = exp (mH/kT) . 

We immediately observe the close similarity between the grand partition function 
(D.4) and the partition function (D.5) and that between the partition functions 
(D.3) and (D.6). See also HILL,4) Section 14.4 and HILL A,S) Section 41. 

The exponential function appearing on the right hand side of (C.11) is 
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the BOLTZMANN factor of the interaction energy. When only the nearest­
neighbor interactions are taken into account (see above), the interaction energy 
is proportional to bll , the number of nearest-neighbor pairs of sites both 
occupied; that is, it equals 

(D. 7) 

where blO is the number of nearest-neighbor pairs of sites with one site vacant 
and one site ocuppied (HILL,4) p. 236). Of course, the numbers bn and blO 
depend on the configuration of n adsorbed molecules. Let g (n ; blO) be the 
number of the configurations with the same interaction energy (n-lblO)w; 
then (C.Il) is cast into the form, 

Zn = ZoZn ~ exp [- (n-+b1o)w/ kT] 

= Zo(ze-w/kT)n L: exp (blOW /2kT) 
En] 

= Zo(ze- w1kT
)" L: g (n; blO) (eW

/
2kT

)b" , 
blO 

which is in agreement with HILL'S4) Eq. 14.3 

Appendix E 

(D. 8) 

Starting with the energy expression (C.9), the construction of HORIUTI'S 
statistical mechanical functions appearing in (7.21) is illustrated here. We have 
seen that the partition function :DC of the system AG is given by (7.25). 
Also we go back to (C.lO) and (C. 1) to find that :DC is expressed as 

:DC = Q(n, m) = RmZoL: (yt Z8) exp (- I: est/ kT) . (E. 1) 
En] 8 (8,t) 

The expression (E. 1) might look quite different from the expression (7.25). 
However, after substituting the equations which define Rm , Zo and Z8 (see 
Appendix C) into (E. 1) and after a bit of rearrangement the expression (E. 1) 
is readily cast into a form which is essentially the same as (7.25). 

As we have seen in Appendix C, the summation L: in (E. 1) takes care 
En] 

of the fact that there are M!/(M-n)! n! different configurations of n adsorbed 
molecules. Suppose we are concerned with one of the M sites, which we call 
the site (1. It is vacant in (M-1)!/(M-n-1)! n! configurations among the 
above M! / (M - n)! n! configurations; it is occupied by an adsorbed molecule 
in the remaining (M-1)!/(M-n)! (n-1)! configurations.*l Thus we write 

*) We have seen a similar thing in the problem of spin distrbution in p. 142. The simple 
illustrative example given in Table E. 1 might be helpful. 
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.(0) (OCC) (OCC ) 
DC.(o) = R71'ZO L: U z, exp - L: est I kT , 

[n] , (',t) 
(E. 2) 

and 

.(8) (OCC) (OCC ) 
DC(8) = RmZo L: Ll z, exp - L: e,tl kT , 

[n] , (',t) 
(E. 3) 

.(0) 

where the summation L: is taken over the above (M-1)!/(M-n-1)! n! con­
[n] 

.(0) 

figurations and L: is over the above (M-1)!/(M-n)! (n-1)! configurations. 
En] 

TABLE E. 1. The case, M = 3 and n = 2. In the second 
column, 0 signifies a vacant site and EB 
signifies an occupied site. Note that 

M!/(M-n)! n! =3, (M-1)!/(M-n-1)! n! =1, (M-1)!/(M-n)! (n-1)! =2. 

sites 

1 2 3 
configuration 1 O--EB-EB 

configuration 2 EB-EB-O 

configuration 3 EB-o-EB 

Thus we have the operator relation, 

.(0) .(0) 

L:=L:+L:, [n] [n] En] 

and the relation, 

DC = DC.co) + DC(o) , 

which is the same as (7.26). 

remark 

site 1 (= site (1) is vacant 

site 1 (= site (1) is occupied 

The expression (E.1) has been derived from (C.lO) and (C.1), but we 
could have used (D.1) and (C.1) instead. Then we would have obtained 

DC = RmZo L: L: ... L:fn(t1 +t2+ .. · + tM) [~(zp)tp] 
tl t2 tM p-l 

X exp (- L: tptqepql kT), (E. 4) (p,q) 

DC.(o) = RmZo L: L: ... L: (1- t1)fn (t1 + t2 + ... + tM) [IT (Z pY1] 
tl t2 tM p=l 

X exp (- L: tptqepql kT) , (E. 5) (p,q) 

DC(o) = RmZo L: L: ... L: tl fn (t1 + t2 + ... + tM) [ :fi: (ZPYp] 
t1 t2 tM p=l 
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(E. 6) 

It is to be understood that in (E.5) and (E.6) the M sites are so numbered 
that the site (J is here renamed site 1. Thus tl takes the value 0 or 1 de­
pending on whether the site (J is vacant or occupied. Of course (E. 4), (E.5) 
and (E.6) are completely equivalent to (E. 1), (E. 2) and (E.3). Now we specialize 
to a simpler case; let us suppose that the M sites are equivalent, in which 
case (C.11) and (D.2) hold. Then (E.1) or (E. 4) becomes 

(E. 7) 

where pn) is what might be called the configurational partition function or 
the partition function for the interaction energy and is given by 

pn) = L: exp (- I: estl kT) 
en] (s,t) 

= L: .E ... L:fn(tl +t2 + ... +tM) exp (- L: tptqepql kT). (E. 8) 
tl t'/, tM (p,q) 

Also (E.2) and (E. 3), or (E. 5) and (E.6) become 

QCO(O) = RmZoznlo\~l , (E. 9) 

QCo(,) = RmZoznI:(~l. (E. 10) 

The expression for the partition function I:(~l is obtained from (E. 8) by replacing 
0(0) 

L: by L:, and fn (tl + t2 + ... + tM) by (1- tl)fn (tl + t2 + ... + tM)' That for Io\~l is 
En] En] 

written in a very similar way. In (E.7)-(E.1O), the superscript (n) on I 
implies that the configurational partition functions [Cnl, Io\~l and I:(~l are to be 
calculated for the adsorbed phase consisting of n molecules. Therefore, 
extending the above calculations, we find 

QC· = RmZoZn+l[Cn+l) , 

Finally we obtain, from the above results, 

po = QCo IOC = z[Cn+l) I [Cn) , 

q! = QC!(o)/QC(o) = zI.\~~I) I I:(~l , 

f).(o) = OC:(Q)/QCo = Io\~~I) I [Cn+l) • 

If we assume further that the interactions between adsorbed 
absent, the exponential functions in (E.8) equal unity. Thus,*) 

* ) Cj. the paragraph preceding (E. 2). 

(E. 11) 

(E. 12) 

(E. 13) 

(E. 14) 

(E. 15) 

molecules are 
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pn) = M! ,IJ(~» = (M-1)! I\n) _ (M-1)! 
(M-n)! n! (M-n-1)! n!' aJ) - (M-n)! (n-1)! 

Similarly, 

pn+l) = M! 
(M-n-1)! (n+1)! 

I (n+l) _ (M -1) ! 
(0) -

• (M-n-2)! (n+1)! 

pn+l) _ (M-1)! 
.(0) - (M-n-1)! n! 

In this particular case, (E. 13), (E.14) and (E. 15) read 

a M-n a £) n+1 p = ---z, q.=z, 17'(0) = --. 
n+1 M 

(E. 16) 

For large n it is justifiable to replace n + 1 in (E. 16) by n. Also in the state 
of adsorption equilibrium, n =n* =OM (see Section 7). Therefore (E.16) is 
rewritten as 

a 1-0 ° £) 0 P = --z , q. = z , 170(.) = . 
o 

(E. 17) 

In the adsorption equilibrium, (7.20) holds; thus the first of (E. 17) becomes 

o Z --=-=AGZ 1-0 po' , 

which coincides with (C. 15). 
In passing, we note that the partition functions of the spin system listed 

in Table 1 are cast into forms quite similar to (E.7) and (E.9)-(E.12). Since 

the relation -~Sl-~SZ-···-~sN+~N=n implies that 
2 2 2 2 

we obtain from (D.6) 

(E. 18) 

with 

(E. 19) 

In much the same way that we have obtained (E.13)-(E.15), we find 

p+ = DC+ / DC = y-Zpn+l) / pn) , (E. 20) 
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+ - '""'C+ /'""'C - -2l(n+l)/l(n) 
qa - >u, a( j) >u, a( 1 ) - Y J( j ) a( 1 ) , 

e - OC+ /OC+ - fC n +1)/fC n +1) a(1l - aU) - aU) • 

(E. 21) 

(E. 22) 

The expressions for laW) and fCn +1
) are obtained from (E.19) by inserting the 

factor ~(1 +Sl) in front of in and by replacing in by in+l> respectively. That 
2 

for l.cm1
) is obtained from (E. 19) by inserting the factor ~ (l-s1) in front of 

2 
in and replacing in by in+l at the same time. In the absence of the spin­
spm interactions, (E. 20), (E.21) and (E.22) become 

P~ _ N-n -2 
- 1 Y , 

n+ 
(E. 23) 

which are quite similar to (E.16) and coincide with (6.15), (6.19) and (6.20). 
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