Title	A NEW METHOD FOR DETERMINING THE STOICHIOMETRIC NUMBER OF THE RATE-DETERMINING STEP. : APPLICATION TO THE CHLORINE ELECTRODE REACTION ON PLATINUM
Author(s)	ENYO, Michio; YOKOYAMA, Takamitsu
Citation	JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 17(1), 1-13
Issue Date	1969-04
Doc URL	http://hdl.handle.net/2115/24886
Туре	bulletin (article)
File Information	17(1)_P1-13.pdf

A NEW METHOD FOR DETERMINING THE STOICHIOMETRIC NUMBER OF THE RATE-DETERMINING STEP.—APPLICATION TO THE CHLORINE ELECTRODE REACTION ON PLATINUM

Ву

Michio Enyo*) and Takamitsu Yokoyama*)
(Received December 15, 1968)

Abstract

A new method for determining the stoichiometric number, ν_r , of the rate-determining step was developed with special reference to electrode reactions. The method is based on a comparison of the electrode potential-current relations obtained under different conditions, and involves neither an isotope exchange reaction nor an extrapolation of a Tafel line to the reversible potential.

The method was applied to the chlorine electrode reaction, $2 \, \text{Cl}^- = \text{Cl}_2 + 2 \, \text{e}$, on Pt in $2 \, \text{N} \, \text{H}_2 \text{SO}_4$ containing HCl at various concentrations. The value of ν_r was found to be practically independent of chlorine pressure (1~0.089 atm) and of Cl⁻ concentration (0.2~0.006 N), but dependent upon the electrode potential; ν_r was found to be two in the potential region more positive than the reversible potential at 1 atm Cl₂ and 0.2 N HCl, and to decrease toward unity upon change of the electrode potential toward more negative values.

In the positive potential region, the order of the chlorine evolution reaction was 1.1 ± 0.1 for Cl⁻ and -0.03 ± 0.05 for Cl₂. In the potential region more negative than -100 mV, that of the chlorine ionization reaction was approximately unity for Cl₂ and 0 ± 0.05 for Cl⁻. On the basis of these values and the above ν_r -values, it was concluded that the chlorine electrode reaction proceeds by the scheme,

$$Cl^- \rightarrow Cl(a) + e$$
, $2 Cl(a) \rightarrow Cl_2$,

where Cl(a) is the chlorine adatom, and the first determines the rate (the "slow-discharge" mechanism) in the positive region and the second (the "catalytic" mechanism) in the negative region.

Introduction

The stoichiometric number, ν_r , of the rate-determining step, first introduced by HORIUTI, 1,2) is of primary importance in analyzing reaction kinetics and

*) The Research Institute for Catalysis, Hokkaido University, Sapporo, Japan.

hence a great deal of work has been devoted to its experimental determination.^{3~7)}

According to the general theory of reaction rates²⁾, the ratio of the unidirectional forward rate of the overall reaction V_+ to the reverse rate V_- is given as

$$V_{+}/V_{-} = \exp\left(-\Delta G/\nu_{r}RT\right),\tag{1}$$

where $-\Delta G$ is the affinity of the overall reaction. This equation is rewritten as

$$\nu_r = -\Delta G/RT \ln \left(V_+/V_- \right),$$

which is the form widely used in the experimental determination of ν_r . Here, the ratio V_+/V_- is usually determined by means of an isotopic tracer, *i.e.* by observing under a given value of $-\Delta G$ either of the unidirectional rates simultaneously with the net rate V

$$V = V_{+} - V_{-}. \tag{2}$$

The utilization of an isotopic tracer, however, introduces new difficulties: (a) the isotope effect frequently has a significant magnitude especially in reactions involving hydrogen; (b) the isotope may by-pass the rate-determining step of the reaction under study, thus fallaciously giving rise to an undully large value for the unidirectional rate and hence to an erronously large value of ν_r . The first problem has been solved in the case of the hydrogen electrode reaction^{6,7)} but not, so far, for other reactions.

Another method of determination of V_+ or V_- has been used in the case of electrode reactions. If we vary the electrode potential or the chemical potential of the electron, μ_e , while keeping the chemical potentials, μ_J , of all the chemical substances, j (reactants and products), constant, Eq. (1) yields

$$V_{+}/V_{-} = \exp\left\{-n(\mu_{\rm e} - \mu_{\rm e,eq})/\nu_{r}RT\right\},\,\,(3)$$

where $\mu_{e,eq}$ is the value of μ_e at equilibrium under the given conditions and n is the stoichiometric coefficient of the electron in the overall reaction. The difference in μ_e is in turn given by the difference in the electrode potential φ as

$$\mu_{\rm e} - \mu_{\rm e,eq} = -F(\varphi - \varphi_{\rm eq}), \qquad (4)$$

where φ_{eq} is the value of φ at equilibrium and F the Faraday. Consequently, we obtain, expressing V_+ and V_- in terms of the current densities, i_+ and i_- , respectively,

$$i_{+}/i_{-} = \exp\left\{nF(\varphi - \varphi_{eq})/\nu_{r}RT\right\}. \tag{5}$$

The expression for the net current density i

Determination of the stoichiometric number

$$i = i_{+} - i_{-} = i_{+} (1 - i_{-} / i_{+}),$$
 (6)

follows as

$$i = i_{+} \left[1 - \exp \left\{ -nF(\varphi - \varphi_{eq}) / \nu_{r} RT \right\} \right]. \tag{7}$$

Expansion of the exponential term near equilibrium where $\varphi \simeq \varphi_{eq}$, yields

$$\nu_r = (i_+)_{\varphi = \varphi_{eq}} (nF/RT) (\partial \varphi / \partial i)_{\varphi = \varphi_{eq}}. \tag{8}$$

If the Tafel constants α_+ and α_- , defined respectively as

$$\alpha_+ \equiv (RT/F)(\partial \ln i_+/\partial \varphi)_{\mu_i} = -RT(\partial \ln i_+/\partial \mu_{\rm e})_{\mu_i} \,, \eqno(9.+)$$

and

$$\alpha_{-} \equiv (RT/F) \left(\partial \ln i_{-} / \partial \varphi \right)_{\mu_{4}} = -RT \left(\partial \ln i_{-} / \partial \mu_{e} \right)_{\mu_{4}}, \tag{9.--}$$

are independent of φ , we obtain the linear relations;

$$\ln i_{+} = (\ln i_{+})_{\varphi = \varphi_{eq}} + \alpha_{+} F(\varphi - \varphi_{eq}) / RT, \qquad (10.+)$$

and

$$\ln i_{-} = (\ln i_{-})_{\varphi = \varphi_{eq}} + \alpha_{-} F(\varphi - \varphi_{eq}) / RT.$$
 (10.—)

Consequently, extrapolation to φ_{eq} of a linear Tafel line, established in the potential region far apart from φ_{eq} , yields the value of $(i_+)_{\varphi=\varphi_{eq}}=(i_-)_{\varphi=\varphi_{eq}}$, *i. e.*, we obtain ν_r according to Eq. (8). However, the application of this method is often questionable in the absence of sufficient justification to assume α to remain constant over a wide range of φ .*)

Thus, a new method which requires neither isotope exchange nor the assumption of constant α_+ and α_- is desirable. The present work is concerned with development of such a method and its application to the chlorine electrode reaction on platinum.

Theoretical

We develop the method with respect to a general electrode reaction expressed as

$$m_{\rm A} A = m_{\rm B} B + n \, \mathrm{e} \,. \tag{11}$$

(Essentially the same argument as below can be made for non-electrochemical reactions by replacing e by a chemical reagent.) The Tafel constant, according to its definition, Eq. (9), may be considered as the reaction order with respect

^{*)} For the same reason, it is not generally valid to determine ν_r by the equation, $\alpha_{\pm} - \alpha_{-} = n/\nu_r$, which follows readily from Eq. (5) and (9),4) if the α -values are evaluated in the anodic and cathodic region, respectively, and not at the same electrode potential.

to the electron. In an analogous way we define⁸⁾ the reaction orders with respect to A and B which appear in Eq. (11):

$$\zeta_{+}(A) \equiv (\partial \ln i_{+}/\partial \ln a_{A})_{a_{B},e} = RT(\partial \ln i_{+}/\partial \mu_{A})_{a_{B},e}, \qquad (12. +)$$

$$\zeta_{-}(\mathbf{A}) \equiv (\partial \ln i_{-}/\partial \ln a_{\mathbf{A}})_{a_{\mathbf{B},\varphi}} = RT(\partial \ln i_{-}/\partial \mu_{\mathbf{A}})_{\mu_{\mathbf{B},\varphi}}, \qquad (12. -)$$

$$\zeta_{+}(B) \equiv (\partial \ln i_{+}/\partial \ln a_{B})_{a_{A},\varphi} = RT(\partial \ln i_{+}/\partial \mu_{B})_{a_{A},\varphi}, \qquad (13. +)$$

and

$$\zeta_{-}(B) \equiv (\partial \ln i_{-}/\partial \ln a_{B})_{a_{A},\varphi} = RT(\partial \ln i_{-}/\partial \mu_{B})_{\mu_{A},\varphi}, \qquad (13. -)$$

where a_A and a_B are the activities of A and B.

Since α 's and ζ 's are, generally, functions of φ and a's, the plot of $\ln i_+$ or $\ln i_-$ against φ is not always linear. However, there exists a range of φ and a's in which the reaction order values are practically constant, although its extent varies from one system to another. The following expressions for i_+ and i_- hold in such a range:

$$i_{+} = k_{+} (a_{A})^{\zeta_{+}(A)} (a_{B})^{\zeta_{+}(B)} \exp(\alpha_{+} F \varphi / RT),$$
 (14. +)

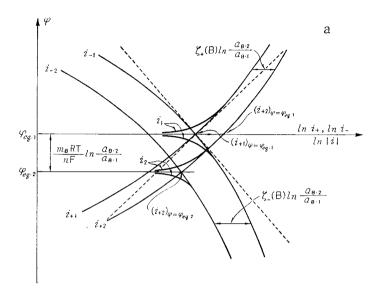
and

$$i_{-} = k_{-}(a_{\rm A})^{\zeta_{-}({\rm A})}(a_{\rm B})^{\zeta_{-}({\rm B})} \exp(\alpha_{-}F\varphi/RT),$$
 (14. —)

where k's are constant. In Fig. 1 a are shown schematically the general relation between i_+ or i_- and φ at constant a_A and a_B by solid lines. The relations given by Eq. (14) are given by dotted straight lines.

We consider now the effect upon the curves of shifting the activity of A or B; for example a_B from $a_{B,1}$ to $a_{B,2}$. In Fig. 1a, the curves i_{+1} and i_{-1} respectively represent the value of i_{+} and i_{-} under the condition that (a) the activity of the reactant B has the value $a_{B,1}$: $a_B = a_{B,1}$ while (b) the activity of the reactant A remains constant. The equilibrium potential $\varphi_{eq,1}$ then has the value of $\varphi_{eq,1}$: $\varphi_{eq} = \varphi_{eq,1}$. The curve i_1 represents the relation between φ and the net current density in the anodic or cathodic region under this condition. Since only i_1 at given $(\varphi - \varphi_{eq,1})$ is experimentally observable, while $i_{\pm 1}$ as well as i_{-1} need to be calculated using Eq. (7), a second equation is required because also ν_r enters into Eq. (7). In accordance with the shift of a_B from $a_{\rm B,1}$ to $a_{\rm B,2}$ while keeping $a_{\rm A}$ constant, the equilibrium potential is shifted from $\varphi_{eq,1}$ to $\varphi_{eq,2}$. By varying φ again, we would observe the curve i_2 and hence we obtain the curves i_{+2} and i_{-2} as a function of $\varphi - \varphi_{eq,2}$ and unknown value of ν_r . The horizontal distance, on a logarithmic scale, from the curve i_{-1} or i_{-1} to i_{+2} or i_{-2} , respectively, at a given value of φ is related to the reaction order with respect to B (at that value of φ and the fixed value of a_A), i.e.,

Determination of the stoichiometric number



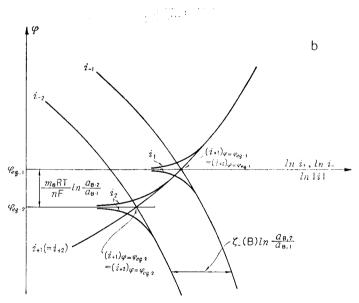


Fig. 1. Schematic representation of relations between φ and $\ln i_+$, $\ln i_-$ or $\ln |i|$. Quantities with subscript 1 indicate those under the condition $a_A=a_A$ and $a_B=a_{B,1}$ and subscript 2 those under $a_A=a_A$ and $a_B=a_{B,2}$.

a, $\zeta_{+}(B) \neq 0$ and $\zeta_{-}(B) \neq 0$; b, $\zeta_{+}(B) = 0$ and $\zeta_{-}(B) \neq 0$.

 $\zeta_{+}(B)$ or $\zeta_{-}(B)$ multiplied by $\ln (a_{B,2}/a_{B,1})$.

In the case where $\zeta_+(B)$ is zero in the potential region concerned, as is frequently the case but cannot be expected *a priori*, the curve i_{-1} alone would be shifted to the position of the curve i_{-2} in accordance with the shift of φ_{eq} from $\varphi_{eq,1}$ to $\varphi_{eq,2}$ (Fig. 1b). In this case, the value of i_{+1} is equal to i_{+2} at any value of φ . Hence, writing down two equations for i_{+1} and i_{+2} , respectively, using Eq. (7), and then equating to each other, we obtain

$$\frac{i_1}{1 - \exp\left\{-nF(\varphi - \varphi_{eq,1})/\nu_r RT\right\}} = \frac{i_2}{1 - \exp\left\{-nF(\varphi - \varphi_{eq,2})/\nu_r RT\right\}}.$$
 (15)

Consequently, by selecting a position of φ where i_1 appreciably deviates from i_2 , we can determine the value of ν_r . Likewise, if we select φ at $\varphi_{eq,1}$, we have a common value of $(i_{+1})_{\varphi=\varphi_{eq,1}}=(i_{+2})_{\varphi=\varphi_{eq,1}}$. This magnitude is given on the one hand from the reaction resistance $(\partial \varphi/\partial i_1)_{\varphi=\varphi_{eq,1}}$ by Eq. (8) and on the other hand from $(i_2)_{\varphi=\varphi_{eq,1}}$ and $\varphi_{eq,1}-\varphi_{eq,2}$ by Fq. (7). Hence, equating those, we obtain

$$\frac{\nu_r}{(nF/RT)(\partial\varphi/\partial i_1)_{\varphi=\varphi_{eq,1}}} = \frac{(i_2)_{\varphi=\varphi_{eq,1}}}{1 - \exp\{-nF(\varphi_{eq,1} - \varphi_{eq,2})/\nu_rRT\}}.$$
 (16)

In the case where $\varphi_{eq,1} - \varphi_{eq,2}$ is sufficiently greater than RT/F, this equation reduces to a simpler from, that is,

$$\nu_r = (i_2)_{\varphi = \varphi_{eq,1}} (nF/RT) (\partial \varphi / \partial i_1)_{\varphi = \varphi_{eq,1}}. \tag{17}$$

The value of ν_r is, thus, determined by Eq. (15), (16) or (17) at any value of φ , at least in principle. (In practice, the range of φ where we can apply this method is roughly 200 mV.) An entirely analogous procedure is also possible by varying a_A while keeping a_B constant. The basic requirement in this method that is $\zeta_+(B)=0$, can readily be tested by observing the coincidence of the Tafel lines, $\ln i_1$ and $\ln i_2$ in the potential region where the contributions of the reverse rates i_{-1} and i_{-2} are negligible.

The method developed above was applied to the chlorine electrode reaction,

$$2 \text{ Cl}^{-} = \text{Cl}_{2} + 2 \text{ e}$$
.

on platinum. It is known⁹⁾ that a homogeneous isotope exchange proceeds through the complex-formation reaction, $Cl^- + Cl_2 = Cl_3^-$, and hence we are unable to determine ν_r of the chlorine electrode reaction by utilizing the exchange of a chlorine isotope.

Experimental

Experiments were carried out in a two-compartment all-glass cell. In the main compartment were placed the test (Pt-wire), reference (Ir-wire) and counter (Pt-net) electrodes. An Ag/AgCl-reference electrode, which was used to evaluate the change in activity of Cl⁻ and Cl₂ in the main compartment, was placed in the side compartment which was separated from the former compartment with a ground-glass stopper so as to be free of Cl₂.

Solutions of 2 N H₂SO₄ containing HCl at various concentrations were prepared from carefully purified water and special grade chemicals. Chlorine gas was prepared by electrolysis of 6 N HCl. The gas was purified by passing it over a heated (300°C) Pt-net and through a trap containing 2 N H₂SO₄ solution. Helium used to vary the partial pressure of Cl₂ was purified by means of a rare-gas purifier (Japan Pure Hydrogen, type RT-025) which uses a heated (1000°C) titanium compounds.

Soon after the cell was set up, the potentials of all the electrode in the main compartment came to the reversible chlorine potential within ± 1 mV and were stable within $\pm 20~\mu V$. The experimental temperature was $25\pm 0.5^{\circ}C$. The polarization measurements were then made by means of a galvanostatic pulse technique. After the measurements, the Cl₂-flow was replaced by He-flow, and when the activity of Cl₂ was decreased to a desired value, as judged from the potential difference between the test electrode and the Cl₂-free Ag/AgCl-reference electrode, the He-flow was stopped and then the polarization measurements were repeated. Similar experiments were made at various values of activity of Cl⁻ at 1 atm of Cl₂.

Results and Discussion

The polarization data obtained are plotted for different values of a_{Cl_2} (Fig. 2a) and for those of a_{Cl_-} (Fig. 2b). The electrode potential was referred to the potential of the reversible chlorine electrode at 1 atm Cl₂ and 0.2 N HCl (ca. +1.42 V on the NHE scale). In both cases, the curves were reproducible when the same condition was restored after having shifted the activity to a different value (92% of the initial value of $(\partial \varphi/\partial i)_{\varphi=\varphi_{eq,1}}^{-1}$ for the case of variation of a_{Cl_2} , and 82% for the case of variation of a_{Cl_2} , respectively).

In Fig. 2a, the agreement of the Tafel lines at the potential region in which we can equate i to i_+ is excellent, which shows $\zeta_+(\text{Cl}_2)$ to be zero. Similarly, from Fig. 2b, $\zeta_-(\text{Cl}^-)$ is also found to vanish. These facts enable us to use Eq. (15), (16) or (17) derived above for both cases of variation of activity of Cl⁻ or Cl₂.

M. ENYO and T. YOKOYAMA

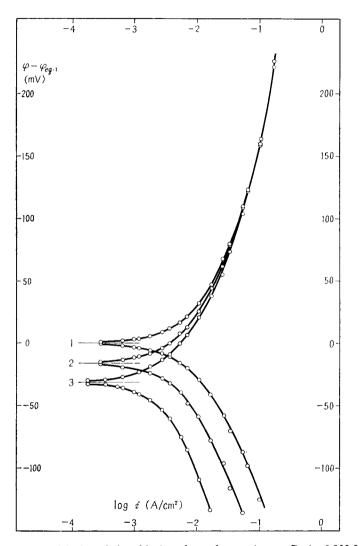


Fig. 2.a Tafel plot of the chlorine electrode reaction on Pt in $0.2\,\mathrm{N}$ HCl $+2\,\mathrm{N}$ H₂SO₄ solution at 25°C. Chlorine pressure, (1), 1 atm; (2), 0.288 atm and (3), 0.0891 atm.

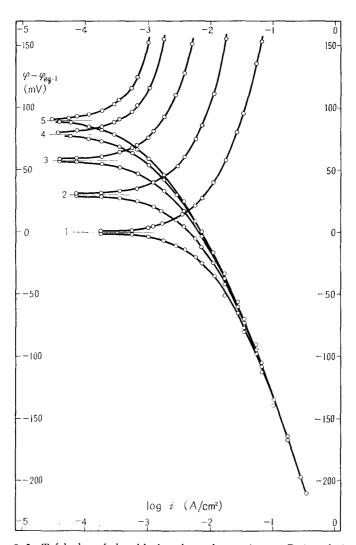


Fig. 2.b Tafel plot of the chlorine electrode reaction on Pt in solutions of 2 N H₂SO₄ containing HCl of various concentration under 1 atm Cl₂ at 25°C. (1), 0.20; (2), 0.062; (3), 0.021; (4), 0.0092 and (5) 0.0060 N.

M. ENYO and T. YOKOYAMA

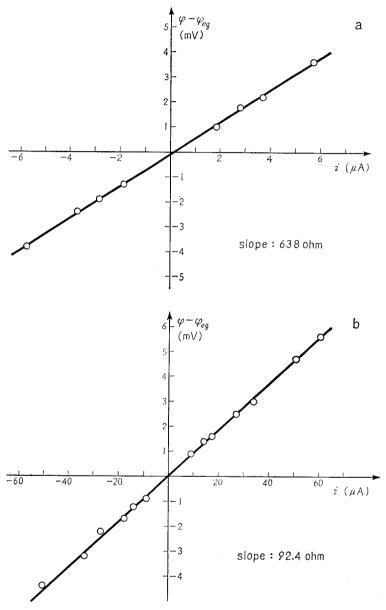


Fig. 3. Typical current-overpotential relations of the chlorine electrode reaction on Pt at 25°C near the reversible potential, φ_{eq} , where i is the *net* current (surface area: 0.05 cm²).

- a, 1 atm Cl_2 and 0.021 N HCl in 2 N H_2SO_4 ;
- b, 0.288 atm Cl_2 and 0.20 N HCl in 2 N H_2SO_4 .

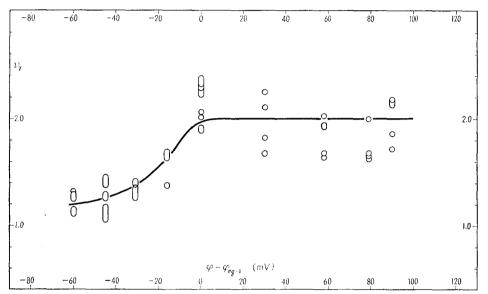


Fig. 4. Variation with the electrode potential φ of the observed stoichiometric number of the rate-determining step of the chlorine electrode reaction on Pt in 2 N H₂SO₄ at 25°C.

Cl₂, 1~0.0891 atm and HCl, 0.20~0.0060 N.

M. ENYO and T. YOKOYAMA

We evaluated the ν_r -value by (1) combining two *i*-values obtained at a fixed φ -value but under a different activity of either Cl^- or of Cl_2 and (2) by combining the reaction resistance values at the equilibrium potential under a given set of concentrations with an *i*-value at this potential but obtained under a different condition, *cf.* Eq. (16). The results are plotted against φ in Fig. 4. The ν_r -value was found to be two at potentials positive with respect to $\varphi_{eq,1}$ but showed a tendency to decrease toward unity as the electrode potential was shifted in more negative direction.*)

From the above data we deduce the reaction mechanism. Comparing with the various mechanisms considered for the hydrogen electrode reaction, 6 we find that the possible mechanisms which yield $\nu_r = 2$ are (the "slow-discharge" mechanism)

$$Cl^{-} \leftrightarrow Cl(a) + e$$
, $2 Cl(a) \rightleftharpoons Cl_{2}$, (19. a, b)

and

$$Cl_2 \rightleftharpoons 2 Cl(a)$$
, $Cl(a) + Cl^- \rightarrow Cl_2 + e$, (20. a, b)

where \rightarrow denotes the rate-determining step and Cl(a) is a chlorine adatom. If a simple mass-action law holds for the rate-determining step in (19) or (20), the orders of the reaction are expected to be

$$\zeta_{+}(Cl^{-}) = 1$$
 and $\zeta_{+}(Cl_{2}) = 0$,

for (19) and

$$\zeta_{+}(Cl^{-}) = 1$$
 and $\zeta_{+}(Cl_{2}) = 0.5$.

for (20). The values observed in the anodic polarization region were

$$\zeta_{+}(Cl^{-}) = 1.1 \pm 0.1$$
 and $\zeta_{+}(Cl_{2}) = -0.03 \pm 0.05$.

Hence, we exclude the possibility of the mechanism (20). The chlorine electrode reaction at the positive potentials is thus concluded to follow the slow-discharge mechanism (19).

As the potential moves to more negative values, the mechanism appears to change to the "catalytic" one, *viz.* rapid discharge of Cl⁻ followed by slow recombination of Cl(a) as indicated by the decrease of ν_r toward unity. The reaction orders observed in the potential region $\varphi - \varphi_{eq,1} < -100 \text{ mV}$, $\zeta_-(\text{Cl}_2) \simeq 0$ and $\zeta_-(\text{Cl}_2) \simeq 1$, are in good agreement with this conclusion. The

^{*)} FRUMKIN and TEDORADSE⁵⁾ determined the ν_r -value to be two in the negative potential region by the extrapolation method mentioned in the Introduction; no variation of ν_r with φ was considered in that work.

Determination of the stoichiometric number

chlorine electrode reaction on Pt thus changes over from the slow-discharge to the catalytic mechanism as the potential becomes more and more negative.

Acknowledgement

The authors are grateful to Prof. T. NAKAMURA and Prof. F. GUTMANN for their valuable advice.

References

- 1) J. HORIUTI and M. IKUSHIMA, Proc. Imp. Acad. Tokyo, 15, 39 (1939).
- 2) J. HORIUTI, This Journal, 1, 8 (1948); J. HORIUTI and T. NAKAMURA, Advances in Catalysis, 17, Academic Press, New York, (1967).
- J. O'M. BOCKRIS and E. C. POTTER, J. Chem. Phys., 20, 614 (1952). J. O'M. BOCKRIS and N. PENTLAND, Trans. Faraday Soc., 48, 833 (1952). S. ENOMOTO and J. HORIUTI, This Journal, 2, 87 (1953). C. BOKHOVEN, M. J. GORGELS and P. MARS, Trans. Faraday Soc., 55, 315 (1959). Y. KANEKO and S. OKI, This Journal, 13, 169 (1966). K. TANAKA, ibid., 13, 119 (1965); 14, 153 (1966).
- 4) R. PARSONS, Trans. Faraday Soc., 47, 1332 (1951).
- 5) A. N. FRUMKIN and G. A. TEDORADSE, Z. Elektrochem., 62, 251 (1958).
- 6) M. ENYO and T. YOKOYAMA, This Journal, 13, 71 (1965); M. Enyo, T. YOKOYAMA and M. HOSHI, *ibid.*, 13, 222 (1966).
- 7) M. ENYO and T. YOKOYAMA, Electrochim. Acta, 12, 1631 (1967).
- 8) M. ENYO and T. YOKOYAMA, to be published.
- F. A. LONG and A. R. OLSON, J. Am. Chem. Soc., 58, 2214 (1936). E. S. GOULD, Mechanism and Structure in Organic Chemistry, Holt, Reinhalt and Winston, New York 1959, p. 651. K. TANABE, unpublished data.