
 

Instructions for use

Title THEORY OF THE GALVANOSTATIC TRANSIENT METHOD ON POROUS ELECTRODE：Part 2. Current and
potential distribution in a pore

Author(s) KUNIMATSU, Keiji

Citation JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 20(1), 20-33

Issue Date 1972-04

Doc URL http://hdl.handle.net/2115/24933

Type bulletin (article)

File Information 20(1)_P20-33.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


J. Res. Inst. Catalysis, Hokkaido Uni'U., Vol. 20, No.1, pp. 20 to 33 (1972) 
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METHOD ON POROUS ELECTRODE 

Part 2. Current and potential distribution in a pore 

By 

Keiji KUNIMATSU*) 

(Received December 10, 1971) 

Abstract 

A mathematical treatment was given for the current and potential distribution in a pore 

when the electrode was polarized by a step function of current. The pore was assumed to 

be equivalent to an one-dimensional transmission line consisting of the solution resistance, 

the double layer capacitance and the reaction resistance of the electron-transfer reaction 

across the double layer. The expressions are given for the potential difference across the 

electric double layer at the electrode-solution interface inside the pore referred to that at 

the equilibrium potential, the current passing through the cross section of the pore, the 

current density which flows into the electrode and the Ohmic potential in the pore respec­

tively as functions of time and the position in the pore. The distribution of the current 

and potential was found to depend greatly not only on the time constant of the pore defined 

by a product of the solution resistance inside the pore and the double layer capacitance 

of the pore wall, but also on that of the electron-transfer reaction. 

It is shown that in concentrated solutions the current density distributes homogeneously 

throughout the whole surface inside the pore, while in dilute solutions most of the polarizing 

current flows into the electrode near the orifice of the pore in the early stage of time and 

that the current density distribution becomes more inhomogeneous with decreasing the time 

constant of the electron-transfer reaction. This inhomogeneity causes the deviation of the 

log (I/¢) 'Us. time curve from a linear relation in the initial stage of time. 

Introduction 

The distribution of current and potential in a pore in steady states has 
been discussed by many authors. However, there has been reported few 
works concerning the problem in the transient state. KSENZHEK and STEN­
DERI

-
3

) discussed the potential distribution in a pore in the transient state, 
but they did not give explicitly the analytical solution of the potential as 
a function of time and the position in the pore. DE LEVIE4

) has given an 

*) Research Institute for Catalysis, Hokkaido University, Sapporo, Japan. 
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Theory of the Galuanostatic Transient Method on Porous Electrode 

expression for the current and potential in a pore of infinite length in the 
transient state for an ideal polarized state, and similar relations have been 
reported by BONNE MAY, BRONOEL, LEVART, PILLA, and d'ORSAy5

). POSEY 
and MOROZUMI6

) have discussed the current and potential distribution in the 
pore of definite length in an ideal polarized state. Thus, it is needed to 
reconsider the distribution of the current and potential in a pore caused by 
applying a step function of current taking into consideration an electron­
transfer reaction across the double layer to elucidate the mechanism of the 
electrochemical reaction by thegalvanostatic transient method using a porous 
electrode. 

The time function of the electrode potential on a porous electrode caused 
by a step function of a polarizing current was given in Part 17

) by taking 
into consideration the random distribution of pores on the electrode surface. 
It was found that the electrode potential SO(t) depends not only on the time 
constant of an electron-transfer step which is given by the product of the 
double layer capacitance and the reaction resistance of the step, but also on 
the time constant of each pore which is expressed as the product of the 
double layer capacitance and the solution resistance inside the pore. 

In the present paper, the distribution of current and potential in a pore 
caused by applying a step function of current to the pore electrode will be 
theoretically expressed as a function of time on the basis of the one-dimen­
sional transmission-line model of the equivalent circuit of the pore in which 
an electron-transfer reaction is taken into consideration. 

§ 1. Theory of current and potential 
distribution in a pore 

We assume here a pore of cylindrical form of length l and radius r. 
The equivalent circuit of the pore is given by an one-dimensional trans­
mission-line model as shown in Fig. 1 by taking into consideration the solu­
tion resistance, the double layer capacitance at the electrode-solution interface 

e R,AZ e+L1e Soln. -----13 -i+L1i 

r./AZ Cb rb 

Orifice 0---- Z Z+L1Z Metal l 

Fig. 1. An equivalent circuit of the pore 
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and the reaction resistance of the electron-transfer reaction across the double 
layer inside the pore. 

In Fig. 1, z is the distance from the orifice of the pore measured along 
the axis of the pore, e is the overvolage of the electron-transfer step at z, 
i. e., the difference of the potential drop across the double layes at z between 
the reversible state and the working one of the electrode, i is the current 
strength passing through the cross section of the pore at z. Rh r l and CI 

denote, respectively, the Ohmic resistance of the solution in the pore, the 
reaction resistance of the electron-transfer step and the differential capaci­
tance of the double layer, each of which is referred to the unit length of 
the pore. rb and Cb denote, respectively, the reaction resistance and the 
double layer capacitance at the bottom of the pore. 

The differential equation of e and i with respect to t and z will be 
deduced on the basis of this model in what follows. It can be seen from 
Fig. 1 that the gradient of e at z is given by 

oe .R 
oz = -1 I· ( 1 ) 

The decrease of the current - Ai between z and z + Az is balanced equally 
with the Faradaic and copacitative current which flows into the wall of the 
pore in this interval Az. The capacitative part of the current is given by 
CIAze and the Faradaic one is given by eAzjrh assuming that the rate of 
the electron-transfer step is proportional to e. This assumption is valid in 
the potential region much lower than RTjF. The potential in this treat­
ment is thus limited in the region lei <RTjF. It follows that 

(2 ) 

where 1: is the time constant of the electron-transfer step and is expressed 
as C] r l • e and i are given as functions of z and t by solving the differential 
equations (1) and (2). From Eqs. (1) and (2), we have 

o2e (oe e) 
OZ2 = RICI Tt+-; . ( 3 ) 

The initial condition for the potential can be taken as 

e(z, 0) = ° , ( 4 ) 

sInce we start from the reversible state. The boundary conditions for the 
current are given as 

i(O, t) = I, ( 5 ) 



Theory of the Galvanostatic Transient Method on Porous Electrode 

and 

(6 ) 

where 1 is the polarizing current and i(l, t) is the current which flows into 
the electrode at the bottom of the pore. Equation (3) can be solved under 
these conditions applying the Laplace transformation. Equation (3) is trans­
formed as 

( 7 ) 

where e denotes the Laplace transform of e, and S IS the variable. The 
general solution of Eq. (7) is given as 

where A and B are the constants. Applying the Laplace transformation to 
Eq. (1), the Laplace transorm of the current can be expressed as 

_ ~RICl(S+T 1)[ {I I)} 
Z = - Rl A exp Z'V R1C1(s+T 

-B exp {-Z~RICI(S+T I)}], ( 9 ) 

taking into consideration Eq. (8). The constants A and B can be determined 
using the boundary conditions expressed in the Laplace transforms. The 
boundary conditions (5) and (6) can be transformed as 

f(z = 0) = l/s, 

f(Z = I) = C(S+T-1
) e(z = I). 

(10) 

(11) 

Introducing Eqs. (10) and (11) into (8) and (9), the constants A and B can be 
determined. Finally we have 

f 1 
7=s 

C p sinh {( 1-+ )~Tp(S + T I)} + Cb~Tp(S+ T~I) cosh {( 1-+ )~T p(s+ T-1)} 

x Cp sinh ~Tp(S+TI)+Cb~Tp(S+Tl) cosh ./Tp(s+r I) 

(12) 
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_ IRp 
e= s-l/-. p(S+ -.-1) 

Cpcosh {( 1-+ )-1/-. p(s + -,-1)} + Cb -1/-. p(S + -. l)sinh {( 1-+ )-1/-. p(s + -. 1)} 
X Cp sinh -1/1: p(s+ -. 1) + Cb-l/-. p(s+ -. 1) cosh -1/-. p(s + -. 1) 

(13) 

where Rp = lRl and Cp = lC1 • -'p is called the time constant of the pore which 
is defined as -'p=RpCp. 

The current i(z, t) and potential e(z, t) can be obtained respectively as 
the inverse Laplace transforms of Eqs. (12) and (13). e is given as a func~ 
tion of -'pS, i. e., 

_ IRp-'p 
e-- -.ps(-'ps+a) 

Cpcosh {( 1-+ )-I/y+cx} + Cb-l/y+cxsinh {( 1-+ )-I/y+cx} 

x Cpsinh-l/-.ps+a C h ~ , 
/ + bCOS "-'ps+a 

"-'ps+a 

(14) 

where a=-'p-.-l. Thus, we can express 

where 

(15) 

We have a relation between the inverse Laplace transforms of e(s) and F(s) as 

e(z, t) = ~ji(t/~p) ,. () IR f( / ) 
IR • t. e., e z, t = p t -'p , 

p-'p -'p 
(16) 

where (17) 

Thus, the problem of finding e(z, t) ban be reduced to that of finding the 
inverse Laplace transform of F(s). F(s) is a single-valued function of sand 
it is readilly shown that lim F(s) = o. Therefore, the problem of inverse 

.~= 

Laplace transformation of F(s) is reduced to that of finding the pole points 
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of function F(s)· exp (st) and the sum of the residues at these points according 
to the JORDAN'S lemma and residue theorem. 

F(s) is written as 

F(s) = p(s)js(s+a) q(s) , (18) 

where p(s) = Cp cosh {( 1- ;)~ S+a }+Cb sinh {(1- ;)~ s+a}, (19) 

C sinh ~ s+a --
q(s)= p ~ +Cbcosh~s+a 

s+a 
and (20) 

The pole points of the function F(s)· exp (st) are given as the roots of the 
equation 

s(s+a)·q(s) = 0, 

i. e., s = 0, -a and 

C p sihn ~---s+;; C h ,-- 0 , + b cos 1/ S + a = . 
1/s+a 

(21) 

The residues at the pole points s=O, -a and those gIven by Eq. (21) are 
given respectively as 

p(O) 
aq(O) , 

where Sn is the n-th root of Eq. (21) and q'(sn) is the derivative of q(s) at 
s = Sn. Here, the s~ s are confined to the real and negative roots, since 
potential e should be a real and convergent function of time. Thus, we have 

p(O) p( -a) 
f(t) = aq(O) - aq( -a) 

00 p (Sn) 
exp (-at)+ I: (+)'() exp (Snt). 

n~l Sn Sn a q Sn 

(22) 

The first and the second term in f(t) are given, respectively, by 

p(O) C p cosh {~~( 1-+ )}+Cb~~ sinh {~-;-( 1-+ )} 

aq(O) = ~ a (Cp sinh ~ a +Cb~ a cosh ~ a) 
(23) 

p(-a) Cp 
( ) exp ( -at) = (C + C) exp ( -at) . aq -a ' a p b (24) 

Equation (21) has no root in the region s+a~O, and hence Sn+a should be 
negative. Thus, we can put 

~'sn + a = jq", q,,; positive real value. (25) 
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Introduction of Eq. (25) into (21) gives 

Cb tanq=-C q. 
p 

Thus, f(t) is obtained finally as 

(26) 

(t = Cpcosh{ra(l-+)}+Cb~a-sinh{ra(l-+)}_cp exp (-at) 

F ) ra(Cpsinh~ a +Cb~ a cosh~ a) a(Cp+Cb) 

'" (q, + G q!) cos (qn 7) 2 

-2fl (q!+a)(C~+CpCb+Ciq!) exp {-(qn+a)t}. (27) 

From Eqs. (16) and (27), we have the expression for potential e(z, t) as 

where ro( = 'rIC) is the reaction resistance of the electron-transfer step in the 
pore as a whole. The expression for the current i(z, t) which passes through 
the cross section at z is obtained by differentiating Eq. (28) with z on the 
basis of Eq. (1) 

i(z, t) Cp sinh{~a-( 1-+ )}+ Cb~a- cosh{~a-( 1-+ )} 

-1- = Cp sinh ra + Cb~ a cosh ra 
'" qn (q, + C~ q!) sin (qn 7) 2 } 

-2fl(q!+a)(q,+CpC
b
+Gifn) exp {-(qn+a)tl'rp . (29) 

On the other hand, the density of the current i*(z, t) which flows into the 
electrode at the point z and time t can be deduced as follows. The current 
whice flows into the electrode between z and z+L1z equals i(z)-i(z+Jz) as 
seen from Fig. 1. The area of the pore wall in this interval is 2n-rLlz. 
Thus, the current density i*(z, t) is given by 

i*(z t) = -I-lim i(z)-i(z+Jz) = __ 1_ di(z, t) 
, 2rrr 4.-0 Jz 2rrr dz 

(30) 

Differentiating Eq. (29), we have 
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Equation (28) can be more simplified using the initial conditian of e(z, 0)=0. 
We have from Eq. (28) at t=O, 

Rp[ Cp cosh {"~(l-+}+Cb"~ sinh {,,~( 1-+ )}] 
" a (Cp sinh" a + Cb " a cosh" a ) - ro 

'" (~+ C~if,,) cos (qn +) 
= 2Rp L: (r.2 ) (C2 C C C2 2) . n~l '1n+ a p+ p b+ bqn 

Introducing Eq. (32) into (28), we have 

e(z, t) = Iro {1- exp (-t/r)} 

(32) 

'" (C~ + C~q;) cos (qn ~) [1- exp {-(q; +a) t/"p}] 
+2IRpL: (2 )(C2 CC C22) . (33) n~l qn+ a p+ p b+ bqn 

In the ideal polarized state, the expressions for current and potential 
can be simplified respectively by putting ,,-1 = 0, i. e., a = 0, as 

and 

where C is the total double layer capacity of the pore which equals Cp + Cb 

and S is the total surface area of the pore which is given by rrr + 2rrrl. 
In the special case where the bottom of the pore is neglected, the po­

tential e(z, t) has been deduced by POSEY and MOROZUMI6
) which coincides 

with Eq. (34) in which Cb is put zero. 
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§ 2. Discussion 

We will discuss here the distribution of current density and potential 
inside the pore on the basis of Eqs. (31) and (33) or (34) and (36). 

The potential at z=O, e(O, t), which can be measured as the change of 
the electrode potential when a polarizing current is given to the electrode, is 
distributed in the pore between the Omhic drop eo(z, t) in the solution and 
the potential difference across the electric double layer e(z, t), i. e., 

eo(z, t) = e(O, t)-e(z, t) . (37) 

We can express eo(z, t) from Eq. (33) as 

It can be seen from Eqs. (31) and (33) that i*(z, t) and e(z, t) are greatly 
influenced by the parameter a when the pore size is fixed to a definite value. 
We will discuss the influence of parameter a on i*(z, t) and e(z, t). 

Let us consider the case when the solution is so concentrated that the 
Ohmic resistance of the solution practically equals zero. We can put T p' 

a=O and reduce Eqs. (31) a 1 ( (33) to 

'*( ) IC* I 
Z z, t = 2rrrlC = S ' (39) 

and 

e(z, t) = Iro{ 1- exp (-tIT)} . (40) 

It can be seen from Eqs. (39) and (40) that the potential depends only on 
the kinetic parameter of an electron-transfer step and time independently of 
the position in the pore and that the current density remains constant inde­
pendently of the position in the pore, i. e., the electrode can be regarded as 
if it were geometrically flat. 

When the solution is enough diluted and the solution resistance is so 
high that the time constant of the pore practically equals infinite, we have 
a = T pIT» 1. The increase of a is also caused by the decrease of the time 
constant of the electron-transfer step. We have from Eq. (33) by neglecting 
q;' as compared with a 
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= (q, + cg if,,) cos (qn ;) 
e(z,t)=1{1-exp(-t/r)}{ro+2Rpfl a(C~+CpCb+Cbif,,)}. (41) 

We have also from the condition a:} 1, exp (.;---;;):} exp (- ra) and exp 

{.;---;;( 1- ; )} :} exp {.;---;;( 1- ;)} except for the very near position of the 

bottom, and hence we can put cosh';---;; = sinh';---;; = ~ exp (ra) and cosh 

{ra(l- ;)}=sinh{';---;;(l- ;)}=~ exp {';---;;(l- ;)} Thus, the initial con-

dition of potential given by Eq. (32) can be simplified as 

Rp ( z ) = (q, + Ci q!) cos (qn ;) 
,- exp - ra -Z - ro = 2Rp L: (C2 + C C + C2 2). (42) 

'V a n~l a p p b bqn 

Introducing Eq. (42) into Eq. (41), we have the expression for potential under 
the condition a:} 1 as 

e(z, t)= f: exp ( -';---;;;)-{1- exp(-tl!")}. (43) 

From Eq. (43), we have the expressions for the current and Ohmic potential 
under the same condition as 

i(z, t) = I exp ( -.;---;;;)-{ 1- exp (-tl!")} , 

i*(z, t) = 2:rZ ra exp (-ra ;)-{ 1- exp (-tl!")} , 

eu(z, t) = ~~ {1- exp ( -.;---;;;)}{ 1- exp (-tl!")} . 

(44) 

(45) 

(46) 

It can be seen from Eqs. (43), (44), (45) and (46) that the potential and cur­
rent equals practically zero except for the very near part of the orifice of the 
pore and that the Ohmic potential in the pore practically equals e(O, t). 
It is thus concluded that only the very near part of the orifice of the pore 
is polarized under the condition a:} l. 

In an ideal polarized state, a can be taken zero independently of the 
value of !" p. The time derivative of potential at the position z becomes 
constant in the time region t>!"p as seen by differentiating Eq. (34) with 
time, i. e., 

e(z, t) = IIC . (47) 
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It follows from Eqs. (37) and (47) 

efi(z, t) = O. (48) 

Thus, the distribution of the Ohmic potential drop in the pore does not 
depend on time. In this case di/dz equals constant as seen from Eq. (35) 

di(z, t) Cp 

dz = - lC ' (49) 

i. e., the current i passing through the cross section of the pore at z decreases 
linearly with the position in the pore and the current density at z which is 
used for the charging up of the double laper becomes constant as given by 

i*(z, t) = l/S. (50) 

Now, we will discuss the influence of the current density disitribution on 
the overvoltage-time curve observed in the galvanostatic transient study on 
the pore electrode. When the electrode surface is geometrically flat, the 
overvoltage-time curve can be analysed on the basis of the following equa­
tionS

), i. e., 

In (l/¢) = In C+ t/'<, (51) 

where cp is the overvoltage, ¢ is its time derivative and C is the total double 
layer capacity. On the pore electrode, the overvoltage cp is given as e(O, t) 
from Eq. (33) and the relation log (l/¢) and time is expressed as 

In (l/¢) = In C+ t/'<-ln {I + 2C ~1 Cp(C~~~P~bq! C~q~) exp (-q~t/'<p)}. 
(52) 

Thus, the relation between log (l/¢) and time on the pore electrode is reduced 
to Eq. (51) under the condition exp (-q~t/'<p)=O. It was soown in part 17

) 

that this condition is practically satisfisfied in the region t> '< p. It can be 
seen from Eq. (31) that the condition exp (- ifnt/'<p) = 0 is the one under 
which the current density distribution in the pore is in the steady state. 
Under this condition, we have from Eq. (33) 

ae(z, t) _ L ( /) 
at - C exp - t '< (53) 

i. e., the time derivative of potential does not depend on the position in the 
pore. From Eq. (53), we have the charging current density of the double 

I .* ( ). C* ae(z, t) 1 . d d f h . ayer tc z, t, t. e., at' as a constant va ue III epen ent 0 t e POSI-

tion in the pore 



Theory of the Galvanostatic Transient Method on Porous Electrode 

i: (z, t) = i exp (-tlr) (54) 

where C* is the double layer capacity per unit area. 
It follows from the above arguments that the overvoltage-time curve on 

the pore electrode can be analysed on the basis of Eq. (51) in the region 
of time where the current density distribution is in the steady state and the 
charging current density of the double layer distributes homogenoeously in 
the pore. In other words, the inhomogeneity of the charging current density 
distribution of the double layer in the initial time region causes the high 
current density near the orifice of the pore and then rapid increase of 
overvoltage. In consequence, the relation between log (11¢) and time deviates 
from a linear one. 

Examples of the distribution of current density i* (z, t) and potential 
e(z, t) at definite values of time are shown respectively in Figs. 2 and 3 in 
the special case where the time constant of the electron-transfer step equals 
that of the pore. As seen from Fig. 2, in the early stage of time the large 
part of the current flows into the electrode near the orifice, and with the 
increase of time the current penetrates into the pore more deeply. As seen 
from Fig. 3, the potential penetrates into the pore more deeply with the 

6 t/yP 
Curve I, 001 

2, 0.05 

5 3, 01 
4, 02 .. 5, DO 

} x2J[rl 
4 

3 

09 I 

Fig. 2. Distribution of current density at the steady state. 
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t/rp 
Curve I. 0.01 

2. 0.05 
3. 0.1 
4. 0.2 
5. 0.5 
6, 00 

0.7 0.0 

Fig. 3. Distribution of potential in a pore. T=Tp 

T;Lp 

Curve I, 0.02 
2. 0.1 
3, 0.25 
4, 1.0 
5, 00 

Fig. 4. Distribution of current density in a pore. T = Tp 

0.9 , 
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increase of time as in the case of the current density. It should be noted 
here that the measured potential is expressed by the value on the coordinate 
axis in Fig. 3 as a function of time. Fig. 4 shows the distribution of the 
current density i* multiplied by the area of the pore wall 2rrrl in the steady 
state at the various values of a-I i. e.;r/r:p , from 0.02 to infinity. It can be 
seen from Fig. 4 that at small values of a-I, the current flows into the 
electrode at the position near the orifice, while with the increase of a-I the 
current density i* near the bottom of the pore increases and finally at a = 0, 
i. e., on an ideal polarized electrode, the cureent is uniformly distributed 
throughout the whole surface inside the pore. 

Acknowledgment 

The author wishes to express his sincere thanks to Professor Akiya 
MA TSUDA for his helpfull discussions and encouragement in the course of 
this work and his deep gratitude to Miss Atsuko HIRA TSUKA for her com­
puter works in numerical calculations. 

References 

1) O. S. KSENZHEK, Zh. Fiz. Khim, 37, 2007 (1963). 

2) O. S. KSENZHEK, ibid., 38, 1846 (1964). 

3) O. S. KSENZHEK and V. V. STENDER, Dokl. Akad. Nauk SSSR, 106, 487 (1956). 

4) R. De LEVIE, Electrochim. Acta, 8, 751 (1963). 

5) M. BONNEMAY, G. BRONOEL, E. LEVART, A. A. PILLA and E. P. d'A. d'ORSAY, Compt. 
rend, 258, 4256, 6139 (1964). 

6) F. A. POSEY and T. MOROZUMI, J. Electrochem. Soc., 113, 176 (1966). 

7) K. KUNIMATSU, This Journal, 20, 1 (1972). 

8) A. MATSUDA and R. NOTOY A, ibid., 14, 165 (1966). 

33 


	image905.tif
	image906.tif
	image907.tif
	image908.tif
	image909.tif
	image910.tif
	image911.tif
	image912.tif
	image913.tif
	image914.tif
	image915.tif
	image916.tif
	image917.tif
	image918.tif

