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By 
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Abstract 

Expressions are derived theoretically for the current and potential distribution on 

a porous electrode whose surface consists of a flat part and pores of different sizes, as 

a function of time in response to application of a step function of current 1. An electron­

transfer process across the electric double layer at the electrode-solution interface is taken 

into consideration by introducing a reaction resistance of the process parallel to the double 

layer capacity. The resistance is taken constant in the region of overvoltage much less 

than RT/F. 

It is pointed out that the shorter the time constant of the electron-transfer process, 

which is defined as a product of the double layer capacity and the reaction resistance of 

the process, and the lower the conductivity of the solution, the more inhomogeneous the 

current and potential distribution on the electrode surface becomes especially in the initial 

stage of polarization. Because of this inhomogeneity the overvoltage changes at a different 

rate with time at each position on the electrode surface, which causes the relation between 

log (I/¢) and time obtained by analysing the initial stage of the overvoltage-time ('?-t) curve 

to deviate from a linear one. 

The numerical calculation was performed and the results are illustrated for the dis­

tribution along a pore axis of the overvoltage, the current passing through the cross sec­

tion, and the current density which flows into the electrode. The current which flows into 

the electrode at the flat part of the electrode surface is given as a function of time. 

Introduction 

In Part 21), the distribution of current and potential in a pore electrode 
was given as a function of time and position under the condition that a 
constant current flowed into the pore from its orifice and was used for 
charging up of the double layer and the electron-transfer process. 

*) Research Institute for Catalysis, Hokkaido University, Sapporo, Japan. 
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On a porous electrode whose surface has a flat part and pores of 
different sizes, however, it is necessarry to reconsider the current and po­
tential distribution on the electrode surface by taking into consideration the 
geometrical configuration of the surface when applying the galvanostatic 
transient method. In the present paper, the current and potential distribu­
tion was formulated on a porous electrode whose surface consists of a flat 
part and pores of different sizes. 

§ 1. Theory of current and potential 
distribution on porous electrode 

1. The differential equation for current and potential in a pore 

We must first define the model of the electrode surface and deduce the 
differential equations for the current and potential in a pore on the basis 
of the model. 

Let us assume here that the electrode surface consists of a flat surface 
and N pores of different sizes each of which has a cylindrical form and its 
axis normal to the electrode surface. The differential equations for the 
current and potential in a pore have been discussed in Part 2 by regarding 
the pore as an one-dimensional transmission-line which has along its axis 
the distributed Ohmic resistance of the solution, the double layer capacity 
and the reaction resistance of the electron-transfer process across the electric 
double layer at the electrode-solution interface in the pore. 

The equivalent circuit of the k-th pore is shown in Fig. 1, where z is 
the distance from the orifice of the pore along its axis, e is the overvoltage 
of the electron-transfer process at z, i. e., the potential difference across the 
double layer at z refered to the difference at the reversible potential, i is 
the current passing through the cross section of the pore at z, R1,k' rl,k 

and C1,k denote respectively the solution resistance, the reaction resistance 
of the electron-transfer process, and the differential capacity of the double 
layer per unit length of the pore, rb,k and Cb,k denote respectively the reac-

Orif/ce 
o z z+£1z Metal lk 

Fig. 1. An equivalant circuit of the k-th pore. 
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tion resistance and the double layer capacity at the bottom of the pore and 
lk is the length of the k-th pore. Both i and e should be suffixed by k in 
this case, but it is neglected for simplicity in what follows. 

As described in part 2, the gradient of the potential at z in the pore 
IS given by 

ae 'R ---;;;-- = - 1 1 k • 
uZ ' 

( 1 ) 

The gradient of the current i IS gIven by the sum of the Faradaic and 
capacitative components as 

~_ C (ae +~) az - - l,k at !" ( 2 ) 

assuming that the absolute value of e is much lower than RT/F, where the 
Faradaic current can be regarded as proportional to e with a proportionality 
constant r1,k' !', the time constamt of the electron-tromsfer process, is 
given by C1,kr1,k' t is the time measured from the beginning of polariza­
tion of the electrode by a step current 1. From Eqs. (1) and (2), we have 
a differential equation for the potential in the k-th pore as 

a2e (ae e) azZ = R1,k C1•k at + -; . ( 3 ) 

The distributions of the current and potential in the k-th pore will be dis­
cussed on the basis of Eqs. (1), (2) and (3) using the initial and the boundary 
conditions which depend on the geometrical configuration of the electrode 
surface. 

2. Initial and boundary conditions of the potential and current 

The initial condition of the potential is given by 

e(z, 0) = 0, 

since the potential is refered to the reversible state. 

( 4 ) 

The boundary condition of the current at the bottom of the k-th pore 
is given by 

'(l) {( ae) e(z= lk) } 
1 k> t = Cb,k at z~lk + !' . ( 5 ) 

The boundary condition of the current at the orifice of the k-th pore 
is given by estimating the fractional current which flows into the k-th pore 
when the electrode is polarized by a constant current 1. The expressions 
for the current which flows into the k-th pore and onto the flat part of 
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the electrode surface are given in what follows. The total impedance Z(s) 
of the electrode is given by a parallel combination of the impedance ZAs) 
at the flat part and the impedances Zk(S)'S of the pores, where s = j(J), j = 

.j -1, and (J) is the angular frequency of the alternating current. The 
overvoltage which can be measured on the electrode in response to applica­
tion of a step current I is given by the potential difference across the 
impedance Z(s) as described in Part 12

). Thus, the potential difference SO(t) 
is imposed equally to the impedances ZAs) and Zk(S)'S. Let us denote the 
current which flows into the flat part as iAt) and that into the k-th pore 
as ik(t). The current I is given as the sum of these fractional currents as 

N 

1= iAt) + L; ikt. ( 6 ) 
k~1 

Generally, the time function of the current which flows in a circuit when 
a voltage source e(t) is applied to an impedance is given by the Duahmel's 
integrals. Thus, iAt) and ik(t) are given by the Duahmel's integrals. The 
expressions in the Laplace transforms for iAt) and ik (t) are given by 

If = IZ(s)jsZAs) , 

lk = IZ(s)jsZk(s) , 

( 7 ) 

( 8 ) 

where If and lk denote respectively the Laplace transforms for iAt) and 
ik(t). Equation (8) shows the current which flows into the k-th pore from 
its orifice and it gives the boundary condition of the current at the orifice 
of the k-th pore in the Laplace transform dropping the suffix k as 

l(Z = 0) = IZ (S)jSZk (s) ( 9 ) 

3. The current i(z, t) and potential e(z, t) in a pore 

The potential and current in the k-th pore will be expressed here as 
functions of t and Z by solving Eq. (3) applying the Laplace transformation. 
Equation (3) is transformed under the initial condition Eq. (4) as 

d 2 e 
dz2 = R1.kC1.k(S+'Z'-1) e, (10) 

where e denotes the Laplace transform of potential e. The general solution 
of Eq. (10) is given by 

e= A exp {z.jR1.kC1.k(S+'Z' 1) }+B exp {-Z.jR1.kC1•k(S+'Z'-1)} , 

(11) 

where A and B are the constants determined by the boundary conditions. 
The Laplace transform of the current is obtained from Eq. (1) as 
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z = - .JRl.k Cl.k(s+r-
1)[A exp {Z.JR C (s+, I)} R l,k l,k 

l,k 

-B exp { -z.JR1,kCl,k(S+,-I)}]. (12) 

The boundary condition (5) is transformed as 

(13) 

The constants A and B can be determined from Eqs. (9), (11), (12) and (13). 
Introducing A and B thus determined into Eq. (11), we obtain the Laplace 
transform of potential; 

_ IRkZ(s) 
e = SZk(S) x 

Ck cosh {( 1-* ).J'k(S+' 1)}+ Cb,k.J'k(S+ ,-1) sinh {( 1-* ).J'k(S+ ,-I)} 
.J'k(S+' 1){Ck sinh .J'k(S+' 1)+Cb ,k.J'k(S+' 1) cosh .J'k(S+' I)} 

(14) 

where Rk=lkRl,k> Ck=lkCl,k and 'k is the time constant of the k-th pore 
defined by 'k=RkCk. The expressions for Zk(S) and Z(s) in Eq. (14) have 
already been given in Part 1 as 

(15) 

and 

Z()-I_C( -1) ~ C,k(s+,-I)Z~(s)+1 
S - f S+, + t...J zo () C RIC ' k~1 k S + b,k k k 

(16) 

where 

Introducing Eqs. (15), (16) and (17) into (14), we can rewrite the e as 

Ip(s) 
e= s(s+, 1).q(s).F(s) , (18) 

where 

p(S) = Ck cosh {( I-t).J 'k(S+, 1) } 

+Cb,k.J 'k(S+,-I) sinh {(1- ~).J 'k(S+,-I)}, (19) 
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and 

The potential e(z, t) can be obtained by performing the inverse Laplace 
transformation of (! given by Eq. (18). The problem of the inverse Laplace 
transformation of Eq. (18) is reduced to that of finding the pole points of 
the function (!. exp (st) and the sum of the residues at these points according 
to Jordan's lemma and the residue theorem, since (!. exp (st) is a single-valued 
function of s and it is readilly shown lim (! equals zero*. 

The potential e(z, t) is finally given as 

(22) 

where 

(23) 

(24) 

A( ) = I: Ck(q+CkCb,k+CLq;<k) 
qn k~l (Ck cos qn./ <k - Cb,kqn..fi; sin qn./ <k)2 , (26) 

the q~s are the positive roots of the following equation; 

(27) 

* For more details of inverse Lapace transformation, see Part 1 or 2. 
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ro is the reaction resistance of the electron-transfer process with respect to 
the total surface area of the electrode and ak is defined by ak=-rk/-r. 

The expression for the current i (z, t) is obtained by differentiating e(z, t) 
with z according to Eq. (1), as 

i(z, t) CkGk(Z) 
-1-= ~akB 

2C ~ q,,~--;;: gk(q", z) { (2 -I)} 
+ k ~ I (2 -I) {C A( )} exp - q" + -r t, 

n~I'V-rk q,,+-r f+ qn 
(28) 

where 

and 

The expression for the potential can be more simplified by its initial 
condition. Putting e(z,o)=O, we have from Eq. (22) 

h·Fk(z) 00 !k(q", z) 
--B--Iro = 21 fl (q;'+-r-I) {Cf+A(q,,)} (31) 

Introducing Eq. (31) into (22), we have the expression for the potential III 

more simplified form as 

e(z, t) = I ro(l-e- t
/

r
) 

+21 I: !k(q",Z) [l-exp {-(q;'+-r- I )t}] (32) 
n~l (q;'+-r- I

) {Cf+A(q,,)} 

From the current and potential given by Eqs. (28) and (32), we can 
derive the expressions for the overvoltage-time curve which has already been 
given in Part 1, the Ohmic potential in the pore and the current density 
which flows into the electrode at the position z in the pore. 

The overvoltage-time curve is obtained from Eq. (32) putting z=O, i. e., 

e(o, t) = SO(t) (33) 

The difference between e(o, t) and e(z, t) is the Ohmic potential eo(z, t) at z 
in the pore, i. e., the potential difference between the orifice of the pore 
and the position z. Thus, we have 
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ell(z, t) = e(o, t)-e(z, t), 

which is given from Eq. (32) as 

00 { } I-exp{-(q;+-r-1)t} 
ell(z,t)=21f1I-Jk(qmZ) (q;+-r 1) {Cf+A(qn)} 

(34) 

(35) 

The current which flows into the electrode between z and z+Az IS 

given by the difference i(z)-i(z+Az). Thus, the current density i*(z, t) 
which flows into the electrode at the position z is given by 

i*(z, t) = -I-lim i(z)-i(z+Az) = __ 1_ ai(z, t) (36) 
2rrrk Jz~O Az 2rrrk az 

where rk is the radius of the k-th pore. 1ntroducting Eq. (2), we can rewrite 
Eq. (36) as 

1 z t =-'- --+- =C* --t--.*( ) C1k (ae e) (ae e) 
, 2rrrk at -r at 7:' 

(37) 

where C* denotes the double layer capacity per unit area. Equation (37) 
shows that i* (z, t) is given by the sum of the capacitative and the Faradaic 
components. The i*(z, t) can be obtained from Eqs. (28) and (36) as 

i*(z, t) _ C*Fk(z) +2C* ~ q;-!k(qm z) {_( 2 + -1) t} 
I - B :::1 (q;+-r 1) {Cf+A(qn)} exp qn -r • 

(38) 

The current if(t) which flows into the electrode at the flat part of the 
electrode surface can read illy be obtained as the inverse Laplace transform 
of Eq. (7). As shown in Part 1, the impedance at the flat part ZAs) IS 

given by the double layer capacity Cf at the flat part and -r as 

zAst1 = Cf(S+-r- 1). (39) 

Putting Eq. (39) into (7), we have 

If=Cf{1Z(s).(s+-r- 1)/s} = Cf{1Z(s) + ; 1Z;S)}. (40) 

The inverse Laplace transforms of 1Z(s) and 1Z(s)/s give respectively tp(t) 
and ¢(t) as shown in Part 1. Thus, we have from Eq. (40) the expression 
for if(t), as 

iAt) = Cf {¢(t) + tp~t)}. (41) 
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§ 2. Discussion 

The currents i(z, t) and i*(z, t) and the overvoltage e(z, t) in the pore 
depend not only on the time constant of the electron-transfer process T, but 
also on those of the pores T~S as seen from Eqs. (28), (38) and (32). We 
will discuss here the influence of T and T~S on these current and overvoltage 
In the pore. 

1. Influence of the time constants of the pores 

In the case when the time constants of the pores can be regarded as 
practically zero, we can put ak=O and q~s=oo*. This is the case when 
the conductivity of the solution is enough high, i. e., in the concentrated 
solutions. 

In this case, i, i* and e are gIven by 

i(z, t) _ Ck+Cb,k 
-1-- C 

e(z, t) = Iro(l-e-tl') , 

i*~, t) = C*/C = l/S, 

eJ)(z, t) = 0, 

where S is the total surface area of the porous electrode. 

(42) 

(43) 

(44) 

(45) 

It can be seen from these results that the overvoltage in a pore depends 
only on T and t independently of the position in the pore, and i* also 
remains constant. The electrode behaves as if it were a flat one in this 
case, i. e., a linear relation between log (I/¢) and time can be observed. This 

* If q,Jubecomes zero with decreasing Tk, the left-hand side of Eq. (27) tends to 
N 

Cf+ L: (Cb,k+Ck) which equals the total double layer capacity C. For the validity of 
k~l 

Eq. (27) when the !'k s reach zero, q,Ju should not reach zero, i. e., the q~ s should be 
infinite in such a case. On the other hand, when !' k becomes infinite, the q:' s should 
reach zero as described below. The left-hand side of Eq. (27) can be rewritten as 

( 
,- Ck sin q ,Jr;;) 

N Ck Cb,k cos q'V !'k + , 
C+I: q'V!'k 

f k~l Ck cos q,J!'k - Cb,kq,J Tk sin q,J!'k ' 

which tends to Cf if q,J-:r;; becomes infinite with increasing !'k and sin q,Jr;; 0\;00. We 
have sin q,Jr;; 0\;00, i. e., q,J-:r;; 0\;0 me, because the left-hand side of Eq. (27) does not equal 
zero when q,Jr;; ==mr. Therefore, the left-hand side of Eq. (27) does not equal zero if 
q,Jr;; becomes infinite with increasing '1' k, i. e., the qi, s should tend to zero wiht in­
creasing '1'k. This is the case in very dilute solutions. 
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is the case of evaporated films of Platinum3l and Nicke14l in concentrated 
alkaline solutions observed by MATSUDA, NOTOY A and OHMORI. 

On the other hand, if 1: k reaches practically infinite, ak = 1: kl1: 'P 1 and 
the q~s reach zero as discussed above. Therefore, we have 

and except for the very near part to the bottom of the pore 

sinh{~(l-l:)} = cosh{~(l- z:)} = ~ exp{~(l-l:)}· 
In this case we have from Eqs. (22) and (31) 

(46) 

where rf is the reaction resistance of the electron-transfer process at the 
flat part of the electrode surface. This is the case in very dilute solutions. 
In this case i, i* and elJ can be obtained from Eq. (46) on the basis of 
Eqs. (1), (36) and (34) respectively, as 

i(z, t) = ~ (l-e- t /,) 1 e-r,;;-;-
I Cf .; ak d , 

where Sf is the area of the flat part. 

(47) 

(48) 

(49) 

It can be seen from these results that e, i and i* equal practically zero 
except at the very near part to the orifice of the pore. The overvoltage-time 
curve observed in this case is obtained by putting z=O in Eq. (46), as 

<jJ(t) = IrA1-e- th). (50) 

Thus, the charging up of the double layer and the electron-transfer process 
proceed practically at the flat part of the electrode surface in very dilute 
solutions. 

It can be seen from these results that in highly concentrated solutions 
the whole part of the electrode surface is polarized uniformly, while in very 
dilute solutions only the flat part of the electrode surface is polarized. 

2. The influence of the time constant of the electron-transfer process 

First, we will discuss here an ideal polarized electrode for which we 
can put 1:-1 =0, i.e., ak=O. In this case, we have from Eqs. (32) and (38) 
under the condition exp (-q;t)~O 
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ae(z, t) _ I/C _ ae(o, t) arp(t) 
at - - at =~ (51) 

and 

i*~, t) = liS. (52) 

These results show that in the ideal polarized state the electrode is polarized 
uniformly with increasing time and C can be read illy obtained from <p(t)-t 
curve on the basis of Eq. (51). 

On the other hand, if the time constant of the electron-transfer process 
is so small as compared with the r~s that we can put r- 1 and ltk(=rkr-1) 
equals infinite, the same expressions for i(z, t), i*(z, t) and e(z, t) will be 
obtained as Eqs. (47), (48) and (49). In this case also only the flat part of 
the electrode surface is polarized. 

The current iAt) is given as the difference between the polarizing 
current I and the sum of the currents which flow into the pores 

N 

iAt) = 1- L: ikt. 
k~l 

It can be seen from the above arguments that iAt) equals I when either the 
solution is very dilute or r is small enough as compared with the r~s, while 
it equals IS/IS in highly concentrated solutions. 

3. The influence of the inhomogeneity of the current density distribution 
at the porous electrode on the over voltage-time curve 

In the case of an electrode of flat surface, the overvoltage-time curve 
can be analyzed by the following equation3l, 

In (lief) = In C + tlr . (53) 

On the porous electrode, however, the theoretical relation between In (lief) 
and time can be expressed as2

) 

{ 
= exp (_q2 t) } 

In(II¢)=lnC+tlr-ln 1+ 2C fl Cf+A(;n) , (54) 

Equation (54) is reduced to Eq. (53) under the condition exp(-q~t)=O. We 
will discuss here the current and potential distribution in the pore under 
this condition, by which we can know the reason why the relation between 
In (I/¢) and time deviates from a linear one in the initial stage of polariza­
tion as observed in the study of the electron-transfer precess of the hydro­
gen electrode reaction on the evapolated films of Platinum3

•
4
), NickeP) and 

Silver6). 
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Under the condition exp (-q~t)=O, the time derivatives of i(z, t), i*(z, t) 
and e(z, t) are given respectively from Eqs. (28), (38) and (32), as 

oi(z, t) 
at 

oe(z, t) 
at 

oi*(z, t) = 0 
at (55) 

(56) 

It can be seen from these results that i and i* do not depend on time and 
the time derivative of e does not depend on the position in the pore. From 
Eq. (56) we have the charging current density ic (z, t) of the double layer, 

. c* oe l.e., at' as 

it (z, t) = 1 e-t/~ (57) 

which is a constant independent of the posItIOn in the pore. Thus, the 
current density i*(z, t) and the rate of the electron-transfer process, which 

-5 

o 0.5 

---·-t/Tp 

/.5 2 

Fig. 2. The relation between log (IN) and t/1:p for the various values 
of the roughness factor (r·f) of the electrode surface. r-f=5 and 1.4 
correspond to the number of pores N=1.27xl()4 and N=1.27X103 

respectively per appearent unit surface area. 
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is given by i*(z, t)-it(z, t), vary depending on the position in the pore, 
while the charging current density of the double layer does not depend on 
z as seen from Eq. (57). 

It follows from the above arguments that the relation between In (I/¢) 
and time becomes linear, i. e., Eq. (54) is reduced to Eq. (53), when the 
charging current density of the double layer at the electrode-solution inter­
face becomes uniform throughout the whole surface of the electrode with 
the increase of time. This means that the deviation from linearity in the 
early stage of the overvoltage-time curve is caused by the inhomogeneity of 
the charging current density distribution of the double layer on the electrode 
surface. This inhomogeneity is produced in the early stage of polarization 
because most of the polarizing current flows into the electrode at the flat 
part and near the orifice of the pores. 

These characteristics of log (I/¢)-t curves are found in Figs. 2, 3 and 4. 
Fig. 2 was calculated in Part 1 for the case of uniform pore size under the 
condition given in Table 1. Figs. 3 and 4 were obtained by the galvanostatic 
transient method in the study of the electron-transfer process of the hydrogen 
electrode on the evapolated films of Platinum3

) and NickeP) in alkaline solu­
tions. In Part 1, the deviation from the linearity observed in the initial 

-4 

~-4.5 

:§-
~ 

I -, I 

50 

----00_ tpsec 
100 

Fig. 3. The relation between log (I/¢) 
and time on an evapolated film of 
Platinum in NaOHaq. solution. pH 
= 13.453) 

stage of polarization was explained by the 
presence of pores on the electrode surface. 
According to the above arguments, how­
ever, we have now more detailed explana-

-5 

-60~--~----~$~O----L----~~aw..----L---'I$O~ 

----.0- t fi sec 

Fig. 4. The relation between log (I/¢) and 
time on an evapolated film of Nickel 
in NaOHaq. solution. pH=1l.755) 

89 



90 

K. KUNIMATSU 

tion for the deviation, i. e., the inhomogeneity of the current density distri­
bution on the electrode surface*. 

4. An example of the numerical calculation of the distribution 
of current and potential in the pore 

The results of the numerical calculation of the distributions of current 
and potential are given in Figs. 5-9 for the case of uniform pore size. In 
Table 1 the parameters used in the calculation are given. 

TABLE 1. 

appearent surface area of the electrode 

pore radius (r) 

pore length (l) 

number of pores (N) 

double layer capacity per unit area 

specific resistance of solution (in 10-3 N-NaOH) 

time constant of the pore (rp) 

0.8 

1 cm2 

5x 10-3 cm 

1O-2 cm 

6.4X103 

20,uF 
4.65K!Jcm 

3.72 m sec 

Fig. 5. Distribution of the current passing through the cross 
section in the pore at various values of tlrp. r=rp 

* See references 3, 4 and 5 for the reason why the relation deviates from a linear one 

also in the later region of time. It is caused not by the presence of pores but-:'by the 

accumlation of the reaction intermediates on the electrode surface. 
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3 

..... t/rp .... 
Curve !. 0.0! 

t 2. 0.05 

" 3. a.! 
~ 4. 0.2 

~I~ S. 00 

o 01 02 04 OS 09 

--~.-z/l 

Fig. 6. Distribution of the current density flowing into the 
electrode in the pore at various values of t/rp. r=rp 

(mV) 

6 

0./ 02 03 04 OS 06 07 08 
--·-z/l 

Fig. 7. Distribution of the potential in the pore at 
various values of t/rp. r=rp, I=6xlO- 5 Amp 

91 



92 

K. KUNIMA TSU 

1 
0.2 

0../ 

0. 0.1 o.z as 0.6 0.7 0.8 0.9 

zll 

.Fig. 8. Distribution of the current in steady states at various values of r:/r:p. 

&' 
~ 
~~ 
x 
<: 

~I ~"-< 

3 

T/Tp 

Curve 1. o.OZ 
2. 0.1 
3. 0.25 
4. 05 
5. 1 
6. 00 

0. 0.1 {}2 0.3 04 0.5 0.6 0.7 0.8 0.9 

----- zlZ 

Fig. 9. Distribution of the current density in steady 
states at various values of r:/r:p. 
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Figs. 5 and 6 show that in the early stage of time the greater part of 
the current flows into the electrode at the flat part and near the orifice 
and with increasing time the current penetrates into the pore more deeply. 
Fig. 7 shows that the potential penetrates into the pore more deeply with 
increasing time as in the case of current. The current and potential at 
the steady state are strongly affected by the parameter a( =rp/r). Figs. 8 
and 9 show the dependence of the current distribution on the parameter 
a-I. We see that the current flows into the electrode mainly at the flat 
part and near the orifice when r/rp is small, while the current is uniformly 
distributed throughout the electrode surface when it is large as seen from 
the case of an ideal polarized electrode. Figs. 10 shows the change of 
potential with time at various positions in the pore, i. e., the orifice, middle 
and bottom of the pore. The measured potential SO (t) is given by the curve 
at z/l=O. Fig. 11 shows the change of the current with time which flows 
into the electrode at the flat part of the electrode surface for various values 
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Fig. 10. Change of potential with time at the various 
positions in the pore when r=Tp. I=6xlO- 5 Amp 
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Fig. 11. Change of the current flowing into the flat 
part with time at various values of r/rp. 

04 

of -r/-rp. We see from Fig. 12 that in the early stage of time most part of 
the polarizing current flows into the electrode at the flat part and its steady 
value increases with decreasing -r/-rp. 
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