| Title | ETHYLENE OXIDATION OVER SILVER CATALYST TRACED BY OXYGEN-18 | |------------------|---| | Author(s) | YOKOYAMA, Shin-ya; MIYAHARA, Koshiro | | Citation | JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 22(1), 63-67 | | Issue Date | 1975-02 | | Doc URL | http://hdl.handle.net/2115/24967 | | Туре | bulletin (article) | | File Information | 22(1)_P63-67.pdf | ## (Note) # ETHYLENE OXIDATION OVER SILVER CATALYST TRACED BY OXYGEN-18 By Shin-ya YOKOYAMA and Koshiro MIYAHARA* (Received June 1, 1974) HERZOG¹⁾ has reported recently ethylene oxidation over silver catalyst at 320°C with gaseous oxygen and nitrous oxide; the latter is known to form oxygen adatoms on catalyst surface. Rate of ethylene oxidation with O₂ gas was remarkably larger than that with N₂O, and in exess of ethylene a ratio of ethylene oxide to CO₂, *i.e.*, selectivity of partial oxidation, was by seven times higher with O₂ than that with N₂O, while it was ca. 2.5 if the oxidizer was excess. He has attributed the increase of selectivity with N₂O to molecular oxygen formed by combination of oxygen adatoms and concluded that ethylene oxide may be formed by adsorbed molecular oxygen, while adsorbed oxgen adatoms oxidize ethylene completely into CO₂. In the present work we follow Herzoc's experiments by using oxygen-18 to elucidate the mechanism. A conventional closed circulation apparatus made of Pyrex glass with an U-tube reactor, in which granular silver was mounted, was used and the reactor was protected from contamination by using dry icemethanol traps. Analysis was made by supplying a known amount of reacting gas to a gaschro-mass spectrometer with helium carrier. A typical time course of oxidation with O₂ at 280°C is shown in Fig. 1(a), where the activity markedly decreased in early 30 minutes and after that ethylene oxide decreased by further oxidation, while ethylene oxide was not detected in oxidation with N₂O as shown in Fig. 1(b). Without coexistence of ethylene, N₂O was not appreciably decomposed at 280°C over silver catalyst, accordingly, N₂O is consumed by reaction with ethylene. The following stoichiometric reaction was established in the latter case of oxidation, by taking account of amount ratio of the products, CO₂ and N₂. $C_2H_4 + 6N_2O = 2CO_2 + 2H_2O + 6N_2$. ^{*)} Research Institute for Catalysis, Hokkaido University, Sapporo 060. ## S. YOKOYAMA and K. MIYAHARA Fig. 1. Time course of ethylene oxidation with O₂ gas (a) on Ag catalyst at 280°C, and oxidation with N₂O (b), where initial pressures of C₂H₄ and N₂O were 20 and 80 mmHg and the plots for O₂, C₂H₄ and C₂H₄O are omitted. Similar results were obtained at 240°C. A typical time course of a reaction with a mixture of N_2O , $^{18}O_2$ and C_2H_4 are shown in Fig. 2, and distribution of ^{18}O in reacting gases are given in Table 1. The results may be briefly summerized; - i) 18O-concentration in oxygen gas does not change throughout the oxidation, - ii) 18 O atoms in carbon dioxide is distributed randomly and gradually diluted by 16 O atoms from N_2 O, - iii) N₂O does not exchange oxygen with ¹⁸O₂. The results of i) and iii) show that oxygen gas and N₂O are consumed irreversibly, accompanying none of oxygen exchange between them. Dilution of carbon dioxide by ¹⁶O atoms indicates that contribution of N₂O to ethylene oxidation predominates in a later stage of the reaction, suggesting some change #### Ethylene oxidation over Ag traced by 18O Fig. 2. Time course of ethylene oxidation on Ag catalyst at 240°C. Initial pressures of C₂H₄ and N₂O were 20 and 80 mmHg, respectively. TABLE 1. The ¹⁸O atom distribution in gaseous O₂, N₂O and CO₂ in the reaction given in Fig. 2. (Mole %) | Reaction
time, hr | 18O ₂ | 18O16O | ¹⁶ O ₂ | C18O2 | C18O16O | C16O2 | N ₂ ¹⁸ O | N ₂ ¹⁶ O | |----------------------|------------------|--------|------------------------------|-------|---------|-------------|--------------------------------|--------------------------------| | 0.5 | 85.2 | 13.0 | 1.8 | _ | _ | | 0 | 100 | | 1.0 | 84.7 | 12.4 | 2.9 | 81.5 | 16.0 | 2.5 | 0 | 100 | | 2.0 | 85.5 | 11.5 | 3.0 | 76.6 | 21.4 | 2.0 | 0 | 100 | | 3.0 | 85.6 | 12.6 | 1.7 | 71.2 | 25.5 | 3.3 | 0 | 100 | | 10.0 | 86.3 | 11.9 | 1.8 | 48.2 | 42.2 | 9.6 | 0 | 100 | of the catalyst surface. This inference was further assured by oxidation of ethylene with a mixture of 20 mmHg oxygen of 0.93 ¹⁸O-atomic fraction, 40 mmHg N₂O and 20 mmHg ethylene on a freshly prepared catalyst at 240°C. The reaction gave in early 40 minutes 2.0 mmHg carbon dioxide with 0.86 ¹⁸O-atomic fraction and 0.2 mmHg of ethylene oxide with 0.88 ¹⁸O-atomic fraction, while 3.5 mmHg carbon dioxide of 0.65 ¹⁸O-atomic fraction and a trace of ethylene oxide with nearly unchanged ¹⁸O-atomic fraction were found after 7 hours. These results infer that formation of ethylene oxide in early stage was caused mainly by oxygen gas and after that ethylene oxide, at least, is oxidized into CO₂ mainly by N₂O and probably ethylene, too. Rapid oxygen isotopic mixing of gaseous carbon dioxide mentioned in ii) was examined by adding 1.6 mmHg of CO₂ with isotopically unequilibrated #### S. YOKOYAMA and K. MIYAHARA oxygen gas of ca. 20% ¹⁸O-content at the initial time. About 1.6 mmHg of carbon dioxide was formed additionally in early 30 minutes, that is, about a half of the total carbon dioxide. Values listed on the line calc. in Table 1 were obtained by assuming carbon dioxide formed by oxidation has the same ¹⁸O content as that of oxygen gas and isotopic equilibration between formed carbon dioxide and added CO₂ is rapid as suggested by the results of Table 1. These values are in good agreement with the observed values given in the line obs. of | mining C O ₂ . (White 70). | | | | | | | | | |---------------------------------------|----------------|--------------------------------|-----|-----------------------------------|-------|--|--|--| | Sample of CO ₂ | Pressure, mmHg | C ¹⁸ O ₂ | | C ₁₈ O ₁₆ O | C16O2 | | | | | Initially added | 1.6 | | | 0 | 100 | | | | | formed by oxidation | 1.6 | | 3.9 | 32.2 | 63.9 | | | | | Whole of carbon dioxide | 3.2 | calc. | 1.0 | 18.0 | 81.0 | | | | | presenting in gas phase | 3.2 | obs | 1.4 | 20.6 | 78.0 | | | | TABLE 2. The ¹⁸O atom distribution in gaseous CO₂ at 30 minutes of the reaction given in Fig. 2 with initially added 1.6 mmHg C¹⁶O₂. (Mole %). the Table, and proves again the conclusion that oxidation of ethylene is caused practically by O₂ gas but not N₂O in an early stage of the oxidation and rapid oxygen isotopic mixing in carbon dioxide in gas phase. By summerizing the above results we propose two kinds of oxygen intermediates, X and Y, where X is species effective for ethylene oxide formation and Y is for carbon dioxide formation. A reaction scheme of ethylene oxidation over silver catalyst may be given qualitatively as $$C_{2} \xrightarrow{X} C_{2}H_{4}O + Y$$ $$C_{2}H_{4} \xrightarrow{C_{2}H_{4}O + Y}$$ $$Y \xrightarrow{C_{2}H_{4}O + Y}$$ $$N_{2}O \xrightarrow{X} N_{2}$$ where steps of adsorption of O₂, N₂O and C₂H₄ and of desorption of C₂H₄O, CO₂ and H₂O are not expressed clearly so far as the present results concern. Intermediate X as well as Y is mainly supplied from O₂ in early stage of reaction over a freshly prepared silver catalyst, but in later stage, catalyst surface changes to be active for decomposition of N₂O to give Y and inactive for X formation from O₂, resulting in progress of consecutive oxidation of formed ethylene oxide. Such a change of catalyst surface may relate to the practical neccessity of addition of some promoters to silver to obtain a high and ## Ethylene oxidation over Ag traced by 18O steady selectivity for ethylene oxide formation. Rapid randomization of oxygen isotopes in carbon dioxide may be caused by some reversible steps, involving the intermediate Y, e.g., $$CO_2+Y \rightleftharpoons CO_3(a)$$ and/or $CO_2 \rightleftharpoons CO(a)+Y$, where (a) denotes absorbed state of the species. SACHTLER et al.²⁾ have proposed on the basis of their results of IR spectrometiric studies that X and Y are adsorbed molecular and atomic oxygen, respectively, and X and Y are in equilibrium at temperatures above 110°C Such a critical temperature for mixing of X and Y, however, should be investigated further especially on reference to a catalyst being fresh or not and the sort of catalyst carrier. ### Acknowledgement The authors are grateful to Dr. Ken-ichi TANAKA of this Institute for his valuable discussions given on the present work. #### References - 1) M. HERZOG, Ber. Bunsengeselschaft, Physik. Chem. 74, 216 (1970). - 2) P. A. KILTY, N. G. ROL and W. H. M. SACHTLER, 5th International Congress on Catalysis, Miami Beach, 1972, Preprint No. 67.