<table>
<thead>
<tr>
<th>Title</th>
<th>TRACER STUDIES ON THE ELEMENTARY REACTION RATES OF THE HYDROGEN ELECTRODE ON NICKEL IN THE CATHODIC REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ENYO, Michio; MATSUSHIMA, Tatsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 22(2): 88-92</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/24971</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>22(2)_P88-92.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
TRACER STUDIES ON THE ELEMENTARY REACTION RATES OF THE HYDROGEN ELECTRODE ON NICKEL IN THE CATHODIC REGION

By

Michio ENYO** and Tatsuo Matsushima**

(Received October 5, 1974)

Introduction

Mechanistic studies of the hydrogen electrode reaction (her), \(\text{H}_2 + 2\text{B} = 2\text{H}^+\text{B} + 2e \) (\(\text{B} = \text{H}_2\text{O} \) or \(\text{OH}^- \)), were frequently based on the kinetics of the overall reaction rate\(^1\), e.g., the Tafel slope. Such techniques are, however, insufficient to understand detailed mechanism of the reaction; tracer and transient techniques are powerful tools to have a closer look of the mechanism. Recent investigations\(^2\) with deuterium tracer on various metals have shown that (i) the her at the reversible potential consists of two steps, dissociation of \(\text{H}_2 \) to hydrogen adatom, \(\text{H}(a) \), and (ionized) dissolution of the latter into solution, and (ii) exchange rates of the steps are of comparable magnitudes with each other. For complete description of the kinetics, it is thus necessary to resolve the overall reaction rate into the rates of the individual steps and then to study their kinetics. The present work concerns the analysis in the cathodic region on nickel.

Determination of the step rates

We will discuss the isotopic composition of the hydrogen gas during the exchange reaction which takes place through the her in the system consisting of deuterium gas, an abundant amount of electrolytic solution in light water, and a test electrode. The her on Ni takes place through the following two steps\(^2\),

\[
\text{H}_2 \xrightarrow{v_{+a}} 2\text{H}(a), \quad \text{H}(a) + \text{B} \xrightarrow{v_{+d}} \text{H}^+\text{B} + e \]

\((1) \)

\(* \) Extended abstract of the paper presented at the First JAPAN-USSR Seminar on Electrochemistry held in Tokyo, October, 1974.

\(** \) The Research Institute for Catalysis, Hokkaido University, Sapporo, Japan.
where \(v_{+c} \) etc. denote uni-directional rates of the steps specified. Based on the steady state condition, the following relations can be derived (suffix 0 signifies the initial value),

\[
V_\omega = -V \ln (X_0/X) / \ln (N_{g,0} - V t) / N_{g,0}
\]

\[
[\frac{X^{HD}}{X} - 2 + \frac{2f_e X}{f_e^2 - 1}]X^{-f_e} = [\frac{X_0^{HD}}{X_0} - 2 + \frac{2f_e X_0}{f_e^2 - 1}]X_0^{-f_e}
\]

where \(N_g \) is the total number of hydrogen molecules, \(X \) the deuterium atomic fraction in the hydrogen gas, \(X^{HD} \) the mole fraction of HD, \(V \) the net rate (negative in the cathodic region), \(t \) time, \(V_\omega = v_{-\omega} - v_{-d}/(2v_{+\omega} + v_{+d}) \) the backward overall uni-directional rate, and \(f_e = 2v_{+d}/v_{-d} \). Thus, both \(V_\omega \) and \(f_e \) are calculated from \(X \) and \(X^{HD} \).

Individual step rates are then obtained utilizing the following relations:

\[
v_{-\omega} = V_\omega (f_e + 1), \quad v_{+\omega} = V + v_{-\omega}, \quad v_{-d} = 2v_{+d}/f_e, \quad \text{and} \quad v_{+d} = 2V + v_{-d}.
\]

Experimental

The exchange reaction was conducted in a closed gas-circulation system. Nickel wire in the form of a net (1300 cm\(^2\) apparent area) served as the test electrode. A Pd–Ag alloy thimble was placed in a separated compartment and its outer face used as the counter electrode; its inside was connected with a hydrogen reservoir. Deuterium gas was circulated by means of an all-glass pump, while the test electrode was polarized with a constant current. Sample gases were analyzed by means of a gas-chromatograph.

Results

The hydrogen pressure rose gradually with time in the constant volume system. In order to maintain the pressure increase under a tolerable level, the reaction time was always chosen so that \(1 - V t/N_{g,0} \) did not exceed 1.2 except a few cases at high overpotentials.

(I) **Reaction Route**

We first examined if the rate expressions derived above can interpret the experimental data. If the reaction obeys the route given in eq. (1), \(f_e \) in eq. (3) should be constant independent of \(X \) (the isotope effect in the direction of hydrogen ionization is small\(^{2,3} \)). Indeed, \(f_e \) was found constant at \(-\eta = 0 \sim 100 \text{ mV}\). Accordingly, this route is confirmed to be operative in the cathodic region.
Dependence of Rates upon \(\eta \)

We start the exchange reaction with pure deuterium and end with \(X \) only slightly reduced from \(X_0 \). The ratio \(X^n/X^{HD} \) was larger for larger \(-\eta \).

(A) The overall reaction rates

The uni-directional rate \(V_ \) evaluated is plotted in Fig. 1 in current density unit, \(i_+ = 2FV_+/AN_\Lambda \) where \(A \) is the surface area and \(N_\Lambda \) the Avogadro’s number; \(i \) denotes the applied c.d. The relation between \(\log i_- \) and \(-\eta \) did not give a good linearity at low overpotentials. The slope was roughly 100 mV, but it became 120 mV at higher overpotentials. At \(-\eta > 50 \text{ mV} \), \(i_- \) practically agreed with \(-i \).

![Diagram](image)

Fig. 1. Overpotential dependence of the overall reaction rate and step rates on Ni cathode, 20°C. \(P = 18.5 \pm 0.2 \text{ cmHg} \)

(B) Dependence of \(f_\sigma \) upon \(\eta \) and hydrogen pressure \(P \)

\(f_\sigma \) was found close to unity at the reversible potential and \(\log f_\sigma \) decreased linearly with \(-\eta \) with about 100 mV slope. At a fixed \(\eta \), \(f_\sigma \) depended upon \(P \) with the power of 0.7, irrespective of the \(\eta \) value.

(C) Dependence of the step rates upon \(\eta \)

The step rates obtained are shown in Fig. 1, in c.d. units. \(\log i_{+\sigma} \) was constant independent of \(\eta \), whereas \(\log i_{-\sigma} \) linearly depended upon \(-\eta \) with about 100 mV slope. On the other hand, \(\log i_{-d} \) depended linearly upon \(\eta \) with the same slope as \(i_{-\sigma} \). No reliable value of \(i_{+d} \) was obtained.
Tracer Studies on the Elementary Reaction Rates of the Hydrogen Electrode

(D) Pressure dependence of the step rates
The step rates under various pressures are shown in Fig. 2. The dependence of \(i_{\ldots} \) upon \(P \) was with the power of 0.6 at \(-\eta = 35 \text{ mV}\), but the value diminished with \(-\eta\). Those for \(i_{\ast\ast} \) and \(i_{d\ldots} \) were unity and 0.3, respectively, irrespective of \(\eta \).

![Fig. 2. Pressure dependences of the step rates on Ni, 20°C. \(-\eta = 34.5 \pm 0.8 \text{ mV}\).](image)

(E) Affinities associated with the steps
These can be calculated by the following relations\(^4\),

\[
\eta_e = (RT/2F) \ln (v_{\ast\ast}/v_{\ldots}), \quad \eta_d = (RT/F) \ln (v_{d\ldots}/v_{\ldots})
\]

and are related to various chemical potentials as

\[
\mu^H - 2\mu^n = 2F\eta_e, \quad \mu^H + \mu^n - \mu^H + n - \mu^e = F\eta_d
\]

The step rates directly yield \(\eta_e \), but not \(\eta_d \) because of lack of reliable data of \(i_{d\ldots} \). The \(\eta_e \) shared about 30% of \(\eta \) at 20 cmHg \(P \), and the fraction increased with decrease of \(P \).

Discussion

(I) Kinetics of Step \(c \)
Under a fixed \(P \), \(\eta_e \) is related to \(a_n \), the activity of H(a),

\[
F\Delta \eta_e = -d\mu^n = -RTd \ln a_n
\]

Assuming that electrode potential does not directly influence upon the rates
of step \(c\), the reaction orders \(\zeta_{+c}(H)\) and \(\zeta_{-c}(H)\) with respect to \(H(a)\) are given by,

\[
-(RT/F) (d \ln i_{+c}/d\eta) = \zeta_{+c}(H),
\]

\[
-(RT/F) (d \ln i_{-c}/d\eta) = \zeta_{-c}(H)
\]

(7)

The slopes of \(\eta_{e} vs. \log i_{+c}\) and \(\log i_{-c}\) were \(\infty\) and 30 mV, respectively, or we find \(\zeta_{+c}(H) = 0\) and \(\zeta_{-c}(H) = 2\). These are well acceptable for step \(c\), provided that the surface coverage of \(H(a)\) is much smaller than unity\(^5\). The dependencies of \(i_{+c}\) and \(i_{-c}\) upon \(P\) can also be explained on this model.

(II) **Kinetics of Step \(d\)**

Taking \(a_{it}\) and electrode potential, \(\phi\), as variables, we write, under constant \(P\) and in a fixed solution composition,

\[
\frac{-RT}{F} \frac{d \ln i_{-d}}{d\phi} = \alpha_{-d} - \zeta_{-d}(H) \frac{RT}{F} \frac{d \ln a_{it}}{d\phi}
\]

(8)

where \(\alpha_{-d} = -(RT/F)(\partial \ln i_{-d}/\partial \phi)\) represents direct influence of \(\phi\) upon \(i_{-d}\) and \(\zeta_{-d}(H)\) is the reaction order with respect to \(H(a)\). The 1hs of eq. (8) was found 0.58 (Fig. 1) independent of \(P\), whereas \(-\frac{RT}{F}(d \ln a_{it}/d\phi)\) = \(d\eta_{e}/d\eta\) was strongly dependent upon \(P\), being 0.3 at 20 cmHg. The results indicate that \(\zeta_{-d}(H)\) is small and hence \(\alpha_{-d} \approx 0.6\). These are consistent with the charge transfer model for step \(d\). Further, the observation \((d \ln v_{-d}/d \ln P)_{\eta=0} = 0.3\) is also explicable on this model. However, the fact that \(i_{-d}\) at \(\eta=0\) is independent of solution pH in the range of pH 13.5~7\(^2\) would not be explained on the basis of the charge transfer model. It is probably necessary to investigate the rate of step \(d\) by means of other methods as well, e.g., a transient method. It is to be noted that the rate of step \(d\) determined by means of deuterium tracer represents the rate of the process between \(H(a)\) and \(H^+B\), and it does not necessarily imply a pure charge transfer step.

References