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Abstract 

General expressions for the reaction resistance at the mixed potential, Vr , and for 

the concentration dependences of Vr and the corrosion current are derived and applied 

to the systems where the concentration polarizations are present. 

The condition subjected to Vr was that (i) Vr is far from the equilibrium potentials 

of the respective reaction, Vt .eq , t=1,2, .:., and (ii) Vr is far from some of V,.eq'S, (=1,2, 

... J, and close to the rest, 1=/+1, .... 

Resulting formulae were then extended to the cases of (a) a diffusion-controlled anodic 

(or cathodic) reaction (b) a cathodic (or anodic) reaction with concentration polarization 

(c) surface process-controlled anodic and cathodic reactions. Special case where the 

diffusing species are common for both of the anodic and cathodic reactions is also discussed. 

Introduction 

In the previous paparJ), the present authors developed the general ex­
pressions for the concentration dependence of the mixed potential, V" and 
the reaction resistance at V" and then discussed the systems where no 
concentration polarization is present. These general expressions cover all 
relations reported for limiting cases2

•
3

). 

It is now desirable to derive the concentration dependence of the 
corrosion current and also to apply the above general treatment to the 
system where the concentration polarizations are present as will be the 
case in many systems. However, reported treatments on such a system 
seem to be rather qualitative or limited under certain conditions. STERN3

) 

discussed only the shape of the polarization curve. Recently, HERBLIN et 

*) Department of Chemistry, Faculty of Science, Hokkaido Univ., Sapporo, Japan. 
**) Research Institute for Catalysis, Hokkaido Univ., Sapporo, Japan. 

***) Hokkaido University of Education, Kushiro, Japan. 
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aI4
). analyzed the mixed potential of the two-reaction system where one 

of the two reactions is under diffusion control, and showed the method 
for obtaining the Tafel constant of the non-diffusion controlled reaction 
from the behaviour of Vr • Their treatment, however, is based upon the 
assumption that the mixed potential is far apart from the equilibrium 
potentials of the respective reactions and is not applicable to other more 
complicated cases, e. g., no allowance for neglecting the reverse rate of the 
respective reactions, and the presence of more than two electrode reactions. 

The purpose of the present papar is to extend our previous general 
treatment to the system where the concentration polarizations are present. 
Expressions for the concentration dependence of V" the concentration 
dependence of the corrosion current, and the reaction resistance at Vr are 
obtained in a general manner and will be discussed for several cases which 
will be most probable to occur. 

Fundamental 

The mixed potential, Vn will be determined m general by several 
electrochemical reactions of the type, 

aA + bB + ... = xX + y Y + ... + ne- , ( 1 ) 

some of them proceeding in the anodic direction and the others in the 
cathodic direction, respectively. These reactions will be symbolized in the 
text as 

L: mtsMs-nte- = 0, t=l, 2, ... , ( 2 ) 
• 

where m ts represents the stoichiometric coefficient of the t-th reaction with 
respect to the species, M s, being positive or negative in accordance with 
Ms being the reduced (Ms = A, B, ... ) or oxidized species (M. = X, Y, ... ), 
respectively, and n t designates the number of electron involved in the t-th 
reaction. 

The net rate of the respective reactions, It, will be a function of the 
electrode potential, V, and the concentrations, Co's, 

t=1,2, .... ( 3 ) 

By denoting the net rate of the t-th reaction at Vr as It" the condition 
for the m~xed potential is expressed asS) 

t=1,2, .... (4) 
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This is the most fundamental relation on which the following treatments 
are based. 

When the concentration of any species is changed, the mixed potential 
will shift so that condition (4) is satisfied. Hence, the resulting change in 
ltr is expressed from Eq. (3) as 

dltr = ( ~~) d Vr + L: ( ~2r ) dC. , 
r C..::, S s Vr,Cs , 

t=l, 2, "', ( 5 ) 

where the subscript C. stands for the concentration of all species concerned 
and C.,.~ C.. Since the summation of dltr equals zero, we have from the 
above equation, 

( 6 ) 

Thus, the concentration dependence of Vr with respect to a species, M., 
is given in general form as l

) 

r = ( aVr 
) 

S - a In Cs CS' 
( 7) 

Let us consider next the polarization of the electrode with a small 
current, dI. In such a case, we have 

and hence the reaction resistance, P, at Vr is given in general form as l
) 

1---------------------------------

I p==[(aV/allc.t~vr = 1/~ [(alt/aV)cl~vr I' (8 ) 

Reciprocal of P is equal to the denominator of the expression for rs , Eq. (7). 
The total current which flows in the forward direction at V., is equal 

to that in the reverse direction i. e,. 

where I:r or It-; is a forward or backward unidirectional current of the t-th 
reaction at Vr and 1m will be called the corrosion current. Variation of 
1m caused by the change of C. is given as 
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dIm = ~ [(aIi;/aCs)vr,cs,dCs+(aItt/aVr)csdVr] 

= ~ [(aIt~/aCs)vr,cs,dCs+(aIt-;laVr)c"dVr]. 
Thus, the concentration dependence of 1m with respect to a species, M s, 
IS given by taking into account Eq. (7) as 

where ptr=(aIt~/aVr)csl and p~=(aIt-;laVr)csl. The expression (7) for Ts is also 
derived from the above two expressions, (9), considering that Itr=n-It-;. 

The above three fundamental expressions, (7), (8) and (9), are valid in 
any systems with no assumptions and save to a large extent the awkward 
calculations required when we attempt to obtain T., as and p directly from 
the rate equations by using only condition (4). 

Application 

In this section, we apply the general expressions of T., P and as to 
the systems where the concentration polarizations are present. 

We first assume that one of the reactants of each reaction d (t), IS of 
samll concentration and that one of the products of each reaction, D(t), 
accumulates on the surface in large excess of the bulk concentration. 
Applying Fick's 1st law to the respective diffusion processes of the t-th 
reaction, we have the following relation at the steady state, 

Itr = kdCt) [ CdCt)-CdCt) (s)] = kDCt)[ CDCt) (s)-CDCt )] , 

where kdCt) or kDCt) is the constant including the factor for the difference 
in the stoichiometric coefficients in the chemical equation, and CdCt) (s) or 
CDCt)(s) is the surface concentration of d(t) or D(t). From the above 
equations, 

where 

Cd(t)(s) = Cdct)(l-Itr/ItL) 

C DCt) (s) = CD(t) (1 + Itrl I;L) , 
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When the reaction occurs in the reverse direction, d(t) accumulates on the 
surface and D(t) is of small concentration at the surface, since I tr is nega­
tive in this case. 

Secondly, we assume the following rate equations 

s' + 
= kt nOai'B[ Cd (t)(l-ItrIItL)]"td(t) exp (atVrFIRT) 

-k-;: n Oats[ CD(t)(1 + ItrII;i)]"W(t) exp (-at:VrFIRT) , (10) 

where s'~d(t) or D~t), k's the rate constants, zi;. or z~ the reaction order 
with respect to M s, ztd(t) or ZtD(t) that of d(t) or D(t), and at or at the 
Tafel constant of the respective unidirectional rates of the t-th reaction. 

When the diffusion rate is sufficiently large, ItrlItL or ItrlItL becomes 
zero and the surface concentrations equal the bulk ones. This is the case 
which we have treated previously1l. On the other hand, when the concen­
tration of, Say" d(t) is so small that the diffusion step of d(t) governs the 
reaction rate, I tr becomes ItL. 

Case (1); All of d(t)'s and D(t)'s are different species. 

Each derivatives in Eqs. (7) and (8) will be easily obtained from rate 
equation (10). Thus, we obtain finally the following relations for the con­
centration dependences of Vr with respect to the species, M s, d(t) and D(t), 

where 

and 

r. = - [~ (Itrzi;.-I~z;)/Ot] X P 

r d)t) = - [Itrztd(t)/(l- A+t) Ot] x P 

7 D(t) = [I~ztD(t)/(l + LL t ) Ot] x P 

IIp = (FIRT) ~ [<Itrat +I~at:)fOt] 

Att = 1M ItL , 

~Lt = ItrlItL . 

(11) 

(12) 

(13) 

(14) 

(15) 
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The above equations, (11) to (14), are more general than those derived 
previouslyl) since the concentration polarizations are taken into account. 

as becomes 

"[1+ + (r.F\T+ +] as = 'T trZts + RT ,trat 

(1 + OtVt~ Zid(t) 
ad(t) = (1- J+t) Ot 

+( rd(t)F) " [1+ +_ oi(nai +It-;al:)] 
RT ~ trat Ot 

_ oilt-;zI:D(t) +(rD(t)F)"[l+ +_oi(l:'ai+1t-;al:)] 
aD(t) - (1 + Lt)ot RT 'T trat Ot . 

I (16) 

When the diffusion rates are sufficiently large, i. e., when J's approach 
zero, Ot of Eq. (15) becomes unity and hence we have the previous equa­
tionsl) : 

rs = - L: (It~zt.-1t-;zt.) x P 
t 

r D(t) = 1t-; ZiD(t) P 

lip = (FIRT) L: (It~ai + l;;al:) . 
t 

a's of Eq. (16) becomes at J's=O, i.e., at ot=1, oi=ol:=O, 

as = ~ [nzt.+rs(FIRT)atIt~] 

ad(t) =lt~z~(t)+rd(t)(FIRT) ~ ai1t~ *) 
t I (17) 

Now let us consider the two-reaction system, where the mixed potential 
is determined by two reactions, one of which is the anodic (t= 1) and the 
other is the cathodic reaction (t=2). In the two-reaction system, Eq. (4) 
gives 

(i): When Vr is far apart from the equilibrium potentials of the 
respective reactions (t= 1, 2), 

*) The term, o~(1 +Ot) [tLiot, of "d(t) becomes [i;:zid(tl at J's =0 from the expressions 
for at,Ot and iit of Eq. (15). 
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v 

t =2 (cathodic) 

log lIt I 

Fig. 1. Open circuit systems treated in the text as an example under the 
condition of IVr-Vt·eq\»RT/atF, RT/atF, t=l (anodic), 2 (cathodic). 

(a) no concentration polarizations, (b) concentration polarization for t=2, 
and (c) diffusion control for t=2. 

RT/at:F , (18) 

the unidirectional rates, IIr ane Iir, of the anodic and cathodic reactions 
are neglected and we have Ilr=It and I2r = -I;. This is the case called 
"the mixed control" (Fig. 1). Now, LI+1 and L2 of Eq. (15) equal Lltl and 
-Ll:2' respectively. Thus, Eqs. (11) to (15) become 

r __ RT. Zi./01-Zi"s/02 
8 - F at/ol +a2 /02 

RT ztd(1J(l- Lltl) 01 
rd(l) = - -yo at/ol +a2 /02 ' 

RT Z2J)(2J(1-Ll:2) 02 
r D(2) = --p-. at/Ol + a2 /02 

(19) 

(20) 
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From Eq. (16), O"s become 

0'. = Im[zi;.+(F/RT) r.at ]/01 

O'dO) = Im[ zidoJ(l- .dtl) + (F/RT) rdO)at]/ 01 

O'D(2) = 1m (F/RT) rD(2)at/01' 

(21) 

} (22) 

(a) .d's=O; When both of the mass transfer steps are sufficiently fast so 
that .d's of Eq. (15) equal practically zero (Fig. 1, (a)), O's of Eq. (21) become 
unity. Equations (19) and (20), will then be 

rs = - (RT/F) (zi;.-z2"s)/(ai + a2") 

rd(l) = - (RT/F) zido)/(at +a2"), 

r D(2) = (RT/F) Z2"D(2)/(at +a2") 

l/P = (F/RT) 1m (at +a2"), 

which we have already derived l
). O"S of Eq. (22) become 

0'. = 1m (zi;.a2" + z2"sat)/(at + a2") 

O'd(l) = Im zid(l)a2"/(ai +a2") 

O'D(2) = 1m Zi:D(Z)at/(ai + ai:) . 

The above expression of 0'8 has been reported by DONAHUE 6). 

I (23) 

(b) .dtl =0; When only the anodic reaction is controlled by the surface 
process (Fig. 1 (b)), Eqs. (19) to (22) become 

r. = - (RT/F) (zt.-z2"s/02)/(at +a2"/(2) 

RT Zid(l) 
rd(l) = - -F-· + /'" al +ai: Uz 

l/P = (F/RT) Im(ai +ai:/oz) 

02 = 1 + .d=2 z2"D(z)/(l- .d=2) (25) 

0'. = Im[ zt.-ai(zt.-Z2"s/02)/(ai +a2"/oz)] 

O'd(l) = Imzid(l) (a2"/oz)/(ai +ai:/oz) 

O'D(?) = ImZ2"D(2)at!(1-.d=z) 02(ai +ai: /oz) . 

(c) .dtl =0, .d=2= 1; When the rate of the anodic reaction is controlled 
by the surface process and that of the cathodic reaction is controlled by 
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which have been derived previously!}. 
(b) ,1tl =0; When only the anodic reaction is governed by the surface 

process (Fig. 2, (b)), i. e., ,1tl =0, Eqs. (29) to (31), become 

rs = - [I~z~+(Itzt.-I~zu)/oz] x P 

rd(l) = - nzt;,.(l)p I (34) 

Equations for r d(Z), r D(Z) and Oz are the same as those of Eqs. (30) 
and (31). 

(c) ,1tl = 1; When the anodic reaction rate is governed by the diffusion 
step of d(l) (Fig. 2, (c)), i. e., ,1:):1 = 1, 01 becomes infinite. Hence, 

rs = - (RT/F) (Itzt.-I~zu)/(nat +I2;az) 

rd (1) = - (RT/F) n oz/(It;,at + 12;az) 

l/P = (F/RT) (nat + Iz-.az)/Oz. 

Equations for r d(Z), r D(2) and 02 are given in Eqs. (30) and (31). 
(d) ,1tl = 1, ,1z's = 0; In addition, let the diffusion rates of d (2) and 

D(2) be sufficiently large, i.e., i1+2 and L 2 =0 (Fig. 2, (d)). In this case, 01 
IS infinite and O2 equals unity. Hence, 

rs = - (RTIF) (Itzt.-I~z2s)/(nat +I2;az) 

rd(l) = - (RTIF) n/(nai + 12;uz) 
(36) 

IIp = (F/RT) (nat +I2-.az) 

IT'S for (a) ....... (d) will be calculated from Eq. (32) by using respective values 
of ,1's. 

Case (2); One of d(t)'s and D(t)'s is common among more than one reactions 

This will be the case for the system of e. g., H 20 2 which is common 
for the anodic and cathodic reactions, i. e., d(l) = D(2) == d. For the sake 
of simplicity, we treat here only the two-reaction system. Let t= 1 and 2 
be the anodic and the cathodic reactions as we did, each satisfying the 
condition (18). The respective rate equations are 

I lr = Il~ = kt nc~~[ Cd(l-nIIL)]"i~ exp (at VrF/RT) } 
s' (37) 

12r = -I2;= -kz nC~2s[ Cd(1-12;/IL)]'~ exp( -azVrFIRT), 
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where h is the limiting current which is common for the reactions, t= 1 
and 2. IL is different from the diffusion limiting current of d, smce the 
diffused d is consumed by both reactions. 

The concentration dependences of Vr and 1m are given from the 
expressions of (7) to (9) and Eq. (37) as 

r __ RT . (Zt./Ol-z2sloz) 
s - F (at/ol +azloz) 

RT (zt,jol-Zidloz) 
rd =- F(l-.1)· (at/ol+azloz) 

IIp = (FIRT) Im(l-.1)(atMl +ailoz) 

as =[lm(l-.1)lol][z~+(FIRT)rsat] 

= (Im(l-.1)/oz] [z2s-(F/RT) rsai] 

ad = [lm/ol] [Z{d + (F/RT) (1-.1) rdat] 

= (Im/Oz] [zid -(F/RT) (1-.1) rdai] 

1m =n =1;. 

(38) 

(a) .1=0; When the diffusion rate of d is sufficiently large, .1 becomes 
zero. Hence, the both reaction rates are controlled by the surface process. 
This case has been already treated and the above equations reproduce Eq. 
(23). as is the same as that of Eq. (23) and ad is given as the sum of ad(1) 

and (JD(Z) by putting d(l) = D(2)=d. 
(b) .1 = 1; On the contrary, if the diffusion rate of d is small and the 

both reactions are controlled by the diffusion, values of rs and as become 
zero because of z~ = Z2s = 0 and .1 = 1, whereas r d becomes indefinite. The 
reaction resistance is infinite as expected from the independence of the 
limiting diffusion rate on the electrode potential. ad, i. e., the change of 
1m with Cd, becomes 

ad = 1m or a In Im/a In Cd = 1 . 

Discussion 

In the foregoing sections, we first developed three fundamental expres­
sions, (7) to (9), for the concentration dependence of V" the concentration 
dependence of 1m , and the reaction resistance at Vr • These expressions 

187 



188 

H. KIT A et at. 

are unconditionally valid in any systems. If the rate equations of each 
reaction are available, one can estimate the behaviour of the mixed potential 
from these expressions. On the other hand, it may happen that some of 
the kinetic parameters are hardly determined by experiments. In such 
a case, the observed behaviours of the mixed potential and of 1m , i. e., 71, 

72, "', 0'1> 0'2, ... , and the reaction resistance, may be used to determine these 
unknown parameters. 

In the present analysis, we assumed the rate equation of the type given 
by Eq. (10). Equation (10) includes the concentration polarization of only 
one reactant and one product. This might be the most probable case and 
be taken general enough, for an introduction of other concentration polari­
zation factors will not cause to any essential difficulty in the analysis except 
for the increase of terms in the expressions of 7s and P. 

We have treated above typical cases which may have practical impor­
tance. Some of them will be exemplified below. 

i) No concentration polarization 

H 20 2-Hg system; The present authors7l studied the kinetics of the 
anodic and cathodic reactions on Hg in acidic and alkaline H20 2 solutions 
and concluded that the mixed potential is determined by the anodic reaction, 
2Hg+SO~-~Hg2S04 + 2e- (acidic) or H20 2----02+ 2H+ +2e- (alkaline) and the 
cathodic reaction, H20 2 + 2H+ + 2e-~ 2H20 (acidic) or HD2 + 2e- ---- 20H­
(alkaline). This was the case of the two-reaction system, each reaction 
satisfying the condition (18). Calculated concentration dependences of Vr 
from equation (23), 7H,o" r H+, rso4~' are in excellent agreement with the 
observed ones1

). 

H 20 C Pt system; OSTROVIDOVA et ai.S
) studied the anodic and cathodic 

reactions on Pt in alkaline H Z0 2 solution. This is another example of the 
two-reaction system which satisfies the condition (18). They calculated the 
value of 7 H,O, and 7 H+ directly from their rate equations and showed good 
agreement with the observed ones. 

It will be emphasized that, in principle, the behaviour of Vr must be 
analyzed by the rate equations obtained around the mixed potential. In 
the above two examples, however, the concentration dependences were 
calculated by using the kinetic parameters, determined experimentally in 
the potential range far from the mixed potential. The excellent agreement 
between the calculated and observed ones indicates that the rate equations 
observed at high anodic and cathodic polarizations are maintained around 
the mixed potential. 
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ii) Concentration polarization 
Very few work have been reported on the system where the concen­

tration polarization is present. HERBELIN et al4
). analyzed the mixed 

potential of the two-reaction system where one of the reactions is diffusion 
controlled. They derived first the equation of the mixed potential and 
then deduced that to r by differentiation. Such a procedure is not applicable 
to the cases where the formula of Vr is not given by an explicit function 
of the observed kinetic parameters. 
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