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SOME COMMENTS ON 'IHE DEVELOPMENT 
OF THE THEORY OF PROTON 

TRANSFER IN SOLUTION 

By 

S. G. CHRISTOY*) 
(Received January 14, 1976) 

Abstract 

The bond stretching model and the solvation barrier model for proton transfer in 

solution and their relations to the author's work are considered. The essential results 

of that work are shown to be quite independent of any assumption about the relative 

role of the bond-stretching and the solvent reorganization in the proton transfer. Some 
misinterprations of the above treatment are discussed. 

In a recent paper of DOGONADZE and KUZNETSOy1
) two different 

approaches to the calculation of the probability of proton transfer in polar 
media have been compared. The first one, originating from the work of 
HORIUTI and POLANYI2l, takes into account only for the stretching of the 
chemical bond A-H+ of a molecule AHz in a solution due to the chemical 
excitation of the vibrational states in the course of reaction. The other 
approach, used by DOGONADZE et al.3

,4), consideres the primary role of the 
solvent polarization which changes during the proton transfer process, 
according to an idea suggested first by LIBBI5

) and developed further by 
MARCUS6

), HUSH7), LEYICH and DOGONADZE8
) for election transfer processes. 

A similar comparison between the two approaches is also made in a paper 
of KRISTALIK, TSIONSKY and TITOYA9

). Surprisingly, in both papers, as 
well as in some earlier papers of the same authors10

), my workll
,12) is quoted 

as a treatment of proton transfer reactions in which the role of the solvent 
is "entirely ignored" as in the bond-stretching model of HORIUTI-POLANYI2

) 

used by other authors13). This statement is, however, completely incorrect, 
which is easily seen if one reads more carefully my papersll ,12). 

The choice of a model to describe a physical process depends largely 
on the purpose of investigation. The model may be adequate to reality in 
some respect and not adequate in an other respect. Thus, in 1935 HORIUTI 

* ) Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia 13, Bulgaria. 
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and POLANYI described the proton transfer reaction AH++B~A+H+B in 
terms of a potential barrier obtained by the intersection of two curves 
representing the electronic energies of the bond to be brocken (A-H+) 
and the bond to be formed (H + - B) as functions of the corresponding 
internuclear distances. This barrier model leads to a relationship between 
classical activation energy Ee and reaction heat Q of the form 

Ee = E~+f3eQ, Ee-Q = E~-aeQ ( 1 ) 

where f3e and ae = 1- f3e are the "transfer coefficients" assumed to be con­
stants. These relations permit to derive the BRONSTEDT equations for 
acid-base catalysis which relate the rate constants to the dissociation con­
stants of the acid and the base. In a similar way one can obtain, as 
pointed out by FRUMKIN14

) the TAFEL equation in electrode kinetics. It is 
easily seen that these conclusions follow from the geometric properties of 
the potential barrier and not from the assumption that the barrier repre­
sents the electronic energy of the system A - H - B. This model explains 
also the influence of the nature of the metal on the hydrogen evolution 
reaction. The theory of HORIUTI-POLANYI2

) is consistent in the framework 
of the classical model assumed. However, this model is not adequate since 
the calculations show that at the actual internuclear distances the quantum­
mechanical tunneling of the proton plays a dominant role*). This suggests 
that the solvent effects are important in proton transfer processes. 

DOGONADZE et al.3
,4) have used a harmonic oscillator model6,8) to 

describe the dynamical role of the solvent in proton transfer reactions. 
The general approach is based on a separation of variables using either 
a harmonic approximation for the proton vibration or a double adiabatic 
approximation, which means to include the proton energy into the elec­
tronic energy to obtain an effective potential for the motions of solvent 
molecules. This procedure implies that a solvent fluctuation is necessary 
to make possible the proton transfer by a tunneling process from the 
initial ground state to the final ground state of vibration. Thus, no any 
change of the A - H bond-length takes place, so that the activation energy 
is entirely determined by the solvent reorganization. In the framework of 
this model a consistent quantum-mechanical theory is used to calculate the 
proton transfer probability, which is essentially based on the assumption 
that the FRANCK-CONDON approximation is valid (i. e. the ptoton tranfer 
occurs at fixed positions of the solvent molecules). A more careful examina-

*) The possibility of proton tunneling was first assumed by POLANYI15) who stimu­
lated the calculations of BAWN and OGDEN16), Similar calculations have been 
performed by BELLl7), CHRISTOv,11 a,18) CONW A yI9), DOG ON ADZE et a1.4 ) 
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tion of this assumption seems to be necessary*). In any case, the model 
of DOGONADZE et al. is convenient to describe, at least qualitatively, the 
role of the solvent in proton transfer processes. This model is, however, 
incomplete as far as the translation-rotation motions of solvent molecules 
are disregarded6

). It implies, moreover, that the solvent fluctuation takes 
place at a flxed distance between reactants. A justification of this adiabatic 
approximation is desirable. The model may be also not adequate, because 
it neglects completely the stretching of the A - H bond in all proton­
transfer reactions**). 

On the basis of the above assumptions the theory of DOGONA.DZE et 
al.3

,4) provides a detailed picture of the molecular mechanism of charge 
transfer in solution and, in particular, of proton transfer at electrodes. 
The consequences of this theory agree qualitatively with the experimental 
facts concerning both the influence of the cathode nature on the proton 
discharge and the so called barrierless and activationless hydrogen evolution 
reactions9

). However, the isotope effects are explained only by a change 
of the preexponential factor K in the ARRHENIUS equation 

( 2 ) 

since the activation energy Ea is assumed to depend entirely on the solvent 
properties. This conclusion is not in accordance with the observation 
that in many proton transfer reactions21), including proton discharge32), the 
isotope substitution affects both K and Ea 21). Furthermore, the theory of 
DOGONADZE et al.3

,4) is not able at present to justify a fundamental equa­
tion of chemical kinetics-the TAFEL relation 

1)=a+blni ( 3 ) 

which is shown to be valid for the hydrogen evolution in a wide range 
of overvoltage 1) (,....,1 V and more) and several orders of magnitudes with 
respect to the current density i. 

Thirty years ago (1945-1948), my first work on the theory of metal 
ion discharge22 

a) was stimulated by GURNEy23) who was the first to introduce 
the concepts of quantum mechanics in electrochemistry. The potential 
barrier is assumed to be a result of the intersection of two curves which 
describe the interactions of the ion with the polar solvent and the metal 

*) See footnote on p. 41-
**) Calculations with two dimensional models for the gas phase reaction AH+B­

A+HB, where A and B are heavy particles (or atomic groups), show20) that the 
most probable configuration A-H-B at which the H-atom transfer occurs, involves 
a considerable stretching of the A-H bond.This might be the situation in the case 
of proton transfer in solution too. 
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lattice, respectively. This model implies a slow motion of the ion and an 
adiabatic adjustment of the motions of the solvent molecules and the elec­
tron cloud in the metal. Subsequently22bl, a similar picture was used to 
describe the proton discharge: "We can represent the energy barrier for 
the proton transfer by a potential curve in the metal-electrolyte boundary 
region, obtained by combination of two separate curves representing the 
potential energy of the proton in hydrated and adsorbed state, respectively. 
The first curve will have a deep well because of the large hydration energy 
of the proton, due to the considerable Coulomb forces acting between it 
and the electric dipoles of the water molecules, which are related to the 
small radius of the proton. The potential curve for adsorbtion has the 
same form as that for adhesion of metal ions to the lattice of the same or 
an other metal" (Ref. (22 b), pp. 67-68). Clearly, this is not the HORIUTI­
POLANYI bond-stretching model in which the interaction of the proton 
with the solvent is completely ignored but, in contrary, this is a model 
which neglects entirely the bonding between the proton and the water 
molecule. This is certainly an oversimplification of the real situation, 
which is, however, allowed for the purpose of the investigation considered. 

The problem was to derive the relationship between current density 
and electrode potential taking into account for the possibility of nuclear 
tunneling. For the purpose it is necessary to solve the SCHRODINGER 
equation 

(4 ) 

In order to calculate the transition probability through and over the po­
tential barrier V(x). The solutions ¢(x) depend only on the shape of the 
barrier and not on the nature of the potential energy involved. Using an 
arbitrary (one-dimensional) barrier model a current expression of the form 

(5 ) 

has heen derived22
), where the classical activation energy Ec is expressed 

as a function of reaction heat Q = Qr + e7), or overvoltage 7), by 

E. = E'; - a ce7) • ( 6 ) 

In (5) ;t;t(Q, T) is the tunneling correction to the classical TAFEL equation 

This correction depends on the geometrical properties of the barrier, the 
mass of the ion, the temperature and is generally a function of reaction 
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heat Q (or overvoltage 7). Therefore, in the general case, expression (5) 
does not represent the TAFEL equation (3). The conditions at which 
set (7), T) may be independent of 7J have been also discussed in that time22). 

The problem has been treated again more extensively in a later period 
(1958-1963), using different one-dimensional models for the potential barrier 
(such as the asymetric ECKART and parabolic potentialsllR

•
18

). In this way 
it has been possible to estimate the tunneling correction set = i/ieZ by both 
numerical and analytical calculations. The quantum-mechanical justification 
of the TAFEL equation (3) is given for the first time in 1958, when con­
sidering a large amount of tunneling (se t ::::300) through an EcKART bar­
rierll a). A general treatment of the problem in a closed analytical form, 
including any possible tunneling degree, has been done using an asymetric 
parabolic barrier24a). This allows to determine the conditions of validity 
of TAFEL equation and to derive expressions for the TAFEL slopes18 

b) b = 

d7)/dlni. Formulas for the classical transfer coefficients fie and ae have 
been also obtainedll

.24). For an arbitrary potential barrier V (x) 

ae = I-f3e, ( 7 ) 

where E2 is the barrier height at the electrode potential SO = SOo (Q = 0) and 
r L 1 (for a parabolic barrier r = 1). 

The temperature dependence of the current as well as the kinetic 
isotope effects have been also investigated by means of the same simple 
barrier models18 a. b). A characteristic temperature was introducedll a) as 
a very useful criterion for determining the role of nuclear tunneling. The 
simple expression25) 

hli* 
Tk = -----;;k , 1.1* = _1_ If* 

2rr V p.* 
(8 ) 

was derived for any simple continuous barrier, where 1.1* is the frequency 
of an imaginary vibration with a force constant f* equal to the absolute 
value of curvature just at the barrier top, p.* being the effective mass 
transferred. In the temperature range T> T k /2 the tunneling correction 
can be estimated by the formula24 a.25 0) 

(rr/2) (T,,fT) 1/2(Tk /T) 
se t = sin [(rr/2)(Tk /T)) - 1-1/2(T,JT) 

x exp [( 'If -2) oo(Ee-Q)]. (9) 

The second term may be neglected for T>2/3 T k • At T= Th by defini-
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tionlla.25a), the probability for tunneling is just equal to the probability for 
hopping over the barrier. For T>2Tk , Z't~l, i. e. the nuclear motion 
practically obeys the laws of classical mechanics. For T< T k /2 tunneling 
largly prevails and quantum mechanics is absolutely necessary to describe 
the reaction course. 

Evidently, the general results from these investigations are independent 
of the assumptions concerning the nature of interactions determining the 
barrier potential. No any statement is made anywhere in my work that 
the potential energy should be necessarily related to the bond stretching 

as in the HORIUTI-POLANYI model*). In contrary, it is claimed quite defi­
nitely that "the potential energy conditioned by the interactions of ion 
with all the surrounding particles in the metal and the solution passes 
through a maximum determining the height of the energy barrier for this 
process" (Ref. (18c), p. 724). It is only the existence of the barrier a neces­
sary condition for the derivation of the current-potential relationship (5) 
and for several other general conclusions concerning the temperature de­

pendence of the current, the BRONDSTEDT relations, the isotope effects 
etc.ll.22.24-26) The restriction to a one-dimensional potential barrier is not 
essential for the purposes of a qualitative description which incorporates 
the nuclear tunnel effect in the theory of proton transfer processes. 
It is, however, in general, not adequate to the real situation, where 
the potential energy is a function of all nuclear coordinates of the 
system, including reactants and solvent molecules. Therefore, a more 
complete description of reaction requires a multi-dimensional treatment 
using a potential energy surface V (XIX2"') instead of a potential curve 
v (x). 

The way for a generalization of the theory in this direction has been 
discussed in details already in Ref. (26). The first step is to relate the 
reaction to the classical motion of a configuration point along the line of 
minimum energy on the potential surface as made in the transition state 
theory. The second step is to include a factor ~t which takes into account 
for the non-classical behaviour of nuclei for motion along the reaction path. 
Assuming this motion to be entirely separable from the other motions 
(vibrations and rotations) we can calculate the tunneling correction in the 
usual way to obtain an equation of the form (5). This is the reason for 

*) This model has been used sometimesll a.18 b.24) for qualitative discussions empha­

sizing, however, its shortcomings rather than its advantages. Thus, it is claimed 

that "in the presence of pure electrostatic interactions one can put some objec­

tions towards this model" (Ref. (24 ai, p. 847). 
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the statement: "It is necessary to underline that the relation (7)*) and 
the conclusions derived from there have rather general character. This 
follows from that, that the one-dimensional barrier can be considered as 
a profile along the "reaction path" on the surface of the many-dimensional 
barrier" (Ref. (26), p. 1557). A complete separation of the reaction coordi­
nate is possible, for instance, if one treats the motions of reactants and 
products (including solvent molecules) as harmonic vibrations. This is just 
the model used by DOGONADZE et al.3

•
4

) in their treatment of electrotn and 
proton transfer processes. Therefore, many results of my previous inves­
tigations, based on an one-dimensional barrier potential, can be applied to 
this model, without any restrictions concerning the tunneling degree**). 

The main shortcomings of the oscillator model, as mentioned above, 
is the neglect of the translation-rotation motions of reactants and solvent 
molecules. In particular, inclusion of the relative translation of reactants 
would lead to a curve1inear reaction coordinate as in gas phase reactions. 
This coordinate is dynamically non-separable except in reactants (products) 
region and transition state, i. e. the saddle on the potential surface. This 
restricts the applicability of one-dimensional calculations for quantitative 
estimates of tunneling corrections to relatively high temperatures, at which 
tunneling occurs mainly in an area around the saddle-point, i. e. near the 
top of the barrier along the reaction coordinate. Thus, in the region of 
moderate tunneling (T> T k /2) a corrected transition state theory expression 
for the rate constant 

(10) 

applies, where X'Ie is given by the first term in (9), Z;t is the partition 
function of the "activated complex" (transition state) and Z is the full 
partition function of reactants, both including the surrounding solvent 
molecules. This is just the expression discussed in my papers Ref. 11 b) 

and (26). Introducing (6), (7) and (9) into (10) gives a current-voltage rela­
tion of the type (5). The resulting expression is more general than (5) as 
far as all degrees of freedom of the over-all system (reactants + solvent) 
are included into the multi-dimensional potential surface, however, it is 
restricted to the temperature range T> T k /2, while equation (5) applies for 
all temperatures. 

*) It corresponds to Eq. (5) of the present paper. 
**) This has been recently done using the harmonic oscillator model for the solvent 

in the framework of a complete theory of electron-transfer processes27l • A similar 
treatment is possible to a large extent for proton·transfer processes27 b), 
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An important consequence from (10) is that the TAFEL equation is 
always valid in the range of moderate tunneling (T> T k /2) where the 
second term in (9) only slightly depends on reaction heat Q (i. e. on elec­
trode potential r;) provided the classical transfer coefficient (7) is nearly 
constant, which requires that ~Q/4E; <{: 1. This justifies the conclusions 
derived earlier18b.24

) by means of an one-dimensional treatment of ion (proton) 
transfer processes. 

A more general treatment of these processes has been proposed on 
the basis of a new formulation of chemical kinetics28), which leads to an 
equation of the form 

kT Z* 
v = ~hZe-Ec/kT (11) 

where Z* is a partition function of reactants in which the motion along 
the reaction coordinate is excluded and ~ is a suitably defined quantum 
correction factor. The derivation of (11) is based on an exact quantum­
mechanical expression in which the notion of an "activated complex" is 
avoided, i. e. no use is made of the hypothesis that the transition state 
represents a stationary state configuration being in thermal equilibrium with 
reactants. A formal generalization of activated complex theory in which 
~ de in (10) represents an exact quantum correction was more recently 
proposed28 b). A comparison between the classical limits of (10) and (11) 
then shows, that if ~ de = 1 equation (10) corresponds to the extreme case 
of a very slow motion along the reaction coordinate and when at; = 1 
expression (11) refers to the other extreme case of a very fast motion 
along the classical reaction path. These general formulations of the reac­
tion rate theory allow a reconsideration of all previous investigations of 
ion transfer processes*). In this way, as already shown in Ref. (12), a justi­
fication of many earlier results on the basis of an exact quantum-mechanical 
theory becomes possible. 

The above inspection shows that the essential results of my work on 
the theory of ion-transfer processes are not related with the bond-stretching 
model of HORIUTI-POLANYI2

) nor with the recent solvation barrier model 
of DOGONADZE et al.3

•
4

) For the purposes of my investigations no a priori 
assumptions have been made about the part played by the bond-stretching 
or the solvent reorganization, because, in principle, both are included in 

*) This was first presented at the Electrochemistry meeting in Moscow, April, 1971 as 
well as at the 22nd Meeting of the International Society of Electrochemistry, Dub­
rovnik, Yugoslavia, September 1971, followed by the International School of Quantum 
Electrochemistry, Ohrid, Yougoslavia, September, 1971. See Ref. (12). 
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the potential barrier. 
Therefore, there is a large misinterpretation of the results of my work 

as presented in the papers of DOGONADZE et aU) and KRIST ALIK et aI.9
) 

This can be immediately seen just in my papers refered to by those au­
thors. Thus, for example, it is stated: "It is obvious that the absolute 
values of the barrier parameters, calculated on the basis of special one­
dimensional models, cannot be of great importance, if we have not sufficient 
reasons to believe that no changes in the electronic configurations of the 
unreacting atoms or no considerable departure from the equilibrium polari­
zation of the solvent occur during the proton transition. In the last case 
a multi-dimensional interpretation of the results of such calculations, as 
discussed above, is necessary. Especially, then it is not permissible to take 
the reduced mass of the system equal to the proton mass, so that the 
effective (one-dimensional) barrier width will depend on the choice of this 
magnitude (p.*=I=mH)" (Ref. (11 b), p. 182). This statement concerns a semi­
empirical approach for estimating the parameters of an effective one­
dimensional barrier using experimental data for isotope effects which has 
been used independently by BELL29

) and myselfI8). The results of such 
calculations are usually interpreted29

•
30

) by means of the bond-stretching 
model as parameters of the actual barrier for the proton transfer. The 
above interpretation in terms of a many-dimensional barrier, including 
motions of reactants and solvent molecules, has been first proposed by 
myself in Ref. (26). According to this interpretation "using experimental 
values for the kinetic parameters one can estimate the barrier height E, 
and the product l.[ji, i. e. determine X t without knowledge of the effec­
tive mass p.. If we assume p. = mH we can calculate the width 2l of 
a parabolic barrier which approximates the top region of the effective one­
dimensional barrier for the proton discharge. The one-proton approxima­
tion is, however, not a necessary condition for estimating the role of the 
tunnel effect in the above manner" (Ref. (26), p. 1558). Repeatedly, it is 
stated: "Assuming that proton-transfer processes occur in the region of 
moderate tunneling we can estimate the tunneling corrections using Eqs. (5) 
and (6) on the basis of experimental data for the kinetic parameters E~, K' 
and S. Thus, the characteristic temperature Tk can be calculated by means 
of Eq. (3) without knowlege of the potential energy surface. Inversely, we 
may estimate the dimensions of the effective one-dimensional barrier, which 
is equivalent to the real many-dimensional barrier. Such calculations have 
been made independently for several catalytic acid-base reactionsl

4.15) and 
for the electrolytic hydrogen evolution3

,5). In this way, as expected, values 
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for ;;e t between 1 and 7 have been found thereby confirming the rule of 
a moderate role of tunneling in proton-transfer processes in solution" (Ref. 
(12), p. 70). 

I believe, it is not necessary to give more references to show that the 
general approach in my work is based on the idea that, a priori, bond­
stretching and solvent reorganization play equally important roles in the 
kinetics of proton transfer processes. Consequently, the statements of 
DOGONADZE et at. l

) that I treat the proton-transfer only "as the process 
of movement of the system on two-dimensional potential energy surface" 
and "this approach ignores entirely the rearrangement of the solvent mole­
cules in the course of the reaction" are quite misleading. 

Actially, the two-dimensional considerations in Ref. (11 b) concern only 
the simple gas phase reactions of the type AH+B~A+HB, where A and 
B are heavy atoms or atomic groups, for the purpose of comparing with 
the results of the usual one-dimensional treatment of the reaction coordi­
note. The comparison shows that this treatment overestimates the tun­
neling corrections not to much if the reaction proceeds in the region of 
moderate tunneling (T> T k /2) or somewhat in the region of large tunneling 

(T:;;' T!/2) as is usually the case at room temperatures. The same conclu­
sions are recently drawn in an undoubted way on the basis of exact two­
dimensional calculations28 b). These conclusions agree with the results of 
the above semiempirical approach of estimating tunneling corrections for 
proton transfer in solutions18.291, which actually imply, as discussed above, 
a multi-dimensional potential surface including all motions of reactants and 
solvent moleculesll b.26). At T <:. Tk/2 the most probable reaction path crosses 
the saddle point of the surface very near to the classical reaction coordi­
nate20), which allows an approximate estimation of the tunneling correction 
using the energy profile along that coordinate. In particular, in the tem­
perature range T> 2/3 T k , the first term of formula (9) represents a quite 
good approximation, provided Tk is calculated by (8) with the corresponding 
value of the effective mass p.*. Taking p.* to be equal to the proton mass 
(p.*=mH) leads to lower values of the tunneling correctionsll b.20). These 
conclusions are valid not only for two-dimensional but also for arbitrary 
many-dimensional potential surfaces *). 

This is the basis of the explanation of the isotope effects in hydrogen 

*) WIGNER31) has shown that for a n+ 1 dimensional energy surface the tunneling 

correction is given to a first approximation by ~t=1+hlJ*!24 kT. This result may 

be obtained by a series expansion· of the first term in (9) if only the first two 

terms of the series are considered. 
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evolution I proposed in Ref. (12). There, the above formula (9) for the 
tunneling correction was used, which implies a parabolic approximation of 
the potential along the reaction coordinate in the vicinity of the saddle 
point of the many-dimensional potential surface (See Fig. 1 in Ref. (12)). 
Although, quantitatively, this formula is sufficiently accurate only for T> 
2/3 Tko it is quite suitable for qualitative purposes also for T"?;:. T" *). It 
follows from it that "the tunneling factor :e t will generally decrease with 
the increase of (the electrode potential) S02. 7). If T> 2/3 T" the second term 
in (7 a) may be neglected so that Eq. (3) is obtained, which is now inde­
pendent of Q (SO). It results that the electrolytic separation factor according 
to (6) should decrease with the increase of electrode potential, when T< 
2/3 T" and it remains constant when T> 2/3 T k • These predictions seem 

to be the unique explanation of the experimantally observed strong potential 
dependence of the H/T separation factor in acid solutions16

) and its potential 
independence in basic solutions17

). In the first case, because of the attrac­
tion of the H30+ ion by the cathode the transfer distance of the proton 
is certainly smaller than in the second case, when a proton from the 
neutral H 20 molecule is discharged17). Hence, the effective barrier width 
for the proton transfer in acid solutions will be smaller than in basic 
solutions, so that it is likely that if in the first case the reaction occurs 
at T~T,,/2 it may proceed in the second case in the region T>2/3 T/' 
(Ref. (12), p. 71). 

KRISHTALIK et at.9
) have misinterpreted the above explanation when 

claiming that in it the "proton coordinate" is concerned. Actually, in Ref. 
(12) T" is defined by the above Eq. (8) for a many-dimensional energy 
surface and at T;;:T,,/2 the formula (9) for :e t refers to tunneling along 
the reaction coordinate in the saddle-region. It is not the proton, but 
a configuration point with an effective mass p* which tunnels through the 
barrier along that coordinate. Both the motions of the proton and the 
solvent molecules, which are not separable in the saddle-region27b l, are in­
cluded in this description of the tunneling process (although practically the 
quantum behaviour of the system is determined by the proton motion only). 
Isotope substitution (H->-D) affects T" and :e t through the corresponding 
change of the effective mass. Any change of the barrier along the "proton 
coordinate", which facilitates tunneling of the proton, will increase the 
tunneling of the system-point along the reaction coordinate, too. This 
situation can be described also in terms of the change of an effective 

*) Formulas for T::; T,,/2 and T,?. T,,/2 are also given in Ref. (12) (Eqs. 7 a, b, c). See 

also Ref. (24 a). 
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barrier for the proton tunneling, in the sense discussed above. This is 
the meaning of the explanation of the isotope effects in electrolytic hydro­
gen evolution proposed in Ref. (12). Evidently, it is not related with the 
bond-stretching model at all, as incorrectly claimed by KRISHTALIK et al.9

) 

Evidence that the parameters of the many-dimensional barrier considered 
fit the conditions T;;:; T k /2 was also given by stating that "the possibility 
of large tunneling (T ~ T k /2) is to be excluded because it leads to abnormal 
high TAFEL slopes (see below). Thus the potential dependence of set 
according to (7 a, b) is consistent with the classical (practically constant) 
TAFEL slopes 10 the corresponding region T?: T k /2" (Ref. (12), footnote 
p. 71). 

It should be stressed that in this way it is possible to explain the 
experimental factl2) that in hydrogen evolution both the apparent activation 
energy Ea and the pre-exponential factor K in the empirical ARRHENIUS 
equation (2) change due to the isotope substitution. This fact contradicts 
the consequences of the model of DOGONADZE et al.3

•
4>, that Ea remains 

the same and only K is affected by that substitution. 
There are no any difficulty, in principle, to explain the barrierless and 

activationless processes, as well as the influence of the nature of metal 
cathode on the proton discharge, by means of the concept of a potential 
surface including all interactions with the solvent and the metal. The 
formulas (7) for the classical transfer coefficients 

(12) 

can be easily derived24a.b) using the parabolic approximation of the barrier 
potential along the reaction coordinate near the saddle point. The quantum 
transfer coefficients defined byll b.12) 

a = 1-fj, (13) 

where Ea is the experimental activation energy, can be related to the clas­
. sical ones by the equation12.28 a) 

Q _ Q kT2 ~lnse 
t' - t'c + anQ (14) 

which follows from (10) or (11). We have fj= 1 (a=O) for barrierless and 
{j=0 (a=1) for activationless processes, hence 
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barrierless 
(15) 

activationless . 

These relations are quite general and independent on any hypothesis about 
the detailed machanism of the reaction. Eqs. (13) and (14) show that only 
if the quantum correction ;e is independent of reaction heat Q (or electrode 
potential 9J), then, 13 = f3c (a = a.). This is certainly the case when the reac­
tion proceeds in the region of moderate tunneling (T> T k /2) where the 
second term in (9) may be neglected. In the region of large tunneling 
(T<Tk/2) however, in general, f3=1=f3c (a =1= ac). This is, in particular, the 
situation when barrierless and activationless processes occur for which 
according to (15) f3c < 13 = 1 and f3c > 13 = 0, respectively. These general con­
clusions have been illustrated using simple (one-dimensional) models for the 
barrier along the reaction coordinate assumed to be separablell 

b). 

Another definition of the transfer coefficients 

(16) 

closely related to the BRONSTEDT equation (TAFEL equation), should be 
distinguished from (13). We obtain, indeed, from (10) or (11) the relation 

t:I _ t:I kT( oln;e oInK) 
t'k - t'c- aQ + oQ (17) 

where K = k[ ~, which generally differs from (14). As pointed out In 

Ref. (12), p. 73, only when both the quantum correction ;e and the partition 
function ratio Z*/Z are independent of reaction heat, we obtain f3k=f3=f3c. 
Therefore, a possibly detectable difference between 13k and 13 may give us 
evidence for a large degree of tunneling12) and should be taken into account 
when interpreting the barrierless and activationless processes to021 b). This 
detailed discussion is obviously overlooked by KRISHT ALIK et al.9

) 

The general trend of my investigations has been to avoid possibly all 
unnecessary assumptions which may restrict the validity of the relations 
derived. Such assumptions are, for instance, that only the bond-stretching 
or only the solvent reorganization are responsible for the proton transfer. 
In the general case, the activation process involves approaching of reac­
tants, changes of chemical bonds and rearrangement of solvent molecules. 
The relative role of each of these processes may vary to a large extent 
with the variation of reactants and solvent nature. Therefore, a general 
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theory of reactions in solution should take into account a priori in an 
equal way for all degrees of freedom of reactants and solvene2). 

The way to the generalization of a theory is not always easy and 
straightforward. Different ways are often followed by different investiga­
tors. In chemical kinetics the solvent effects have been frequently neg­
lected2

) or underestimated when applying transition state theory, account 
being taken usually by approximate estimates of the solvation energy of 
reactants and activated complexes in assuming equilibrium configuration of 
the solvent molecules33

). In the first period of my own work22,24) a such 
reversible solvation during the ion transfer has been also implicitly assumed, 
however, without using activated complex theory. The dynamical role of 
the solvent was first taken into account in electron-exchange reactions. For 
the purpose MARCUS6

) and HUSCR7
) used transition state theory in treat­

ing adiabatic processes, while LEYICR and DOGONADzE8
) were concerned 

with a treatment of non-adiabatic reactions on the basis of the quantum­

mechanical perturbation theory. The possibility of a similar consideration 
of proton transfer was first discussed by KUZNETSOy34

) in terms of the 
(not very clearly defined) notion of a "proton term". Independently, during 
the Faraday Discussion on "The Kinetics of Proton Transfer Processes" 
(1965) BELL35

) raised the question of a possible role of non-equilibrium solva­
tion from point of view of the activated complex theory. This discussion*) 
stimulated my workll 

b,26) in the direction of a generalization of the theory 
to include both solvent-effects and quantum effects (nuclear tunneling) in 
a many-dimensional description of the (adiabatic) proton-transfer reactions. 
In the same time DOGONADZE, KUZNETSOY and LEYICR3

) applied the har­
monic oscillator model for the solvent to the proton discharge, introducing 

the concept of an "electron-proton term" in a well defined way. This 
model is very useful for an application of perturbation theory to describe 
the irreversible solvent polarization in non-adiabatic processes, but it might 
overestimate the role of the solvent in the proton transfer. In the subse­
quent development of the theory by DOGONADZE et aZ.4

) the adiabatic pro­
cesses are also considered by introducing additional criteria for a separation 
of the proton motion from that of solvent molecules in the transition 

*) During this discussion36) I emphasized at many places the role of the solvent 
(reversible and irreversible polarization) in proton transfer processes. Thus, for 
instance, it is stated: "If we assume a barrier width of ro:::: 0.5-0.8 A (for an 
orientation of one H-O-bond normal to the electrode surface), which leads to large 
proton tunneling, it is again possible to explain the experimental facts by sup· 
posing a significant contribution of non-equilibrium solvation of the transitoin 
state to the activation energy" (Ref. (36), p. 255). See also p. 60, 263, 266. 
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configuration of the system*). Account is taken, in principle, also for the 
bond stretching, however, the primary role is ascribed to the reorganiza­
tion of the solvent. In my recent work28

) the nonadiabatic processes were 
included in the general formulation of the theory. A detailed treatment 
of electron transfer reactions from this point of view, in which the restric­
tions of perturbation theory are avoided, was presented using the harmonic 
oscillator model for the solvent27). A similar treatment of proton transfer 
processes is also possible27 b). Thus, differet ways have been followed by 
DOGONADZE et al.3

•
4

) any myself to a more general theory of charge-transfer 
in solution. 

The famous theory of HORIUTI and POLANYI2) has played and plays 
also nowadays an important role by stimulating the development of chemical 
kinetics. The more recent theory of LEVICH and DOGONADZE,8) further 
developed extensively by DOGONADZE et al.4l, is certainly an important 
contribution to the study of charge-transfar processes in solution. To 
recognize this does not mean at all that this is the unique consistent 

*) The conditions for a separation of the motions of proton and solvent molecules 
was initially defined by3) 

ilE=hJ)p~hJ)8«kT) (a) 

where Vp and 1'8 are the vibration frequences of the proton and the solvent mole­
cule, respectively. This implies, that both the electron and proton transfer pro­
babilities are very small (completely non-adiabatic reactions), so that the electron­
proton transfer takes place in a very small region of configuration space (including 
proton and solvent coordinates). If, however, the electron transfer probability is 
large (electronically adiabatic processes), then, there is a large transition region in 
configuration space in which the above condition of separability is not applicable. 

Subsequently4) an additional condition 

ilEt=hllt~kT(>hJ).) (b) 

for the transition region is introduced. Here lIjt is defined by (8) for a motion 
along the proton coordinate, so that the above condition is actually identical with 
T<? T£ (T< 71/2), which means that the proton transfer occurs predominantly by 
tunneling. If, however, 

ilEfr = hvt:;;:; kT 

i.e. T"2:T£(T>T£/2), the proton motion in the transition region is a quasiclassical 
(or classical) one and cannot be separated from the motions of solvent molecules27b). 
The FRANCK-CONDON approximation (fixed positions of solvent molecules during 
the proton transfer) is not applicable in this situation, although hllp ~ hv. in the 
initial and final state. The conditions (a) and (b) together justify the double adia­
batic approximation used by DOGONADZE et al. The idea to include the energy 
of a fast vibration into the adiabatic potential of the system has been first pro­
posed by HIRSCHFELDER and WIGNER37) as an way for a justification of transition 
state theory. The work of DOGONADZE et al. is a successful application of this idea 
to nonadiabatic processes. This point will be discussed elsewhere27b). 
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quantum theory of these processes, nor that earlier or other simultaneous 
investigations in the same field should be overlooked or misinterpreted. 
Representing an older generation, I believe, it is necessary to quote all 
what has been done previously by other authors and to compare more 
carefully the results obtained by different methods. An objective informa­
tion is needed for the history of the field and for the education of young 
people starting research in that field. It would be useful for everybody to 
know that any problem can be treated using different aproaches, each of 
them having some advantages and some shortcomings. Therefore, any 
attempt to treat the theory of charge transfer from an other point of view 
could contribute to a more complete understanding of these complicated 
chemical processes. 
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