Title	CORRECTION TO THE PAPER " RATE EQUATIONS FOR TRACER STUDIES IN RECIRCULATING REACTORS" BY JOHN HAPPEL
Author(s)	HAPPEL, John
Citation	JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 24(1), 71-71
Issue Date	1976-09
Doc URL	http://hdl.handle.net/2115/25009
Туре	bulletin (article)
File Information	24(1)_P71.pdf

Instructions for use

- Note -

CORRECTION TO THE PAPER "RATE EQUATIONS FOR TRACER STUDIES IN RECIRCULATING REACTORS" BY JOHN HAPPEL¹⁾

Ву

John HAPPEL*)
(Received January 30, 1976)

The present author discovered two errors in his note¹⁾. Equation (13) should read:

$$\begin{split} \lambda &= \frac{1}{2} \left[- \left(\frac{W v_1}{\beta C^{\text{A}}} + \frac{v_1 + v_2}{C^{\text{A}I}} + \frac{W v_2}{\beta C^{\text{B}}} \right) \right. \\ &\left. \pm \sqrt{\left(\frac{W v_1}{\beta C^{\text{A}}} + \frac{v_1 + v_2}{C^{\text{A}I}} + \frac{W v_2}{\beta C^{\text{B}}} \right)^2 - 4 \left(\frac{W v_1 v_2}{\beta C^{\text{A}} C^{\text{A}I}} + \frac{W^2 v_1 v_2}{\beta^2 C^{\text{A}} C^{\text{B}}} + \frac{W v_1 v_2}{\beta C^{\text{A}I} C^{\text{B}}} \right) \right] \end{split}$$

Equation (16) should read:

$$\begin{split} z^{\mathrm{B}} &= C_1 \bigg[\bigg(\frac{C^{\mathrm{A}I} \lambda_1}{v_2} + \frac{v_1 + v_2}{v_2} \bigg) \bigg(\frac{\beta C^{\mathrm{A}}}{W v_1} \, \lambda_1 + 1 \bigg) - \frac{v_1}{v_2} \bigg] \mathrm{e}^{\lambda_1 \mathrm{t}} \\ &\quad + C_2 \bigg[\bigg(\frac{C^{\mathrm{A}I} \lambda_2}{v_2} + \frac{v_1 + v_2}{v_2} \bigg) \bigg(\frac{\beta C^{\mathrm{A}}}{W v_1} \, \lambda_2 + 1 \bigg) - \frac{v_1}{v_2} \bigg] \mathrm{e}^{\lambda_2 \mathrm{t}} + C_3 \end{split}$$

With these corrections, it is then possible to compute the values of C_1 , C_2 and C_3 from Equations (14)-(16) by specifying three initial values of concentration z_0^A , z_0^{AI} and z_0^B . Equation (17) is not an independent additional relationship.

¹⁾ J. HAPPEL, This Journal, 22, 206 (1975).

^{*)} Department of Chemical Engineering, Columbia University in the City of New York, New York.