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By 

Takashi NAKAMURA*) and Hiroshi TATEWAKI*) 
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Abstract 

The effect of inhomogeneity of the static electric field produced by a solid in the 

vicinity of its surface, on the polarization of adsorbed atoms is theoretically discussed. 

As a typical example, the polarization of rare gas atoms on surfaces of ionic crystals is 

considered. A few necessary formulas which express the polarization energy, or the 

energy due to the induction effect, in terms of the dipole and quadrupole polarizabilities 

of rare gas atoms are derived on the basis of the quantum mechanical perturbation theory, 

and the magnitude of the above effect is assessed. Some related problems, including the 

polarization of rare gas atoms on metallic surfaces, are discussed. 

§ 1. Introduction 

In the vlclmty of a surface of an ionic crystal or metal there exists 
an inhomogeneous, static electric field arising from the array of ions or 
from peculiar spatial distribution of the electrons of the solid. In surface 
science, this kind of electric field and its relevance to a variety of surface 
processes including catalysis have often been discussed. Among others 
the polarization of physisorbed atoms (or molecules) has been the subject 
of numerous experimental and theoretical investigations. For one thing, 
the adsorbed atoms are polarized by the surface electric field and acquire 
dipole moments, which results in decrease of the work function of the 
surface on which the atoms are adsorbed. For another thing, the polariza­
tion causes lowering of the energy of the system; this energy change is 
usually given by the simple expression, 

1 
£1E= --aP 

2 ' 
( 1 ) 

where a is the polarizability, or the dipole polarizability of the atom and 

*) Research Institute for Catalysis, Hokkaido University, Sapporo, 060 Japan. 
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F is the electric field strength at the center of the atom. The polariza­
tion energy ,dE given by (1) contributes to the interaction energy between 
the surface and the atom; in other words, it is a part of the adsorption 
energy. In the theory of intermolecular forces, the interaction energy 
calculated by (1), or other expressions equivalent to it, is usually called the 
energy arising from the induction effect.l) In this case the polarization 
of one molecule by the static electric field produced by another molecule 
is dealt with. 

In discussing the adsorption energy of rare gas atoms on ionic crystal 
surfaces2- 5

) or on metal surfacesS
-

IO
) the expression (1) has frequently been 

used. In deriving (1) we assume the homogeneity of the electric field over 
the region occupied by the atom as well as linear response of the atom 
to the field. However, in the very neighborhood of a solid surface the 
electric field is very often far from being homogeneous, i. e., it rapidly 
varies over the small region occupied by the atom, which makes Eq. 
(1) inadequate. This fact was pointed out first by Lenelll ) in 1933 and 
repeatedly by other authors.12) The purpose of the present note is to 
present a method of calculating the correction term to be added to (1) in 
order to take the inhomogeneity of the electric field into account. In § 2 
a short preliminary discussion is given. In § 3 necessary theoretical for­
mulas are derived on the basis of the quantum mechanical perturbation 
theory. In § 4 the results of a calculation on the argon atom physisorbed 
on the KBr (001) surface are presented, and a few related problems of 
current interest in surface physics are discussed. However more detailed 
calculations on a wider variety of systems and comparison of the results 
with experiments are left for a forthcoming paper. 

§ 2. Preliminary Consideration 

Consider the polarization of a spheri- GI--------~~----~z-axis 
cal atom by the external electric field F r 
produced by a point charge qE (see Fig. Fig. 1. A rare gas atom and an 

external point charge qE. 
1). It can be shown (§ 3) that the energy 
change ,dE of the atom due to the polarization is given by 

( 2 ) 

and 

AE 1F2 AE- ~F2 
~ 1 = - 2 a z, ~ 2 - - 8 a q zz, ( 3 ) 

where 
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Fz = - q~ and 
r 

F - oFz --2~ 
zz - oz - r3 

are the z-component of the external electric field F at the center of the 
atom and its gradient in the z-direction, respectively; the direction of the 
z-axis is taken as shown in Fig. 1 and r is the distance between the atom 
and the charge. The first term L1EI on the right hand side of (2) is the 
same thing as the energy given by (1); the second term L1E2 is the gra­
dient correction to it and takes care of the ihnomogeneity of the electric 
field around the center of the atom. Equations (3) for L1EI and L1E2 are 
a special case of more general expressions to be derived in the next 
section. The quadrupole polarizabilityl3) a q occuring there is an atomic 
property similar to the ordinary polarizability, or the dipole polarizability a. 
During the last two decades reliable values of quadrupole polarizability 
have been calculated for a number of atoms by using digital computers 
and theoretical tools such as the Hartree, the uncoupled Hartree-Fock, 
and the coupled Hartree-Fock methods. 13

) Selected theoretical values of a q 

for rare gas atoms together with those of a are shown in Table 1. 

* 
** 

TABLE 1. Dipole and quadrupole polarizabilities, 
a and aq . 

atom a aq 

He 0.196* A3 0.0967* AS 

Ne 0.350** 0.268** 

Ar 1.493** 1.957** 

ref. 14. 
ref. 16. 

Although the energy expression (2) together with (3) is an improve­
ment over (1), it still rests on the assumption of linear response of the 
atom to the external electric field. If the electric field is very strong, say, 
108 volt/em or more, this linearity breaks down. The deviation from the 
linearity can be calculated by using another atomic property, hyperpo­
larizabilityl3R) of the atom, but this problem is beyond the scope of this 
note. 

In order to see the relative importance of the term L1E2, we consider 
the ratio, 

R = L1E2 = ~ ~ ( Fzz )2 ( 4 ) 
L1EI 4 a Fz . 

From (3) and Table 1 we find, for r= 3 A and the argon atom, 
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R 
aq 1 

=--=0.146 a r2 , 

which indicates that LJE2 IS not quite negligible as compared with LJEI • 

An atom in the vicinity of the surface of an ionic crystal, say, an 
alkali halide crystal, feels the static electric field produced by a large 
number of cations and anions which constitute the crystal (Fig. 2). Since 
these ions are spherical, they may be regarded as positive or negative 
point charges and the resultant electric field I!~ outside the crystal may be 
evaluated by summing up respective contributions of the ions.3

) In this 
case, however, the expressions for LJEI and LJE2 become more complicated 
than (3) as will be shown in the next section. In any event the interac­
tion energies LJEI and LJE2, of course, depend on the location of the atom. 
A numerical calculation made for an argon atom physisorbed on a (001) 
surface of a KBr crystal will be explained in § 4, and the numerical results 
will be given in Table 3, where we get an idea of the magnitudes of LJEI 

and LJE2, and their dependence on the location. Figure 3 (I) illustrates the 
arrangement of ions in the (001) surface plane of an NaCl-type crystal. 

z 

G 

o ----eo 
L 000 
0000 
0000 

Fig. 2. A rare gas atom (G) interacting 
with an ionic crystal. The distance 
between the atom G and the crystal 
surface is denoted by z and that 
between the atom G and the ion 
l by rz. 

c B o 

(I) 

c B 0 

(II) 

Fig. 3. The arrangement of ions in 
a (001) surface plane and adatom sites 
(A, B, C and D). 

0: positive ion .: negative ion 
(I) The case of an NaCI-type ionic 

crystal. 
(II) The case of a bcc metal. 
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If the atom is located at the point A which is above the center of the 
lattice cell, the energy .dEl becomes zero because the electric field F 
vanishes at A owing to the symmetrical arrangement of ions. On the 
other hand, .dE2 does not vanish at A (Table 3) because the gradients of 
F are non-zero. 

The inhomogeneous electric field in the vicinity of a metal surface 
arises from the electric double layer formed at the surface. In the last 
ten years the peculiar electronic distribution in the surface region of 
metals, which gives rise to the surface double layer, has been the subject 
of numerous theoretical investigations. 17

,18) Many of them are based on 
the density functional formalism18

! (Hohenberg, Kohn and Sham) and the 
uniform-background model (the jellium model) with planar surface.17

,18) In 
this model the positive charge density P + (}.) of the uniform background is 
assumed to be written as 

for z>O 

for z<O 
( 5 ) 

where Po is the constant density inside the metal. Thus the plane z=O 
is the surface of the metal, or more exactly the surface of the jellium. 
Using the variational principle in the density functional formalism, Smithl7

) 

has calculated the electron charge density P_ ('1') corresponding to (5) and 
obtained 

1 
p_(J') = - 2 Poe-~' for z>O, (6 ) 

P_('1') = -Po(l- ~ e~') for z<O, ( 7 ) 

where f3 is a variational parameter. The total charge density P('1'), i. e., 
the sum of P + (1') and p_ (I» is illustrated in Fig. 4. In other words, Fig. 4. 
depicts the surface double layer calculated by Smith. By considering the 
Poisson equation for the charge density p('1'), we can readily calculate the 
electric field F arising from the double layer; the electric field F is in 
the z-direction, i. e., normal to the metal surface and 

21C 
F z = T Po e-~z for z>O, ( 8 ) 

F - aFz 
- - 21CP e-~' 

zz - az - 0 for z>O. ( 9 ) 

In Table 2 the values of the parameter f3 computed by Smith for various 
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p 

-=~== ____________ ~~ __________ -=~~~z 
z=o? 

Fig. 4. The change of the charge density P with z in the 
uniform-background model with planar surface, of 
a metal (after Smith, ref. 17). The positive back­
ground terminates at z=O. 

TABLE 2. The values of the parameters Po and f3 
for selected metals (Smith, ref. 17) 

metal Po f3 

Rb 1.67x 10-3 a. u. 1.32 a. u. 

K 1.95 1.32 

Na 3.77 1.27 

Li 6.92 1.24 

Ag 8.73 1.23 

Au 8.80 1.23 

Cu 12.6 1.23 

Ca 6.90 1.24 
Zn 19.5 1.22 

Al 26.9 1.24 

Pb 19.4 1.22 

W 56.2 1.30 

metals together with the values of Po are given. It is to be noticed that 
whereas Po varies considerably from one metal to another the value of f3 
vanes only slightly. Taking f3 to be 1.30 a. u., i. e., 2.457 A -r, we find 

I ~: 1= f3 = 2.457 A-I, 
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which ratio gives us an idea of the magnitude of the field inhomogeneity 
and is to be compared with the value of the same ratio in (4) i. e., 

FFzZ = ~ = 0.667 A-I 
Z r 

for r= 3 A. 

However the problem of the polarization of physisorbed rare gas atoms 
on metallic surfaces seems to be much more complicated than that of 
rare gas atoms on ionic crystals. We will come back to this problem 
in § 4. 

§ 3. Perturbation Calculation 

We are interested in the interaction between a rare gas atom [G] and 
a solid [S]; thus we consider a composite system [G] + [S], such as the 
one shown in Fig. 2. The perturbation calculation of the interaction 
energyl,19,24) usually starts with an interaction potential of the form, 

[G] [S] q qt V=2:2:_s
_, 

s t r st 
(10) 

[G] 

where 2: is the summation over ~n the charged particles (electrons and 
s 

[S] 

nucleus) making up the atom [G], 2: 1S a similar summation pertaining to 
t 

the solid [S], qs and qt are the charges of particles sand t, and rst is the 
distance between particles sand t. It is most convenient to introduce the 
multipole expansion21) of V, 

(11) 

where the quantity in the parentheses is the scalar products of the tensor 
M;}.) and U;}.) which are defined by 

(12) 

(13) 

In the last two equations, rs and rt are the distances from the nucleus of 
[G] to particle s in [G] and particle t in [S], respectively, and C;}.) (s) is 

Racah's spherical harmonic, i. e., [4n/(2l + l)]i times the ordinary spherical 
harmonic Y;}.) (Os, ¢s). For further details of the above notation, ref. 21 by 
Pound is referred to. Now M;}.) is the electric moment operator for the 
atom [G], l=O, 1,2, ... corresponding to monopole, dipole, quadrupole, ... 
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moments, respectively. Since the atom is neutral (i. e., it IS not an ion), 
the monopole operator MJO) vanishes. Hence we have 

1 2 

V = 1:: (-I)mM~)U~l,;, + 1:: (-I)m2\'{~)U9,;, + higher order terms. 
m=-l m=-2 

(14) 

From the definition (13) we find 

[S] 
u,(1) - "\' q Z /r3 - - -I' o - £...J t t t - Jz, 

t 

1 [S] 1 
UJ2) = 2 ~ qt(3z~-r't)fr~ = - 2 hz, (15) 

[S] 

ur;2 = (3/2)1- 1:: qt('+xt-iYt) zt/r~ = 6-1-(±fxz+ifYz) , 
t 

where Xt, Yt and Zt are the coordinates of particle t, the origin of the 
coordinate system being the center of the atom; and fa and lap are defined 
as 

[S] q 
fxx = - 1:: --+ (3x~-rD, etc. 

t r t 
(16) 

Disregarding higher order terms in (14), we use the perturbation 
theory to calculate the interaction energy arising from the potential (14). 
By making use of the fact that the electronic state of a rare gas atom in 
the ground state is spherically symmetric IS, the calculation is simplified to 
a considerable extent. We readily find that the first-order energy vanishes 
because the unperturbed atom [G], which is spherical, possesses no per­
manent electric moments. The expression for the second-order energy in 
the perturbation theory involves the summation over intermediate excited 
states, which are now classified into the following three groups: (a) the 
states in which both [G] and [S] are being excited; (b) the states in which 
only [S] is being excited, and (c) the states in which only [G] is being 
excited. The summation over the intermediate states of group (a) yields 
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the energy of the dispersion interaction (the interaction which gives rise 
to the London dispersion force).1.20)*) This interaction energy is usually the 
most important part of the attractive interaction between a rare gas atom 
and a solid. However, a considerable number of good theoretical papers 
on this kind of interaction between an atom (or a molecule) and a solid 
have been published since the pioneering work of Bardeen,I9) most recent 
examples being refs. 22,.....,24, and we will not touch on this part of the 
interaction in the present note. The summation over the states of group 
(b) or group (c) yields the interaction energy due to the induction effect.l) 
However, the summation over the states of group (b) again vanishes be­
cause a rare gas atom does not possess any permanent electric moments 
to polarize the solid. Thus we will now go into the discussion of the 
summation over the states of group (c). 

By virtue of the fact that the tensors M~) and U~) belong to the 
irreducible representations of the rotation group, the summation over the 
intermediate states of group (b) is again simplified and yields the interac­
tion energy, 

where 

1 
JE = - - a(F2+F2+P) I 2 x y z (17) 

and 

(18) 

In (17) and (18), Fa and Fap are the expectation values of the operators Ia 
and lap, respectively, and a and a q are the dipole and quadrupole polariza­
bilities of the atom, which are given byl3) 

(19) 

and 

a q = 211 Cj~CO <0IMJ2)lj) <jIMJ2)10), (20) 

where Cj-CO is the energy of the excitation from the ground state 0 to 
the excited state j of the atom [G] and the summation is over all the 
excited states of [G]. 

*) This interaction is very often called the van der Waals interaction. However we 
avoid using this name because it is not one of very precise usage (see ref. 1). 
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The above-mentioned expectation values of f,. and f,., are to be calcu­
lated by using the ground state wave function of the unperturbed solid 
[S]. Hence we readily find from the definition (16) that Fa is the a-com­
ponent (a=x, y, z) of the electric field which the charged particles in [S] 
produce at the center of [G] and Fa' is the field gradient defined as 

F 
oFa 

a'=~ (a, f3 = x, y, z) 

The gradients Fxx, Fyy and Fzz satisfy the Laplace equation, 

Fxx + Fyy + Fzz = 0 . (21) 

Now suppose that by virtue of the symmetry of a system under consi­
deration the following relations hold; 

(22) 

Then (17) and (18) reduce to (3) in § 2 since the second equation of (22) 

implies that both Fxx and Fyy are equal to - ~ Fzz owing to the Laplace 

equation (21). 

§ 4. Numerical Results and Discussion 

As a typical example, a numerical calculation has been carried out 
on the interaction between an argon atom and KBr crystal. The latter 
is a typical ionic crystal having the NaCI structure and consisting of 
spherical K+ and Br- ions. In order to calculate for such a crystal the 
electric field and its gradients to be used in (17) and (18), it should be 
a good approximation to work with a model crystal (point-ion model) 
which is obtained by replacing the cations in the real crystal by point 
charges each with charge + e and the anions by point charges each with 
charge - e. *) Then the electric field arising from these point charges and 
its gradients are calculated by a purely classical method2

-
5

) as has been 
mentioned in § 2. We have calculated LlEJ and LlE2 by (17) and (18) for an 
argon atom on the (001) surface of KBr crystal, whose lattice constant has 
been taken to be 6.59 A. The results are given in Table 3, where the 
values have been obtained for four different locations or sites of the argon 
atom. These four sites A, B, C and D are illustrated in Fig. 3 (I): 

*) The charge transfer in lithium halide crystals, among alkali halide crystals, has been 
reported to be incomplete. For example, the ions in LiF crystal have been found 
to have charge ± 0.88 e rather than ± e (ref. 25). 
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site A, above the center of the lattice cell; 
site B, above the mid-point of a lattice edge; 
site C, above a K+ ion; 
site D, above a Br- ion. 

Of course, the calculated values of LlEI and LlE2 depend also on z, the 
distance between the atom and the surface lattice plane of KBr (Fig. 2). 
The second column of Table 3 gives the values of z used for the calcula­
tion (see below.). 

site 

A 

B 

C 
D 

TABLE 3. Calculated values of the energies .dEl and .dE2 

for the argon atom on the KBr (001) surface. 

Z LlEI LlE2 

2.95 A 0.000 kcal/mole 0.087 kcal/mole 

3.39 0.069 0.054 

3.42 0.129 0.079 

3.77 0.050 0.030 

We can obtain from Table 3 an idea of the relative magnitudes 
of LlEI and LlE2, in which we are most interested in the present note. 
Perhaps, of more general interest is the total interaction energy between 
Ar and KBr. As the perturbation theoretical treatment in § 3 indicates 
the total interaction energy is obtained by adding LlEI and LlE2 to the 
energy of the dispersion interaction provided that the atom is not too 
close to the solid surface. As the atom gets close to the surface the atom 
begins to feel the exchange repulsion force from the surface besides the 
long-range attractive interactions mentioned above; in this way the well­
known minimum occurs in the curve of the total interaction energy as 
a function of the distance z. The shape of the curve in the neighborhood 
of the minimum is very important. It determines adsorption energy, 
"adsorption bond" length, and other quantities of physical and chemical 
interest. However, from a theoretical point of view, we encounter 
a difficulty in the calculation of the interaction energies in this region. 

The perturbation-theoretical treatment presented in § 3 is based on 
the assumption that the atom is not too close to the surface, so that the 
wave function of the atom does not overlap that of the solid appreciably. 
If the overlap is negligibly small, the multi pole expansion used in § 3 
converges well and the electron exchange between the atom and the solid 
may be neglected. On the other hand, the exchange repulsion energy 
is determined by the wave function overlap and the ensuing electron 
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exchange. 
A similar contradiction exists in the theory of the intermolecular 

forces.!) One "easy" way of evading the difficulty is to stop worrying 
too much about this contradiction and to compute the total interaction 
energy simply as the sum of independently calculated (or estimated) ex­
change repulsion energy and the long-range attractive interaction energy 
calculated by the perturbation method described in § 3 (in other words, 
the additivity is assumed). Another way of overcoming the difficulty is to 
develop a new perturbation expansion method which takes the overlap of 
the wave functions into account. There exist quite a few studies26) in this 
direction in the theory of intermolecular forces, but no such calculations 
have been made in connection with gas-solid interactions.27) 

The above-mentioned "easy" way has been adopted by several 
authors2- 5

) in their calculation of the total interaction energies between 
rare gases and alkali halides. Among others Hayakawa4) has calculated the 
Ar-KBr interaction but his calculation does not include ..JE2• He has shown 
that the total interaction energy takes its minimum value at the distance 
z given in Table 3; in other words, the z value there is the equilibrium 
distance, on each site, between the atom and the surface. Although the 
equilibrium distances in Table 3 will be slightly changed by adding the 
effect of ..JE2 to the results of his calculation, those values have been used 
just for convenience sake. 

More numerical calculations, including those of the total interaction 
energy, have been performed on a variety of rare gases and alkali halides, 
but the results will be published and discussed in a separate paper.28) 

We now turn to the case of a rare gas atom on a metallic surface 
and discuss a few related problems, which have not been completely 
solved as yet. 

In § 2, a short discussion on the polarization of rare gas atoms on 
a metal has been given on the basis of the uniform-background model of 
metals. However the "atomic structure" of metals, which is entirely neg­
lected in this model, might have an appreciable effect. In this connection 
a paper by Wojciechowski291 should be mentioned. In order to calculate 
the dispersion interaction energy between a molecule and a metal, per­
turbation methods as described in § 3 have been applied to the case 
in which the solid [S] is a metal, by Bardeen,I9) Pros en and Sachs29a ) 
Zaremba and Kohn,24) and others. Wojciechowski29) modified the Prosen­
Sachs theory29a) and obtained an energy expression which consists of the 
energy of dispersion interaction, and the energy due to the induction 
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effect ilEI given by (17). In his calculation, the following model for the 
metal [S] is considered: the metal is made up of positive ions and con­
duction electrons, and the former are regarded as positive point charges 
(the point-ion model) and the latter as free electrons confined in the metal 
by an infinite potential barrier placed at the metallic surface. Thus the 
electronic charge density p_ (1") in the vicinity of the surface is given by29b) 

for z>O, (23) 

for z<O, (24) 

were kF is the Fermi wave number of the conduction electrons. The 
expressions (23) and (24) are to be compared with (6) and (7) in § 2. This 
negative charge density P_(1") and the positive point charges (point-ions) 
generates a static electric field F in the vicinity of the metallic surface. 
The energy £lEI given by (17) is due to the polarization of the atom [G] 
by this field F. With such a model having an atomic structure, contrary 
to the case of the uniform-background model, the calculated energy £lEI 
evidently depends on the site of the rare gas atom on the surface (d. 
Fig. 3 (II)), and also on the Miller indices of the surface. Then W ojcie­
chowski claims that he has derived the dependence of the dispersion 
interaction on the crystallographical direction (Miller indices) of the surface. 
However this statement is rather misleading because, as one readily finds, 
the dispersion force part of his energy expression actually does not depend 
on the crystallographical direction*) whereas his £lEI part does. Meanwhile 
the expressions (23) and (24) for the electronic charge distribution is 
certainly less satisfactoryl8) than (6) and (7). In any event he was not 
able to give any numerical results. 

Recently HerbseO) calculated the angular distribution of photoelec­
trons emitted from rare gas atoms (e. g., xenon) physisorbed on a metallic 
surface. In the model considered by him, the physisorbed atom lies par­
tially inside the surface double layer of the metal and feels an electric 
field generated by nearby positive point-ions.**) 

Returning to the uniform-background model considered in § 2, we 
notice that the electric field F at l' is proportional to the charge density 

*) Of course this is due to the fact that the point-ions considered here do not have 
internal structure and thus can not be excited or polarized. See ref. 24 in this con­
nection. 

**) In the case of an atom on site A in Fig. 3 (II), they are the four ions shown there 
plus the fifth ion directly below the atom, the effect of other ions being negligible 
owing to the shielding effct of the conduction electrons. 
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PCI') there as (5), (6) and (8) indicate. In other words, the atom feels the 
electric field arising from the electric double layer to an appreciable extent 
only when the atom resides within the double layer,*) i. e., only when the 
wave function of the atom overlaps with that of the metal to a consid­
erable extent. In such a case the perturbation-theoretial treatment de­
scribed in § 3 should be modified to include orbital overlap26) (see above), 
the detail of which will be discussed in a separate paper.27) An important 
consequence of the inclusion of orbital overlap is, besides the exchange 
repulsion23 ,31) mentioned above, the occurence of charge (electron) transfer 

from the physisorbed atom to the metal or vice versa. This kind of 
charge transfer and its contribution to physisorption energy and work 
function lowering have frequently been discussed for rare gas atoms on 
metal surfaces.32

-37) 

The change in work function arising from the adsorption of rare 
gas atoms on a metal surface is due to the change in the net surface 
dipole moment of the metal-atom system.41) As has been mentioned above, 
the latter change has been related to the polarization of the atom by the 
static surface electric field,6-1O,38) and to the charge transfer between the 
atom and the meta1. 32- 36) However it has recently been pointed oue9

-
42

) 

from the general theory of disersion forces (van der Waals forces) that 
the change in net surface dipole moment is induced partly by the 
dispersion interaction. **) This is very interesting, but a unified general 
theory which treats various effects or interactions simultaneously on the 
same footing***) is highly desirable. 
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