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PROCESSES IN POLAR MEDIUM 

By 

Yu. 1. KHARKATS*) 

(Received May 21, 1977) 

Abstract 

The two main approaches to the theory of proton transfer in polar liquids are discussed. 

It is shown that when describing proton motion in terms of Morse potentials, classical 

overbarrier transfer should occur at proton transfer distances (ro) that exceed 4 A, leading 
to considerably higher values of activation energy than observed experimentally. Quantum 

tunnelling from the ground level takes place at ro<2.5 A; at 0.9 A < ro<2.5 A the process 

is non-adiabatic, at 0.6 A < ro<0.9 A partially adiabatic and at ro<0.6 A adiabatic. 

Introduction 

There are two approaches to the construction of the theory of homo­
geneous and heterogeneous reactions of proton transfer in polar media. One 
considers the process of proton transfer as gradual stretching of chemical 
bond in an AH reagent. 1- 9l This approach does not differ essentially from 
the desciption of proton transfer in gas-phase reactions where the translational 
energy of reagents is usually also taken into account, i. e., transition is con­
sidered on a two-dimensional potential energy surface (depending on the 
proton coordinate and the distance between reagents).9l Classical motion 
of the proton along the potential energy surface is usually postulated from 
the beginning and the existence of isotope effects is explained by proton 
tunnelling near the top of the potential barrier. 

The other approach provides for the effect of polar medium on the 
kinetics of reactions involving charge redistribution in the system. lO- lll Unlike 
the first approach, along with the proton coordinate, normal coordinates 
that describe the state of polar medium are also taken into account. The 
second important difference is that the quantum-mechanical theory is con­
sistently applied in the calculation of rate constants of proton transfer and 
no a priori assumptions are made about the character of proton transfer 
(by classical stretching of the bond or by quantum tunneling through the 

*) Institute of Electrochemistry, USSR Academy of Sciences, Moscow, USSR. 

15 



16 

Yu. 1. KHARKATS 

barrier) or about the classical and quantum contributions into the transfer 
probability.12-16) 

General analysis of the quantum-statistical expression for transfer proba­
bility in systems with many degrees of freedom carried out in the harmonic 
approximation showedl7> that the classical and quantum behaviour of a degree 
of freedom in a reaction is determined by the ratio between excitation energy 
of the given degree of freedom, liw, and thermal energy, kT: 

liWCl1;kT, liWquant~kT ( 1 ) 

For anharmonic potentials the criterion of behaviour (classical or quantum) 
of a degree of freedom takes the form 10) 

ilEcl 1;kT, ilEquant ~ k T ( 2 ) 

where ilE is the characteristic distance between levels in the potential well 
associated with the given degree of freedom.*) It is assumed here that in 

the entire energy spectrum ilE does not vary significantly, otherwise, if in 
a certain region of the spectrum one of inequalities (2) is true, while in 
another region the opposite inequality is true, this degree of freedom may 
behave differently depending on which region of the energy spectrum is 
significant for the process. It is just this situation that we encounter in 
the study of the proton subsystem. 

A. non-adiabatic process 

The full expression for the probability of proton transfer III a unit of 
time may be written as 

U(R) U(R*) r -kF _-k:T 
W = J e Wlf (R) dR ;::::; e Wlf (R*) ilV ( 3 ) 

where Wif is the transition probability at a given distance between the rea­
gents and exp [- U(R)/kT] is the probability of the reagents approaching 
to distance R. Since the latter probability drops with the decrease of R, 
while Wif (R) sharply increases, the main contribution into W will be made 
by the region ilV corresponding to a certain effective value, R*. Thus, to 
calculate the rate constant of proton transfer it is necessary to know the 
dependence Wif (R) for different distances between the reagents. 

*) For a one-dimensional potential energy surface, application of semi-classical wave 
functions and quantization rule leads to criteria (2), where LIE is a characteristic 
scale of the energy spectrum in the potential well, obtained by mirror reflection of 
the barrier in relation to the coordinate axis.10) 
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Let us begin with sufficiently large distances, when interaction leading 
to transition is weak (more precisely, the matrix element of transition is 
small) and the quantum-mechanical perturbation theory may be applied. The 
expression for the probability of transfer obtained within the perturbation 
theory corresponds to a completely non-adiabatic process :10,lZ-141 

V En 

W - Wefr 1 Ifl2 -kJi 
If - 271" liweff'; EskT/ 471"3 Zp~! 1 <SOn, SOm) 12 

{ 
[Es+LI~+Em-EnP} 

-exp - 4EskT . 

( 4) 

Here Vif is the electron exchange integral of the interaction leading to tran­
sition; Weff is the characteristic frequency of dielectric relaxation of the sol­
vent; Zp= L;exp (-En/kT) is the proton statistical sum; n, m and SOn' SOm 

n 

are the quantum numbers and wave functions of the initial and final states 
of the proton; Es is the solvent reorganization energy; LI,~ is the free energy 
of the reaction which in the normal region of the reaction discussed here 
is not very great: 1 LI~ 1 < Es. Expression (4) includes summation over all 
quantum numbers (or energies) of the initial and final proton states. To 
analyze the expressions in the case when W if is described by considerably 
anharmonic potentials, for instance by Morse potentials, we shall proceed 
as follows. Since the number of energy levels of the proton when describing 
its motion in terms of Morse-type potentials, although not infinite, is very 
great, instead of summation over proton quantum numbers nand m in (4), 
we shall integrate in respect to the corresponding energies, Er and E i . (The 
case when the main contribution into the transfer probability is made by 
several proton levels, i. e., when integration may be inaccurate, we shall 
consider separately.) The proton transfer probability may then be rewritten 
as 

r (Llj) , ( 5 ) 

where 
_Ei 

r(Llj) = J dEle kJil<SOE;> SOEi+,ij)12Pi-Pf. ( 6 ) 

Here, iJj = Ef - EI> Ei and Ef are the proton energies in the initial and final 
states, respectively, Pi and pr are the level densities of the corresponding 
states, SOB; and SOE~+Jj are the wave functions of the initial and final states 
of the proton, corresponding to motion within Ul and Ur Morse potentials 
(Fig. 1). 
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(7 ) 

Uf = D f [l-exp (afr-afrO)r 

(8 ) 

Di and Dr are the depths of the proton 
potential wells in the initial and final 
states, ro is the proton transfer dis­
tance, i_ e., the distance between Ui 

and Uf minima, a is the parameter 
characterising the curvature of the po­
tential energy surface that may be 
related to the proton vibration fre­
quencies at the lower energy levels. 

Using the semi-classical approxima-

tion for wave functions i{JEi and i{JE,+4j, 

Fig. 1. Potential curves, Ui (r) 
and Ur(r). 

integrating according to the Laplace method (6) in respect to the proton 
coordinate, it is easily seen that I <i{JE,' i{JE.+Jj) I 2 is proportional to the Gamov 
factor of tunnelling, i. e., 

Em_ax=Ui(r*) 

r (.1j) ~ ) dEl PiPf exp [ - f+-
Emin ~([.1 j [-4 j)j2 

r' b(Ei+J}) 

- ~ ) ~2mp ( Ui - El) dr - ~ ) ~~2 m-p 7>( U"'f---E=-l _--O.1J-'-') dr] 
a(Ei ) r* 

(9 ) 

Here a (Ei) , b(El+.1j) and r* are determined by conditions Uda)=Eh Uf (b) 
= Ei + .1j, Ul (r*) = Uf (r*) -.1j. The expression under the integral in (9) 
is a function with a sharp maximum. To determine the value of E7 that 
provides the highest contribution to r (.1j) the exponent in (9) should be 
differentiated: 

(10) 

In the case when the potential energy surface is described by Morse poten­
tials (8)-(9), integrals in (10) may be calculated analytically and (10) may be 
reduced to 
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liwi 1 1 Wi (DI Di ) 
4kT = 2:f (t,tmax)+z Wf- f Df (t + LIt), Df (tmax+Llt) 

(11) 

== F (t, tmax' LIt) 

where t=Ei/Dh tmax=Emax/Di> Llt=Llj/Di and (/Llt/-Llt)/2:(t:(tmax :(1. Func-
tion f(t, tmax) is given by expression 

1 
f(t, tmax) = .J1-t 

I (l-.Jt -.Jr=t) (1-.J~ +.Jtmax-t +.Jr=t) 
• n (l-.Jt +.J1-t) (l-.Jtmax +.Jtmax-t -.J1-t) 

(12) 

A plot of this function for several values of tmax is given in Fig. 2. At 
t-O, f (t, tmax) behaves as a logarithmic function and at t-tmax, f (t, tmax)-O. 
The right-hand part of (11) is a linear combination of two f (t, tmax) functions 
with appropriately displaced and extended arguments. The resultant func­
tion, F (t, tmax, LIt), at t-tmax tends to zero and has a logarithmic feature 
at t-O if Llt>O or at t-/Llt/ if Llt<O (Fig. 3). In the simplest case, when 
Di =Df' Wi =Wf and Llt=O, the right-hand side of (11) coincides with f(t, 

tmax)' Equation (11) can easily be solved graphically for various values of 
parameters Di,f and Wi,f that determine the shape of the surface of proton 

5 

3 

2 

fCt,tmax ) 

o 0.2 

Fig. 2. 

tmax=O.9 

0.6 0.3 i 
The shape of I(t, tmax) for 
certain values of tmax. 

t 
o t max t 

Fig. 3. The shape of F(t, tmax, 
L1t) ; curve (a) Llt>O, curve 
(b) Llt<O. 
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potential energy in the initial and final states, of parameter tmax which im­
plicitly determines the distance To and of parameter Llt which determines 
the partial dimensionless free energy of the proton transfer reaction when 
the effect of polar medium is neglected.4- S) 

Certain important conclusions about the solutions of equation (11) de­
pending on the value of Iiw/4kT may be made from the shape of functions 
f(t, tmax) and F (t, tmax, Llt). At Iiw/4kT <t;1 the solution of eq. (11) is deter­
mined to a high degree of accuracy by expression t* ~tmax, i. e., E* ~Emax 

and proton transition occurs in the classical, nonadiabatic manner. At liw/ 
4kT~1, t*~O (if Llt>O) or t*~ILltl (if Llt<O), i. e., proton transition pro­
ceeds by tunnelling, in other words from the lowest possible level. At liw­
kT, solution of (11) is in an intermediate region, i. e., transition occurs by 
preliminary activation to a certain level (E*) and then by tunnelling. For 
classical behaviour of the proton subsystem the total activation energy of 
the process may be determined by integrating (5) in respect to Llj and it 
corresponds to a saddle point on the intersection of the total potential energy 
surfaces (including both the proton subsystem and the polar medium) of 
the initial and final states. In this case the use of a continuous spectrum 
of El and Er energies in formulae (5)-(6) is justified. In the case of quantum 
behaviour of the proton subsystem the discreteness of the proton levels should 
be considered and solution of equation (11) should be interpreted as a tran­
sition from a lower proton level in the initial state from which, at a given 
relative arrangement of U 1 and Ur, determined by Llj, transition is possible. 
Summation in respect to Llj which should be carried out instead of integra­
tion in (5) leads at ILlS'1 <Es, i. e., in the normal reaction region, to a result 
corresponding to proton transition from ground initial state to ground final 
state with activation energy corresponding to Llj=E~-Er, or Ea=[Es+LlS' 
+E~-E~F/4Es as obtained in Ref. (10, 12-14) with harmonic potentials. 
Thus, in the case of quantum, tunnel transition of the proton, the activa­
tion energy of the process is determined by the solvent reorganization energy 
and the pre exponential factor is proportional to the square of the overlap 
intergral of proton wave functions of the initial and final states. 

It is interesting to estimate the effective proton transfer distance from 
which proton motion is classical. Let us consider the case when D! =Dr, 
w! =Wr and Llj =0 and the right-hand side of (11) coincides with f(t, tmax). 

For typical proton stretching frequencies (w=3000-3200 cm- i ) the Iiw/4kT 

ratio is about 3.5-3.7. As can be seen from Fig. 2, intersection of horizontal 
line Iiw/4kT=3.5 with the graph of f(t, tmax) for tmax <O.4 corresponds with 
sufficient accuracy to quantum proton transition from the lowest possible 
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level. At D-100 kcal/mole this corresponds to r6uant~2.5 A. For a clas­
sical transition the distance should be much greater. Thus, for the above­
mentioned values, E* differs by less than 4 kcal/mole from Emax if ro>r~l~ 
4 A. It should be emphasised that the contribution of just the proton sub­
system into the activation energy of the process considerably exceeds the 
observed activation energies in the case of classical behaviour. Furthermore, 
the presented analysis shows that the application in certain studies of the 
classical approach at ro'::;3 A4-6) or even at 1 A~ro~O.39 AS) is unjustified 
for these distances. 

Partially adiabatic and adiabatic processes 

Expression (4) for the proton transfer probability describes a completely 
non-adiabatic process. During transition the proton cannot adiabatically 
adjust to the variation of the medium and the electrons cannot adiabatically 
adjust to the variation of the proton state. If the proton transfer distance 
is sufficiently small the electron exchange integral may be rather large since 
the electron subsystem may adiabatically follow the proton subsystem, while 
the process as a whole remains non-adiabatic, since the proton still cannot 
adjust to the variation of medium polarization. Criteria determining the 
possibility of such a partially adiabatic process were obtained in Ref. (18). 
The boundary between completely non-adiabatic and partially adiabatic pro­
cesses IS given bylS) 

2rr/ V if /
2 

!i/vp//Fj-Ff/ - 1. (13) 

Here, F~ and Ff are the slopes of electron terms of initial and final states 
along the proton coordinate in the saddle point on the surface of their in­
tersection and / v p / is the modulus of the imaginary proton velocity, corre­
sponding to tunnelling under the barrier. Estimations based on the proton 
potential energy surfaces reported in Ref. (19) at Vlf -1 eV give rnad~O.9 A. 

At even smaller distances the transmission coefficient approaches unity 
and the process proceeds adiabatically. Estimation of the corresponding 
value may be obtained from conditionlS) 

(l1Ead/2)2 
_ 1 

!iWeff-l kTEs/4rr3 
(14) 

where l1Ead is the minimal splitting of electron-proton adiabatic terms, equal 
to the minimal distance between two lower proton levels in the adiabatic 
potential having two minima. IS) Estimation on the basis of the adiabatic 
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surfaces of proton potential energy and its lower levels given in Table 17 
and Fig. 116 of Ref. (19) at Es-1 eV and (Ueff-1013sec-l gives rad~0.6 A. 

Therefore, we arrive at the following description of proton transfer at 
different distances between reagents: 

1. At ro > r~l ~ 4 A the proton is transfered in the classical over-
barrier manner and the activation energy of the process is very great, 
considerably exceeding the experimentally observed values. 

2. At 2.5 A~r3uant<ro<rgl~4 A the proton is transfered by a com-
bination of classical stretching of the bond and subsequent tunnelling. 
The activation energy associated with the contribution from proton 
excitation is still considerable; the transmission coefficient is exceed­
ingly small, sharply decreasing when the proton transfer distance is 
large. 

3. In the region, 0.9 A~r6'ad<ro<r6uant~2.5 A, the process is com-
pletely non-adiabatic, the transmission coefficient is determined by 
proton tunnelling between the ground states of the proton subsystem.*l 
Activation energy is determined by reorganization of the polar medium. 

4. In the region, 0.6 A~r~d<ro<r~ad~0.9 A, the process is partially 
adiabatic, the transmission coefficient is still less than unity and the 
activation energy is somewhat reduced in relation to the completely 
non-adiabatic process. 

5. In the region, ro<r~d~0.6 A, the transmission coefficient is equal 
to unity and is independent of the proton transfer distance. The 
process is completely adiabatic. 

It follows from this analysis that the probability of proton transfer is 
higher the smaller the distance between reagents. This distance is deter­
mined by different factors in different systems. In polar media, where the 
reagents may draw close to each other the distance is governed by repulsion 
of electron shells of the reagents and, in the case of complex multiatomic 
molecules, by steric hindrance as well. In certain cases, for instance, in­
tramolecular proton transfer, the proton transfer distance is solely determined 
by the geometry of the reacting centres. At considerable distances between 
reacting centres in such systems proton transfer throungh one or several 
water molecules, according to the bridge mechanism, may be favourable.2122l 
Fixation of proton localisation sites is also important for proton transfer in 
biological systems. 

*) Numerical calculation using Morse potentials16 •20) shows that transitIOns between a 
few first excited proton levels may contribute to the probability of completely non­
adiabatic transfer. 
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The author is grateful to R. R. Dogonadze and A. M. Kuznetsov for 
useful discussions. 
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