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Abstract 

In recent years, band structure calculations of slabs (thin films) of solids have proved 

successful and useful for elucidating the electronic states at solid surfaces. The present 

note briefly reviews recent progress in this area, and proposes a new simplified self-con­

sistent LCAO method for calculating the electronic band structure of slabs. The method 

utilizes the CNDO approximation widely used in quantum chemistry. 

§ 1. LCAO Calculations of Slabs 

In recent years the electronic structure of solid surfaces has been the 
subject of a large number of experimental and theoretical studies. It is 
evident that these studies have been motivated and stimulated by scientists' 
growing interests in fundamental studies of various surface phenomena in­
cluding adsorption, surface reactions, and heterogeneous catalysis. A rela­
tively new and promsing method of quantitative calculation of electron states 
at solid surfaces**) is to consider an n-Iayer slab (thin film) of the solid in 
question and to calculate its band structure by means of various well-known 
techniques that have been developed for band structure calculations of bulk 
solids.***) Here the number of atomic layers n is, for example, 1,12,19) 3,13) 
13,2-4) 16,6) and 40.7l The employed techniques are the pseudopotential,2-o,s, 
14,15) OPW,oa) APW,1S) Green's function (KKRZ),19,19a) LCMTO,20,2!) LCAO 

(tight-binding),6-7a,9-13) and density functionali6,17) methods. A slab is bounded 

by two parallel plane surfaces and is a model suitable for calculations of 
electronic structure of surfaces. 

*) Research Institute for Catalysis, Hokkaido University, Sapporo, 060 Japan. 
**) A concise but informative review of the recent developments in this area has been 

given by Forstmann (ref. 1). 
***) Several examples are listed as ref. 2-ref. 21 at the end of this article. However, 

this list is far from exhaustive and the above references are to be regarded as 
arbitrarily chosen examples. 
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Any of the above-mentioned calculation techniques of band structure 
has its own merits and demerits. It is therefore very likely that all these 
methods will survive and coexist in the future. 

1 a) LCAO method in band calculations 
The sucessful LCAO (tight-binding) calculation of the band structure 

of lithium by Lafon and Lin22) in 1966 triggered a revived interest in the 
use of the LCAO method for band structure calculations. The key to their 
success was to calculate the matrix elements occurring in the LCAO theory 
as accurately as possible, which was made possible by the use of modern 
high-speed computers and some mathematical techniques.22 ,23) Since then, 
much effort has gone into LCAO calculations of band structure, in which 
attempts have been made to calculate electronic properties of solids from 
first principles (ab initio calculations).*) 

The advantages of the LCAO method are: (i) the matrix equation we 
have to deal with is relatively small; (ii) band energies can be easily com­
puted at arbitrary points (not limited to symmetry points) in the Brillouin 
zone; (iii) the effects of the crystalline fields can be included easily; and (iv) 
the method is particularly suited for band calculations of transition metals, 
which involve d-electrons and is interesting in connection with their catalytic 
properties. 

The necessity of introducing the self-consistency into band calculation 
has often been pointed out. Recently a considerable number of self-con­
sistent LCAO band calculations have been made.24) Since a self-consistent 
solution is obtained after repeated iterative cycles, an efficient computing 
procedure has to be devised in order to save computing time and to make 
self-consistent calculations practical. 

Also attempts have been made to carry out very precise self-consistent 
LCAO band calculations which are comparable, in accuracy, to molecular 
self-consistent LCAO calculations.25) 

1 b) Slab calculations 
Suppose that an LCAO calculation of iron starts with a basis set con­

sisting of nine atomic orbitals, namely, the one 45 function, three 4p func­
tions, and five 3d functions of the iron atom. Then the LCAO calculation 
for bulk iron is performed by constructing and solving a 9 X 9 matrix equation 
since the unit cell of bulk iron contains one iron atom. On the other hand, 
in the case of the LCAO calculation of an n-layer slab of iron, the size of 
the matrix equation becomes 9n X 9n since the unit cell of the slab contains 

* ) Besides ab initio LCAO theories, simplified or semi-empirical LCAO theories are being 
used for discussing band structure (see below). 
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n iron atoms. *) This difference arises from the fact that a bulk crystal 
has three-dimensional periodicity whereas a slab is periodic in directions 
parallel to its surfaces but not in the direction perpendicular to the surfaces, 
i. e., it has only two-dimensional periodicity. Thus the slab calculation is 
far more difficult than the corresponding bulk calculation unless the number 
of layers n is small. 

In connection with various problems in surface science, a knowledge of 
electron distribution at solid surfaces is very important. One of the main 
purposes of slab calculation is to obtain this distribution with sufficient ac­
curacy. In many occasions it has been pointed out that reliable distribution 
can only be obtained by means of self-consistent calculations,3, 11,13, 16) particu­
larly in the case of transition-metal surfaces.8,15)**) 

The recent LCAO calculation of a copper slab with (001) surfaces by 
Gay, Smith, and Arilnghaus13) is remarkable. It is an ab initio LCAO cal­
culation of a d-band metal; thus it starts with a basis set consisting of fif­
teen atomic orbitals, namely, the 15, 25, 35, 45, 2p, 3p, and 3d functions 
of copper atom. Furthermore it is a self-consistent calculation. It is to be 
noted however that this elaboration was only achieved at the expense of 
the slab thickness; in their calculation the number of layers n was three. 
One might therefore argue that this slab is too thin to simulate the surface 
electronic structure of a semi-infinite solid. 
I c) Use of simplified or semi-empirical LCAO theories 

Simplified or semi-empirical LCAO theories have been extensively used 
for discussing band structure of bulk solids. Here LCAO calculations start 
with considerably simplified expressions for the matrix elements.26,27) Such 
simplification is hardly justified from the standpoint of ab initio type calcula­
tions. It is important however that these simplified LCAO theories are to 
be used as a "parameterized" LCAO theory or as an "interpolation method" 
in the sense of Slater and Koster,23,26,27) and as such they have proved very 
useful. 

So far LCAO calculations of slabs of d-band or transition metals with 
considerable thickness (say, n?:.15)6-7a,9,1O) have been done by using simplified 
or semi-empirical LCAO theories. Although these calculations are non-self­
consistent, some interesting results have been obtained. 

It is interesting to note that in some simplified LCAO calculations9,1O,27) 

*) In the calculation of an iron slab with (100) surfaces by Dempsey, Kleinman, and 
Caruthers (ref. 7 a), n was taken to be 41; thus the size of the matrix equation is 
369X 369. However, in this case the central layer of the slab is a reflection plane and 
the matrix equation can be reduced into a 186X 186 equation and a 183x 183 equation. 

**) Among ref. 2-ref. 15, refs. 3, 8, 11, 13, 14, and 15 are self-consistent calculations. 
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EHT-like expressions have been used for the matrix elements. Here EHT 
stands for the extended Huckel theory,2S) which is widely used in the area 
of quantum chemistry. 

In the next section, the use of another well-known approximation method 
in quantum chemistry, namely, the CNDO (complete-neglect-of-differential­
overlap) approximation,2S) for band calculations of bulk solids or slabs will 
be considered. Its purpose is to provide a new simplified self-consistent 
LCAO method for calculating the band structure of solids. 

§ 2. Simplified Self-Consistent LCAO Calculation of Slabs 

The following fundamental equations for the LCAO calculation of band 
structure are well-known.*) 

¢n(k, r) = I; Cn.(k)¢.(k, r) 
• 

¢s(k, r) = N-! I; exp(ik.rp) us(r-rp) 
p 

I; H.,.(k)Cn.(k) = En(k) I; S.,.(k)Cn.(k) 
• • 

Hs's(k) = )¢:,(k, r) PI ¢.(k, r) dr 

Ss's(k) = )¢:,(k, r) ¢.(k, r) dr 

( 1 ) 

(2 ) 

(3 ) 

( 4) 

( 5 ) 

In (1) the one-electron wave function ¢n (k, r) for band n and wave vector 
k is expressed as a linear combination of the Bloch functions ¢. (k, r), which 
in turn are constructed as a linear combination of the atomic orbitals Us 

(r - r p) as shown in (2), where N is the number of unit cells in the crystal 
whose band structure we are calculating. In (1) through (5), each unit cell 
is assumed to contain only one atom at r p , where the suffix p runs from 
1 to Nand rl is taken equal to zero, i. e., 

(6 ) 

The coefficients Cns (k) in (1) are determined from the matrix equation 
(3), namely, the Hartree-Fock equation in the LCAO approximation, from 
which the energy En (k) of the wave function ¢n (k, r) is also calculated. In 
(3), the matrix elements Hs's (k) of the one-electron Hamiltonian operator 

(Fock operator) PI and the overlap matrix elements Ss's(k) are defined by 
(4) and (5). 

*) See, for example, ref. 23, p. 291 et seq. 
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Since the Hamiltonian f'I for the crystal is supposed to have three­
dimensional periodicity (translational invariance), we may write 

Hs's(k) = L: exp (ikorp) Hs's(rp) . ( 7 ) 
p 

Similarly we have 

Ss's(k) = L: exp (ikorp) Ss's(rp). ( 8) 
p 

The matrix elements on the right-hand sides of (7) and (8) are defined by 

Hs's(rp) = )u:,(r) f'I us(r-rp) dr ( 9) 

and 

(10) 

Calculating the matrix elements (4) and (9) accurately, and solving the 
matrix equation (3) self-consistently present several difficult problems, which 
we have to overcome in order to obtain reliable band structures. These 
problems have been discussed by many authors and ingenious methods have 
been devised to get around them.22-25l As mentioned at the end of the 
preceding section, a much simplified method of calculating the matrix ele­
ments (4) and (9) is presented here; it is a direct application of the CNDO 
approximation28l used for discussing the electronic structure of molecules in 
quantum chemistry. Now that such a rather drastic approximation is in­
troduced, an ab initio calculation of band structure is no longer attempted, 
but instead the set of equations (1) through (5) is used for an interpolative 
calculation of band structure (see below). 

To calculate the matrix element (9) involving the one-electron Hamilton­
Ian f'I we start with the following standard expression: 

H 8'8(rp) = )u:'(r) ( - 2~ p2+ ~ v(r-rp,)) u8(r-rp) dr 

+ ~cct (2 [s'1, sp; nk, nk] - [s'l, nk; nk, sp]) (11) 

On the right-hand side of (11), the first term is a one-electron integral, which 
involves the kinetic energy part and the electron-core interaction part of 
the Hamiltonian f'I; and the second term is made up of the two-electron 
integrals of the type, 

[s'1, sp; nk, nk] = e2Hu:,(r-r1) u8(r-rp)lr-r'I-l 

¢! (k, r') ¢n(k, r') dr dr' (12) 
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and of the type, 

[s'1, nk ;nk, sp] = e2Hu:,(r-r1) ¢n(k, r) jr-r'j-l 

¢: (k, r/) u.(r' - rp) dr dr' (13) 

It must be noted that the double summation over nand k in (11) covers 
only the occupied (acc) one-electron states, i. e., only those states whose ener­
gies do not exceed the Fermi energy EF • Defining the density matrix P(s"p" ; 
5'" P''') by 

and using (1) and (2), we can readily show that the second term on the 
right-hand side of (11) becomes 

I; I; I; I; P (5" p' ; 5/" p"') ([5/1, sp ; 5" p", 5/" p'''] -1..[s/ 1, s'" p''' ; s"p", sp]) 
8" p" 8'" pilI 2 

(15) 

which consists of two-electron integrals of the type, 

[5'1, sp; s"p", s'''p'''] = e2Hu:.(r-r1) u.(r-rp) jr-r'j-l 

u:" (r' - r p") Us'" (r' - r p"') dr dr' (16) 

and of the type, 

[5'1, s/"P''' ; s"p", sp] = e2))u:,(r-r1) u.",(r-rp"') jr-r/ j-l 

u:" (r' - r p") u.(r/ -rp) dr dr' (17) 

In (12), (13), (16), and (17), it is to be remembered that v (r - r 1) and u;' 
(r - r 1) are the same things as v (r) and u:' (r), respectively, because of (6). 

Now, Pople and Beveridge28) have given a good account of the basic 
rules of the CNDO approximation. When the rule of "complete neglect of 
differential overlap" is applied to the expression (11) together with (15), the 
following greatly simplified expressions for the matrix element H.,. (rp) are 
obtained at once: 

~~(r ) H .. (rl) = U8.+ ~ J ju8 (r)j2v (r-rp') dr+ ~ P(s"p' ; s"P') [51, sl ; s"p/, s"p'] 

+.4 P (5"1 ; s"1) [51, 51 ;s"1, 5"1] - ~P (sl ;sl) [51, sl ; 51, 51] 

(18) 
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H 8'8(rl) = - ; P(sl ; 5'1) [s'I, 5'1; 51, 51] if 5' ~s (19) 

H.,.(rp) = (3.,.(r p) - ~ P (Sp ; 5'1) [5'1, 5'1 ; Sp, Sp] if p~1 (20) 

where U8 • and (3.,.(rp) are one-electron integrals defined by 

U8• = )u: (r) ( - 21i~ p2+ v (r)) u.(r) dr (21) 

and 

(3.,. (rp) = )u:,(r) ( - 21i~ p2+ v (r)+v(r-rp)) u8(r-rp) dr (22) 

In the CNDO theory, the integrals (21) and (22) are not computed, but instead 
they are handled in a semi-empirical manner2S) (see below); the two-electron 
integrals occurring in (18), (19), and (20) are calculated analytically but in 
a much simplified way.*) 

Evidently, the simplified expression for the matrix element Ss" (rp) cor­
responding to (18) through (20) is 

(23) 

from which we find that the Bloch functions <P. (k, r) form an orthonor­
malized system. 

So far we have assumed for simplicity that each unit cell of the crystal 
contains only one atom. However, what we are interested in is the band 
calculation of n-Iayer slabs, which have two-dimensional, rather than three­
dimensional, periodicity. As was pointed out in the preceding section, each 
unit cell of an n.layer slab contains several or many atoms, and the num­
ber of atoms in a unit cell increases as n increases. The extension of the 
above equations to such cases is straightforward. For example, the one­
electron wave function <Pn (k, r) for a slab is constructed as a linear com­
bination of the Bloch functions, 

<psa(k, r) = N-lr L; exp (ik.rp) Us (r-ra-rp) ( 2') 
p 

instead of (2). In (2') the wave vector k is two-dimensional, and u8(r-ra-rp) 
is an atomic orbital centered at the a-th atom in the p-th unit cell. (If 
the number of atoms in the unit cell is m, a runs from 1 to m.**)) As the 

*) All these integrals are evaluated as two-electron Coulomb-type two-electron integrals 

over s-type Slater atomic orbitals (ref. 28). 

** ) In eq. (2') these m atoms are assumed to be of the same kind. Generalization can be 

made without difficulty. 
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result, the rest of the equations becomes slightly more complicated notation­
wise, and the size of the matrix equation (3) increases. Otherwise there 
are no essential changes. 

It is interesting to note that on the right-hand side of the expression 
(18) for the diagonal matrix element H8s (rl ), the second term, 

p'""l (C ) ~ J /u.(r)/2v (r-rp') dr+ # P(s"p' ; s"P')[sl, sl ; s"p', s"p'J 

represents the crystalline field effect on the "central" atom, i. e., the atom 
at r= r l = O. The third term there represents the intraatomic Coulomb 
repulsion energy within the central atom, and the last term is the exchange 
energy correction to it. Similar exchange energy terms occur in the expres­
sions (19) and (20) for the off-diagonal matrix elements. In ab initio type 
calculations of band structure, the treatment of the exchange energy terms 
give rise to difficulty. Very often Slater's Xa approximation has been used 
to calculate them,23,24) or attempts have been made at calculating them more 
precisely.21i) In the CNDO approximation, the exchange terms are greatly 
simplified as shown in (18) through (20), and offer no difficulty. 

Now we return to the one-electron integrals (21) and (22). Pople et 
al. have proposed the approximation,2S) 

13.,. (rp) = 13 Ju:,(r) u.(r-rp) dr (24) 

where 13 is an empirical parameter and the overlap integral on the right­
hand side is calculated analytically.*) They have also devised a method to 
assess the value of the integral U •• by using empirical values of atomic ioniza­
tion potential and electron affinity. 

In the present note, it is proposed that U.. in (18) and 13 in (24) be 
treated as disposable parameters. Suppose that the simplified LCAO method 
described above is applied to the band structure calculation of a bulk solid. 
The values of the above parameters (and, if necessary, those of the orbital 
exponents in the atomic orbital functions u. (r)) are varied to fit the calculated 
band structure to results of more precise band structure calculations ("inter­
polation method"26,27»). It should be a good approximation to use the pa­
rameters so determined to calculate the band structure of an n-layer slab 
of the same solid, which is difficult to obtain by more precise calculation 
methods. 

*) The "neglect of differential overlap" should not be applied to the calculation of the 

overlap integral in (24) (ref. 28). 
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§ 3. Concluding Remarks 

Admittedly the argument in the preceding section is of preliminary 
nature. In this connection a few important questions arise: (i) What is 
the most appropriate and practical way of determining the disposable pa­
rameters? (ii) Does the use of the CNDO approximation make slab calcula­
tions really efficient and economical so that a self-consistent calculation can 
be carried out for a slab consisting of heavy atoms (e. g., Cu, Ni etc.) and 
with considerable thickness, without consuming too much computer time? 
(iii) Will the results obtained be usable and reliable? These questions together 
with numerical results obtained for a few interesting systems will be discussed 
in a subsequent paper.29l 
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