<table>
<thead>
<tr>
<th>Title</th>
<th>STANDARD MOLAL REAL FREE ENERGIES OF SOLVATION OF INDIVIDUAL IONS AND ELECTROMOTIVE FORCES OF SINGLE ELECTRODES IN NON-AQUEOUS SOLUTIONS: AN ADDITIONAL REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MATSUDA, A.; NOTOYA, R.</td>
</tr>
<tr>
<td>Citation</td>
<td>JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 28(1), 67-71</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/25074</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>28(1)_P67-71.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
STANDARD MOLAL REAL FREE ENERGIES
OF SOLVATION OF INDIVIDUAL IONS
AND ELECTROMOTIVE FORCES OF
SINGLE ELECTRODES IN NON-
AQUEOUS SOLUTIONS
— An Additional Remark —

By

A. MATSUDA*) and R. NOTOYA*)
(Received May 30, 1980)

The values of the standard molal real free energies of solvation \(\alpha_Y \)'s of
monoatomic ions in non-aqueous solvents at 25°C and those of the standard
electromotive forces \(\psi_Y \)'s referred to the standard state of the gaseous electron
at 25°C were estimated in the previous work\(^1\) by an empirical method which
was developed on the basis of the standard electromotive forces referred to the
standard hydrogen electrode.

In the present addendum article Table II in the previous work\(^1\) in which
the values of \(\alpha_Y \) and \(\psi_Y \) for 17 ionic species were listed are supplemented by 54
ionic species for which we have no experimental data of the standard electromotive forces referred to a definite reference electrode in non-aqueous solvents.
The values of \(\alpha_Y \) and \(\psi_Y \) for such ions are calculated by Eqs. (14) and (8)
\[\kappa YF(\psi Y - \psi YH) = \alpha Y - \alpha YH, \ldots (14), \quad \frac{1}{\kappa Y} \alpha Y = \beta X, \ldots (8) \]
using the \(\beta \)-values in Table I in the previous work\(^1\) and \(\alpha_YH \)-values reported in
Ref. 2, and are listed in Tables I and II with the symbol \# in the present article.
For convenience Table II in the previous work are also repeated in these tables
(for the symbols *) and **), see Ref. 1).

References

*) The Research Institute for Catalysis, Hokkaido University, Sapporo, 060 Japan.
A. Matsuda and R. Notoya

Table I. Standard molal real free energies of solvation of individual ions $-\Delta G^*/z$ in non-aqueous solvents at 25°C in electron volts

<table>
<thead>
<tr>
<th>$\Delta G^*/z$</th>
<th>H_2O</th>
<th>CH_3OH</th>
<th>$\text{C}_2\text{H}_5\text{OH}$</th>
<th>HCOOH</th>
<th>CH_3CN</th>
<th>HCONH_2</th>
<th>Na_2H_4</th>
<th>DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li^+</td>
<td>11.30</td>
<td>11.22</td>
<td>11.30</td>
<td>10.60</td>
<td>11.04</td>
<td>11.39</td>
<td>12.63</td>
<td>11.20</td>
</tr>
<tr>
<td>Na^+</td>
<td>5.30</td>
<td>5.28</td>
<td>5.31</td>
<td>5.05</td>
<td>5.24</td>
<td>5.36</td>
<td>5.80</td>
<td>5.15</td>
</tr>
<tr>
<td>K^+</td>
<td>4.76</td>
<td>4.19</td>
<td>4.20</td>
<td>4.42</td>
<td>4.16</td>
<td>4.31</td>
<td>4.70</td>
<td>4.24</td>
</tr>
<tr>
<td>Rb^+</td>
<td>3.50</td>
<td>3.48</td>
<td>3.50</td>
<td>3.24</td>
<td>3.48</td>
<td>3.54</td>
<td>3.93</td>
<td>3.48</td>
</tr>
<tr>
<td>Cs^+</td>
<td>2.94</td>
<td>2.92</td>
<td>2.94</td>
<td>2.66</td>
<td>2.82</td>
<td>2.97</td>
<td>3.26</td>
<td>2.93</td>
</tr>
<tr>
<td>Cu^+</td>
<td>5.91</td>
<td>5.87</td>
<td>5.91</td>
<td>5.66</td>
<td>5.79</td>
<td>5.98</td>
<td>7.54</td>
<td>6.01</td>
</tr>
<tr>
<td>Cu^{2+}</td>
<td>10.78</td>
<td>10.71</td>
<td>10.92</td>
<td>10.29</td>
<td>10.59</td>
<td>10.94</td>
<td>11.94</td>
<td>10.70</td>
</tr>
<tr>
<td>Ag^+</td>
<td>4.94</td>
<td>4.93</td>
<td>5.01</td>
<td>4.89</td>
<td>5.27</td>
<td>5.01</td>
<td>6.32</td>
<td>4.98</td>
</tr>
<tr>
<td>Au^+</td>
<td>6.29</td>
<td>6.25</td>
<td>6.30</td>
<td>6.02</td>
<td>6.13</td>
<td>6.36</td>
<td>6.97</td>
<td>6.26</td>
</tr>
<tr>
<td>Be^{2+}</td>
<td>12.53</td>
<td>12.45</td>
<td>12.54</td>
<td>11.99</td>
<td>12.20</td>
<td>12.67</td>
<td>13.88</td>
<td>12.47</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>8.26</td>
<td>8.21</td>
<td>8.27</td>
<td>7.89</td>
<td>7.88</td>
<td>8.35</td>
<td>8.63</td>
<td>8.22</td>
</tr>
<tr>
<td>Sr^{2+}</td>
<td>7.53</td>
<td>7.48</td>
<td>7.54</td>
<td>7.21</td>
<td>7.33</td>
<td>7.61</td>
<td>8.34</td>
<td>7.49</td>
</tr>
<tr>
<td>Ba^{2+}</td>
<td>6.85</td>
<td>6.81</td>
<td>6.86</td>
<td>6.56</td>
<td>6.67</td>
<td>6.93</td>
<td>7.59</td>
<td>6.82</td>
</tr>
<tr>
<td>Ra^{2+}</td>
<td>6.71</td>
<td>6.67</td>
<td>6.72</td>
<td>6.42</td>
<td>6.54</td>
<td>6.78</td>
<td>7.43</td>
<td>6.68</td>
</tr>
<tr>
<td>Zn^{2+}</td>
<td>10.51</td>
<td>10.40</td>
<td>10.38</td>
<td>10.09</td>
<td>10.22</td>
<td>10.59</td>
<td>11.48</td>
<td>10.46</td>
</tr>
<tr>
<td>Hg^{2+}</td>
<td>9.48</td>
<td>9.42</td>
<td>9.49</td>
<td>9.07</td>
<td>9.23</td>
<td>9.58</td>
<td>10.50</td>
<td>9.43</td>
</tr>
<tr>
<td>Al^{3+}</td>
<td>15.95</td>
<td>15.85</td>
<td>15.97</td>
<td>15.26</td>
<td>15.54</td>
<td>16.13</td>
<td>17.67</td>
<td>15.87</td>
</tr>
<tr>
<td>Ga^{3+}</td>
<td>10.50</td>
<td>10.44</td>
<td>10.51</td>
<td>10.05</td>
<td>10.23</td>
<td>10.62</td>
<td>11.63</td>
<td>10.45</td>
</tr>
<tr>
<td>Ga^{3+}</td>
<td>15.99</td>
<td>15.89</td>
<td>16.01</td>
<td>15.30</td>
<td>15.57</td>
<td>16.17</td>
<td>17.72</td>
<td>15.91</td>
</tr>
<tr>
<td>In^{3+}</td>
<td>3.71</td>
<td>3.69</td>
<td>3.71</td>
<td>3.55</td>
<td>3.61</td>
<td>3.75</td>
<td>4.11</td>
<td>3.69</td>
</tr>
<tr>
<td>In^{3+}</td>
<td>14.08</td>
<td>14.00</td>
<td>14.09</td>
<td>13.47</td>
<td>13.71</td>
<td>14.23</td>
<td>15.60</td>
<td>14.01</td>
</tr>
<tr>
<td>Ti^{4+}</td>
<td>3.56</td>
<td>3.52</td>
<td>3.57</td>
<td>3.41</td>
<td>3.47</td>
<td>3.66</td>
<td>3.94</td>
<td>3.48</td>
</tr>
<tr>
<td>Zr^{4+}</td>
<td>14.17</td>
<td>14.08</td>
<td>14.18</td>
<td>13.56</td>
<td>13.80</td>
<td>14.33</td>
<td>15.70</td>
<td>14.10</td>
</tr>
<tr>
<td>Sc^{3+}</td>
<td>13.56</td>
<td>13.48</td>
<td>13.57</td>
<td>12.98</td>
<td>13.21</td>
<td>13.71</td>
<td>15.02</td>
<td>13.49</td>
</tr>
<tr>
<td>La^{3+}</td>
<td>11.14</td>
<td>11.07</td>
<td>11.15</td>
<td>10.66</td>
<td>10.85</td>
<td>11.26</td>
<td>12.34</td>
<td>11.08</td>
</tr>
<tr>
<td>Ce^{3+}</td>
<td>12.22</td>
<td>12.15</td>
<td>12.23</td>
<td>11.69</td>
<td>11.49</td>
<td>12.35</td>
<td>13.54</td>
<td>12.16</td>
</tr>
<tr>
<td>Ce^{4+}</td>
<td>16.88</td>
<td>16.78</td>
<td>16.90</td>
<td>16.15</td>
<td>16.44</td>
<td>17.07</td>
<td>18.70</td>
<td>16.80</td>
</tr>
<tr>
<td>Nd^{3+}</td>
<td>12.00</td>
<td>11.93</td>
<td>12.01</td>
<td>11.46</td>
<td>11.69</td>
<td>12.13</td>
<td>13.30</td>
<td>11.94</td>
</tr>
<tr>
<td>Sm^{3+}</td>
<td>12.25</td>
<td>12.18</td>
<td>12.26</td>
<td>11.72</td>
<td>11.93</td>
<td>12.38</td>
<td>13.57</td>
<td>12.19</td>
</tr>
<tr>
<td>Gd^{3+}</td>
<td>12.38</td>
<td>12.31</td>
<td>12.39</td>
<td>11.85</td>
<td>12.06</td>
<td>12.52</td>
<td>13.72</td>
<td>12.32</td>
</tr>
<tr>
<td>Lu^{3+}</td>
<td>13.10</td>
<td>13.02</td>
<td>13.11</td>
<td>12.45</td>
<td>12.76</td>
<td>13.24</td>
<td>14.51</td>
<td>13.03</td>
</tr>
<tr>
<td>Th^{4+}</td>
<td>16.70</td>
<td>16.60</td>
<td>16.72</td>
<td>15.98</td>
<td>16.27</td>
<td>16.88</td>
<td>18.50</td>
<td>16.62</td>
</tr>
</tbody>
</table>
Free Energies of Solvation of Ions and EMF of Single Electrodes

Table I. Continued

<table>
<thead>
<tr>
<th>β</th>
<th>H$_2$O</th>
<th>CH$_3$OH</th>
<th>C$_2$H$_5$OH</th>
<th>HCOOH</th>
<th>CH$_3$CN</th>
<th>HCONH$_2$</th>
<th>N$_2$H$_4$</th>
<th>DMSO</th>
<th>Quinoline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.994</td>
<td>1.001</td>
<td>0.957</td>
<td>0.974</td>
<td>1.011</td>
<td>1.108</td>
<td>0.995</td>
<td></td>
<td>1.066</td>
</tr>
<tr>
<td>M$^{3+}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U$^{3+}$</td>
<td>11.95</td>
<td>11.88</td>
<td>11.96</td>
<td>11.44</td>
<td>11.64</td>
<td>12.08</td>
<td>13.24</td>
<td>11.89</td>
<td>12.74</td>
</tr>
<tr>
<td>U$^{4+}$</td>
<td>17.23</td>
<td>17.13</td>
<td>17.25</td>
<td>16.49</td>
<td>16.78</td>
<td>17.42</td>
<td>19.09</td>
<td>17.14</td>
<td>18.37</td>
</tr>
<tr>
<td>Sn$^{2+}$</td>
<td>8.10</td>
<td>8.06</td>
<td>8.11</td>
<td>7.75</td>
<td>7.89</td>
<td>8.19</td>
<td>8.97</td>
<td>8.06</td>
<td>8.63</td>
</tr>
<tr>
<td>Pb$^{2+}$</td>
<td>7.76</td>
<td>7.75</td>
<td>7.78</td>
<td>7.65</td>
<td>7.49</td>
<td>7.85*</td>
<td>8.61</td>
<td>7.77</td>
<td>8.27*</td>
</tr>
<tr>
<td>Zr$^{4+}$</td>
<td>18.14</td>
<td>18.03</td>
<td>18.16</td>
<td>17.36</td>
<td>17.67</td>
<td>18.34</td>
<td>20.10</td>
<td>18.05</td>
<td>19.34</td>
</tr>
<tr>
<td>Hf$^{4+}$</td>
<td>17.26</td>
<td>17.16</td>
<td>17.28</td>
<td>16.82</td>
<td>16.81</td>
<td>17.45</td>
<td>19.12</td>
<td>17.17</td>
<td>18.40</td>
</tr>
<tr>
<td>As$^{3+}$</td>
<td>15.36</td>
<td>15.21</td>
<td>15.51</td>
<td>14.70</td>
<td>14.96</td>
<td>15.53</td>
<td>17.02</td>
<td>15.28</td>
<td>16.37</td>
</tr>
<tr>
<td>Sb$^{3+}$</td>
<td>13.21</td>
<td>13.13</td>
<td>13.22</td>
<td>12.64</td>
<td>12.87</td>
<td>13.36</td>
<td>14.64</td>
<td>13.14</td>
<td>14.08</td>
</tr>
<tr>
<td>Bi$^{3+}$</td>
<td>12.49</td>
<td>12.42</td>
<td>12.50</td>
<td>11.95</td>
<td>12.17</td>
<td>12.63</td>
<td>13.84</td>
<td>12.43</td>
<td>13.31</td>
</tr>
<tr>
<td>Nb$^{3+}$</td>
<td>15.31</td>
<td>15.22</td>
<td>15.33</td>
<td>14.65</td>
<td>14.91</td>
<td>15.48</td>
<td>16.96</td>
<td>15.23</td>
<td>16.32</td>
</tr>
<tr>
<td>Cr$^{3+}$</td>
<td>15.02</td>
<td>14.93</td>
<td>15.04</td>
<td>14.37</td>
<td>14.63</td>
<td>15.19</td>
<td>16.64</td>
<td>14.94</td>
<td>16.01</td>
</tr>
<tr>
<td>F$^-$</td>
<td>-4.30</td>
<td>-4.27</td>
<td>-4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>-3.07</td>
<td>-2.91</td>
<td>-2.76</td>
<td>-3.32</td>
<td>-2.55</td>
<td>-2.95**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br$^-$</td>
<td>-2.81</td>
<td>-2.71</td>
<td>-2.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I$^-$</td>
<td>-2.48</td>
<td>-2.38</td>
<td>-2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru$^{2+}$</td>
<td>10.06</td>
<td>10.00</td>
<td>10.07</td>
<td>9.63</td>
<td>9.80</td>
<td>10.17</td>
<td>11.55</td>
<td>10.01</td>
<td>10.72</td>
</tr>
<tr>
<td>Os$^{2+}$</td>
<td>10.24</td>
<td>10.18</td>
<td>10.25</td>
<td>9.80</td>
<td>9.97</td>
<td>10.35</td>
<td>11.35</td>
<td>10.19</td>
<td>10.92</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>10.49</td>
<td>10.43</td>
<td>10.50</td>
<td>10.04</td>
<td>10.22</td>
<td>10.61</td>
<td>11.62</td>
<td>10.44</td>
<td>11.18</td>
</tr>
<tr>
<td>Co$^{3+}$</td>
<td>16.25</td>
<td>16.15</td>
<td>16.27</td>
<td>15.55</td>
<td>15.83</td>
<td>16.43</td>
<td>18.01</td>
<td>16.17</td>
<td>17.32</td>
</tr>
<tr>
<td>Rh$^{3+}$</td>
<td>15.33</td>
<td>15.24</td>
<td>15.35</td>
<td>14.67</td>
<td>14.93</td>
<td>15.50</td>
<td>16.99</td>
<td>15.28</td>
<td>16.34</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>10.74</td>
<td>10.63</td>
<td>10.75</td>
<td>10.28</td>
<td>10.46</td>
<td>10.86</td>
<td>11.90</td>
<td>10.69</td>
<td>11.45</td>
</tr>
<tr>
<td>Pt$^{2+}$</td>
<td>10.46</td>
<td>10.40</td>
<td>10.47</td>
<td>10.01</td>
<td>10.19</td>
<td>10.58</td>
<td>11.59</td>
<td>10.41</td>
<td>11.15</td>
</tr>
<tr>
<td>e$^-$</td>
<td>-1.56</td>
<td>-1.55</td>
<td>-1.56</td>
<td>-1.49</td>
<td>-1.52</td>
<td>-1.58</td>
<td>-1.73</td>
<td>-1.55</td>
<td>-1.66</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>-2.77</td>
<td>-2.75</td>
<td>-2.77</td>
<td>-2.65</td>
<td>-2.70</td>
<td>-2.80</td>
<td>-3.07</td>
<td>-2.76</td>
<td>-2.95</td>
</tr>
</tbody>
</table>
Table II. Standard electromotive forces of single electrodes \(\Phi \) in non-aqueous solutions at 25°C

<table>
<thead>
<tr>
<th>Stn. El.</th>
<th>H₂O</th>
<th>CH₃OH</th>
<th>C₂H₅OH</th>
<th>HCOOH</th>
<th>CH₃CN</th>
<th>HCONH₂</th>
<th>N₂H₄</th>
<th>DMSO</th>
<th>Quinoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺/H₂</td>
<td>4.42</td>
<td>4.50</td>
<td>4.42</td>
<td>5.12</td>
<td>4.68</td>
<td>4.33</td>
<td>3.09</td>
<td>4.52</td>
<td>3.64</td>
</tr>
<tr>
<td>Li⁺/Li</td>
<td>1.40</td>
<td>1.41</td>
<td>1.38</td>
<td>1.64</td>
<td>1.45</td>
<td>1.31</td>
<td>0.89</td>
<td>1.53</td>
<td>1.02</td>
</tr>
<tr>
<td>Na⁺/Na</td>
<td>1.71</td>
<td>1.78</td>
<td>1.76</td>
<td>1.70</td>
<td>1.81</td>
<td>1.66</td>
<td>1.27</td>
<td>1.73</td>
<td>1.43</td>
</tr>
<tr>
<td>K⁺/K</td>
<td>1.50</td>
<td>1.51</td>
<td>1.49</td>
<td>1.76</td>
<td>1.52</td>
<td>1.46</td>
<td>1.07</td>
<td>1.51</td>
<td>1.26</td>
</tr>
<tr>
<td>Rb⁺/Rb</td>
<td>1.43</td>
<td>1.52</td>
<td>1.50</td>
<td>1.67</td>
<td>1.51</td>
<td>1.47</td>
<td>1.08</td>
<td>1.52</td>
<td>1.21</td>
</tr>
<tr>
<td>Cs⁺/Cs</td>
<td>1.40</td>
<td>1.52</td>
<td>1.50</td>
<td>1.66</td>
<td>1.52</td>
<td>1.47</td>
<td>1.18</td>
<td>1.51</td>
<td>1.31</td>
</tr>
<tr>
<td>Cu⁺⁺/Cu</td>
<td>4.94</td>
<td>4.98</td>
<td>4.94</td>
<td>5.19</td>
<td>5.06</td>
<td>4.87</td>
<td>3.31</td>
<td>4.85</td>
<td>4.55</td>
</tr>
<tr>
<td>Cu⁺⁺/Cu</td>
<td>4.77</td>
<td>4.84</td>
<td>4.63</td>
<td>5.26</td>
<td>4.96</td>
<td>4.61</td>
<td>3.64</td>
<td>4.84</td>
<td>4.10</td>
</tr>
<tr>
<td>Ag⁺⁺/Ag</td>
<td>5.22</td>
<td>5.26</td>
<td>5.17</td>
<td>5.29</td>
<td>4.91</td>
<td>5.18</td>
<td>3.86</td>
<td>5.20</td>
<td>4.90</td>
</tr>
<tr>
<td>Au⁺⁺/Au</td>
<td>6.12</td>
<td>6.16</td>
<td>6.11</td>
<td>6.39</td>
<td>6.28</td>
<td>6.05</td>
<td>5.44</td>
<td>6.15</td>
<td>5.70</td>
</tr>
<tr>
<td>Be⁺⁺⁺/Be</td>
<td>2.72</td>
<td>2.80</td>
<td>2.71</td>
<td>3.26</td>
<td>3.05</td>
<td>2.58</td>
<td>1.37</td>
<td>2.78</td>
<td>1.89</td>
</tr>
<tr>
<td>Mg⁺⁺⁺/Mg</td>
<td>2.08</td>
<td>2.14</td>
<td>2.07</td>
<td>2.50</td>
<td>2.34</td>
<td>1.97</td>
<td>1.01</td>
<td>2.13</td>
<td>1.43</td>
</tr>
<tr>
<td>Ca⁺⁺⁺/Ca</td>
<td>1.55</td>
<td>1.62</td>
<td>1.56</td>
<td>1.92</td>
<td>1.93</td>
<td>1.48</td>
<td>1.18</td>
<td>1.61</td>
<td>1.02</td>
</tr>
<tr>
<td>Sr⁺⁺⁺/Sr</td>
<td>1.53</td>
<td>1.58</td>
<td>1.52</td>
<td>1.85</td>
<td>1.73</td>
<td>1.45</td>
<td>0.72</td>
<td>1.57</td>
<td>1.03</td>
</tr>
<tr>
<td>Ba⁺⁺⁺/Ba</td>
<td>1.52</td>
<td>1.56</td>
<td>1.51</td>
<td>1.81</td>
<td>1.70</td>
<td>1.44</td>
<td>0.78</td>
<td>1.55</td>
<td>1.07</td>
</tr>
<tr>
<td>Ra⁺⁺⁺/Ra</td>
<td>1.50</td>
<td>1.54</td>
<td>1.49</td>
<td>1.79</td>
<td>1.67</td>
<td>1.43</td>
<td>0.78</td>
<td>1.53</td>
<td>1.06</td>
</tr>
<tr>
<td>Zn⁺⁺⁺/Zn</td>
<td>3.66</td>
<td>3.76</td>
<td>3.78</td>
<td>4.07</td>
<td>3.94</td>
<td>3.57</td>
<td>2.68</td>
<td>3.72</td>
<td>2.98</td>
</tr>
<tr>
<td>Cd⁺⁺⁺/Cd</td>
<td>4.03</td>
<td>4.07</td>
<td>4.04</td>
<td>4.37</td>
<td>4.21</td>
<td>3.92</td>
<td>2.99</td>
<td>4.06</td>
<td>3.41</td>
</tr>
<tr>
<td>Hg⁺⁺⁺/Hg</td>
<td>5.27</td>
<td>5.33</td>
<td>5.26</td>
<td>5.68</td>
<td>5.52</td>
<td>5.17</td>
<td>4.25</td>
<td>5.32</td>
<td>4.64</td>
</tr>
<tr>
<td>Al⁺⁺⁺/Al</td>
<td>2.75</td>
<td>2.85</td>
<td>2.73</td>
<td>3.44</td>
<td>3.16</td>
<td>2.57</td>
<td>1.03</td>
<td>2.83</td>
<td>1.70</td>
</tr>
<tr>
<td>Ga⁺⁺⁺/Ga</td>
<td>3.97</td>
<td>4.03</td>
<td>3.96</td>
<td>4.42</td>
<td>4.24</td>
<td>3.85</td>
<td>2.84</td>
<td>4.02</td>
<td>3.28</td>
</tr>
<tr>
<td>Ga⁺⁺⁺/Ga</td>
<td>3.90</td>
<td>4.00</td>
<td>3.88</td>
<td>4.59</td>
<td>4.32</td>
<td>3.72</td>
<td>2.17</td>
<td>3.98</td>
<td>2.84</td>
</tr>
<tr>
<td>In⁺⁺⁺/In</td>
<td>4.17</td>
<td>4.19</td>
<td>4.17</td>
<td>4.33</td>
<td>4.27</td>
<td>4.13</td>
<td>3.77</td>
<td>4.19</td>
<td>3.93</td>
</tr>
<tr>
<td>In⁺⁺⁺/In</td>
<td>4.08</td>
<td>4.17</td>
<td>4.16</td>
<td>4.43</td>
<td>4.45</td>
<td>3.93</td>
<td>2.56</td>
<td>4.15</td>
<td>3.13</td>
</tr>
<tr>
<td>Ti⁺⁺⁺/Ti</td>
<td>4.08</td>
<td>4.12</td>
<td>4.08</td>
<td>4.24</td>
<td>4.17</td>
<td>3.99</td>
<td>3.70</td>
<td>4.17</td>
<td>3.85</td>
</tr>
<tr>
<td>Ti⁺⁺⁺/Ti</td>
<td>5.13</td>
<td>5.22</td>
<td>5.12</td>
<td>5.74</td>
<td>5.50</td>
<td>4.97</td>
<td>3.60</td>
<td>5.20</td>
<td>4.19</td>
</tr>
<tr>
<td>Sc⁺⁺⁺/Sc</td>
<td>2.34</td>
<td>2.42</td>
<td>2.33</td>
<td>2.92</td>
<td>2.69</td>
<td>2.19</td>
<td>0.88</td>
<td>2.41</td>
<td>1.45</td>
</tr>
<tr>
<td>Y⁺⁺⁺/Y</td>
<td>2.05</td>
<td>2.12</td>
<td>2.04</td>
<td>2.58</td>
<td>2.37</td>
<td>1.91</td>
<td>0.72</td>
<td>2.11</td>
<td>1.24</td>
</tr>
<tr>
<td>La⁺⁺⁺/La</td>
<td>2.05</td>
<td>2.12</td>
<td>2.04</td>
<td>2.53</td>
<td>2.34</td>
<td>1.93</td>
<td>0.85</td>
<td>2.11</td>
<td>1.31</td>
</tr>
<tr>
<td>Ce⁺⁺⁺/Ce</td>
<td>1.94</td>
<td>2.01</td>
<td>1.93</td>
<td>2.47</td>
<td>2.67</td>
<td>1.81</td>
<td>0.62</td>
<td>2.00</td>
<td>1.13</td>
</tr>
<tr>
<td>Ce⁺⁺⁺/Ce</td>
<td>2.96</td>
<td>3.06</td>
<td>2.94</td>
<td>3.69</td>
<td>3.40</td>
<td>2.77</td>
<td>1.14</td>
<td>3.04</td>
<td>1.85</td>
</tr>
<tr>
<td>Nd⁺⁺⁺/Nd</td>
<td>1.98</td>
<td>2.05</td>
<td>1.97</td>
<td>2.50</td>
<td>2.29</td>
<td>1.85</td>
<td>0.68</td>
<td>2.04</td>
<td>1.19</td>
</tr>
<tr>
<td>Sm⁺⁺⁺/Sm</td>
<td>2.01</td>
<td>2.08</td>
<td>2.00</td>
<td>2.54</td>
<td>2.33</td>
<td>1.88</td>
<td>0.69</td>
<td>2.07</td>
<td>1.20</td>
</tr>
<tr>
<td>Gd⁺⁺⁺/Gd</td>
<td>2.02</td>
<td>2.09</td>
<td>2.01</td>
<td>2.55</td>
<td>2.34</td>
<td>1.88</td>
<td>0.68</td>
<td>2.08</td>
<td>1.20</td>
</tr>
<tr>
<td>Lu⁺⁺⁺/Lu</td>
<td>2.19</td>
<td>2.27</td>
<td>2.18</td>
<td>2.84</td>
<td>2.53</td>
<td>2.05</td>
<td>0.78</td>
<td>2.26</td>
<td>1.33</td>
</tr>
<tr>
<td>Th⁺⁺⁺/Th</td>
<td>2.52</td>
<td>2.62</td>
<td>2.50</td>
<td>3.24</td>
<td>2.95</td>
<td>2.34</td>
<td>0.72</td>
<td>2.60</td>
<td>1.42</td>
</tr>
</tbody>
</table>
Free Energies of Solvation of Ions and EMF of Single Electrodes

Table II. Continued

<table>
<thead>
<tr>
<th>Stn. El.</th>
<th>H₂O</th>
<th>CH₃OH</th>
<th>C₂H₅OH</th>
<th>HCOOH</th>
<th>CH₃CN</th>
<th>HCONH₂</th>
<th>NH₃</th>
<th>DMSO</th>
<th>Quinoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>U³⁺/U</td>
<td>2.62</td>
<td>2.69f</td>
<td>2.61f</td>
<td>3.13f</td>
<td>2.93f</td>
<td>2.49f</td>
<td>1.33f</td>
<td>2.68f</td>
<td>1.83f</td>
</tr>
<tr>
<td>U⁴⁺/U</td>
<td>2.92</td>
<td>3.02f</td>
<td>2.90f</td>
<td>3.66f</td>
<td>3.37f</td>
<td>2.73f</td>
<td>1.06f</td>
<td>3.01f</td>
<td>1.78f</td>
</tr>
<tr>
<td>Sn⁴⁺/Sn</td>
<td>4.28</td>
<td>4.33f</td>
<td>4.27f</td>
<td>4.63f</td>
<td>4.49f</td>
<td>4.19f</td>
<td>3.41f</td>
<td>4.32f</td>
<td>3.75f</td>
</tr>
<tr>
<td>Pb⁴⁺/Pb</td>
<td>4.29</td>
<td>4.30f</td>
<td>4.27f</td>
<td>4.40f</td>
<td>4.56f</td>
<td>4.22f</td>
<td>3.44f</td>
<td>4.28f</td>
<td>3.80f</td>
</tr>
<tr>
<td>Ti⁴⁺/Ti</td>
<td>2.67</td>
<td>2.73f</td>
<td>2.66f</td>
<td>3.09f</td>
<td>2.93f</td>
<td>2.56f</td>
<td>1.61f</td>
<td>2.72f</td>
<td>2.02f</td>
</tr>
<tr>
<td>Zr⁴⁺/Zr</td>
<td>2.89</td>
<td>3.00f</td>
<td>2.87f</td>
<td>3.67f</td>
<td>3.36f</td>
<td>2.69f</td>
<td>0.93f</td>
<td>2.98f</td>
<td>1.69f</td>
</tr>
<tr>
<td>Hf⁴⁺/Hf</td>
<td>2.72</td>
<td>2.82f</td>
<td>2.70f</td>
<td>3.46f</td>
<td>3.17f</td>
<td>2.53f</td>
<td>0.86f</td>
<td>2.81f</td>
<td>1.58f</td>
</tr>
<tr>
<td>As⁷⁺/As</td>
<td>4.72</td>
<td>4.87f</td>
<td>4.57f</td>
<td>5.38f</td>
<td>5.12f</td>
<td>4.55f</td>
<td>3.06f</td>
<td>4.80f</td>
<td>3.71f</td>
</tr>
<tr>
<td>Sb⁷⁺/Sb</td>
<td>4.66</td>
<td>4.74f</td>
<td>4.65f</td>
<td>5.23f</td>
<td>5.06f</td>
<td>4.51f</td>
<td>3.23f</td>
<td>4.73f</td>
<td>3.79f</td>
</tr>
<tr>
<td>Bi⁷⁺/Bi</td>
<td>4.62</td>
<td>4.69f</td>
<td>4.61f</td>
<td>5.16f</td>
<td>4.94f</td>
<td>4.48f</td>
<td>3.27f</td>
<td>4.68f</td>
<td>3.80f</td>
</tr>
<tr>
<td>V⁷⁺/V</td>
<td>3.24</td>
<td>3.30f</td>
<td>3.23f</td>
<td>3.65f</td>
<td>3.49f</td>
<td>3.13f</td>
<td>2.20f</td>
<td>3.29f</td>
<td>2.61f</td>
</tr>
<tr>
<td>Nb⁶⁺/Nb</td>
<td>3.32</td>
<td>3.41f</td>
<td>3.30f</td>
<td>3.98f</td>
<td>3.72f</td>
<td>3.15f</td>
<td>1.67f</td>
<td>3.40f</td>
<td>2.31f</td>
</tr>
<tr>
<td>Te⁶⁺/Te</td>
<td>4.99</td>
<td>5.11f</td>
<td>4.97f</td>
<td>5.86f</td>
<td>5.51f</td>
<td>4.77f</td>
<td>2.81f</td>
<td>5.09f</td>
<td>3.66f</td>
</tr>
<tr>
<td>Po⁶⁺/Po</td>
<td>5.07</td>
<td>5.13f</td>
<td>5.06f</td>
<td>5.47f</td>
<td>5.31f</td>
<td>4.97f</td>
<td>4.07f</td>
<td>5.12f</td>
<td>4.46f</td>
</tr>
<tr>
<td>Cr⁶⁺/Cr</td>
<td>3.52</td>
<td>3.58f</td>
<td>3.51f</td>
<td>3.94f</td>
<td>3.77f</td>
<td>3.41f</td>
<td>2.47f</td>
<td>3.57f</td>
<td>2.88f</td>
</tr>
<tr>
<td>Cr⁶⁺/Cr</td>
<td>3.71</td>
<td>3.80f</td>
<td>3.69f</td>
<td>4.36f</td>
<td>4.10f</td>
<td>3.54f</td>
<td>2.09f</td>
<td>3.79f</td>
<td>2.72f</td>
</tr>
<tr>
<td>F⁻/F₂</td>
<td>7.07</td>
<td>7.04f</td>
<td>7.07f</td>
<td>7.07f</td>
<td>7.07f</td>
<td>7.07f</td>
<td>7.07f</td>
<td>7.07f</td>
<td>7.07f</td>
</tr>
<tr>
<td>Cl⁻/Cl₂</td>
<td>5.78</td>
<td>5.62f</td>
<td>5.47f</td>
<td>5.97f</td>
<td>5.36f</td>
<td>5.60f</td>
<td>5.60f</td>
<td>5.60f</td>
<td>5.60f</td>
</tr>
<tr>
<td>Br⁻/Br₂</td>
<td>5.49</td>
<td>5.39f</td>
<td>5.20f</td>
<td>5.15f</td>
<td>5.15f</td>
<td>5.15f</td>
<td>5.15f</td>
<td>5.15f</td>
<td>5.15f</td>
</tr>
<tr>
<td>I⁻/I₂</td>
<td>4.95</td>
<td>4.86f</td>
<td>4.73f</td>
<td>4.73f</td>
<td>4.73f</td>
<td>4.73f</td>
<td>4.73f</td>
<td>4.73f</td>
<td>4.73f</td>
</tr>
<tr>
<td>Mn⁷⁺/Mn</td>
<td>3.37</td>
<td>3.88f</td>
<td>3.81f</td>
<td>4.23f</td>
<td>4.07f</td>
<td>3.72f</td>
<td>2.80f</td>
<td>3.87f</td>
<td>3.19f</td>
</tr>
<tr>
<td>Fe⁷⁺/Fe</td>
<td>3.98</td>
<td>4.04f</td>
<td>3.97f</td>
<td>4.40f</td>
<td>4.24f</td>
<td>3.87f</td>
<td>2.92f</td>
<td>4.03f</td>
<td>3.70f</td>
</tr>
<tr>
<td>Fe⁶⁺/Fe</td>
<td>4.38</td>
<td>4.49f</td>
<td>4.39f</td>
<td>5.04f</td>
<td>4.79f</td>
<td>4.24f</td>
<td>2.78f</td>
<td>4.47f</td>
<td>3.41f</td>
</tr>
<tr>
<td>Ru⁶⁺/Ru</td>
<td>4.87</td>
<td>4.93f</td>
<td>4.86f</td>
<td>5.30f</td>
<td>5.13f</td>
<td>4.76f</td>
<td>3.78f</td>
<td>4.92f</td>
<td>4.21f</td>
</tr>
<tr>
<td>Os⁶⁺/Os</td>
<td>5.12</td>
<td>5.18f</td>
<td>5.11f</td>
<td>5.56f</td>
<td>5.39f</td>
<td>5.01f</td>
<td>4.01f</td>
<td>5.17f</td>
<td>4.44f</td>
</tr>
<tr>
<td>Co⁷⁺/Co</td>
<td>4.14</td>
<td>4.20f</td>
<td>4.13f</td>
<td>4.59f</td>
<td>4.41f</td>
<td>4.02f</td>
<td>3.01f</td>
<td>4.19f</td>
<td>3.45f</td>
</tr>
<tr>
<td>Co⁶⁺/Co</td>
<td>4.82</td>
<td>4.92f</td>
<td>4.80f</td>
<td>5.52f</td>
<td>5.24f</td>
<td>4.64f</td>
<td>3.06f</td>
<td>4.90f</td>
<td>3.75f</td>
</tr>
<tr>
<td>Rh⁷⁺/Rh</td>
<td>5.22</td>
<td>5.31f</td>
<td>5.20f</td>
<td>5.88f</td>
<td>5.62f</td>
<td>5.05f</td>
<td>3.56f</td>
<td>5.30f</td>
<td>4.21f</td>
</tr>
<tr>
<td>Ni⁷⁺/Ni</td>
<td>4.17</td>
<td>4.28f</td>
<td>4.16f</td>
<td>4.63f</td>
<td>4.45f</td>
<td>4.05f</td>
<td>3.01f</td>
<td>4.22f</td>
<td>3.40f</td>
</tr>
<tr>
<td>Pd⁷⁺/Pd</td>
<td>5.41</td>
<td>5.47f</td>
<td>5.40f</td>
<td>5.85f</td>
<td>5.68f</td>
<td>5.30f</td>
<td>4.30f</td>
<td>5.46f</td>
<td>4.73f</td>
</tr>
<tr>
<td>Pt⁷⁺/Pt</td>
<td>5.62</td>
<td>5.68f</td>
<td>5.61f</td>
<td>6.07f</td>
<td>5.89f</td>
<td>5.50f</td>
<td>4.49f</td>
<td>5.67f</td>
<td>4.93f</td>
</tr>
<tr>
<td>e⁻/e⁺</td>
<td>1.56</td>
<td>1.55f</td>
<td>1.56f</td>
<td>1.49f</td>
<td>1.52f</td>
<td>1.58f</td>
<td>1.73f</td>
<td>1.55f</td>
<td>1.66f</td>
</tr>
<tr>
<td>OH⁻/OH⁺</td>
<td>6.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>