
 

Instructions for use

Title A constitutive model of cyclic viscoplasticity considering changes in subsequent viscoplastic deformation due to the
evolution of dislocation structures

Author(s) Mayama, T.; Sasaki, K.; Ishikawa, H.

Citation International Journal of Plasticity, 23(5), 915-930
https://doi.org/10.1016/j.ijplas.2006.10.003

Issue Date 2007-05

Doc URL http://hdl.handle.net/2115/26212

Type article (author version)

File Information IJP23-5.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


A Constitutive Model of Cyclic Viscoplasticity 

Considering Changes in Subsequent Viscoplastic Deformation 

due to the Evolution of Dislocation Structures 

 

T. Mayamaa* Research Associate 

K. Sasakia Associate Professor 

H. Ishikawab Professor 

 
a Division of Human Mechanical Systems and Design, Hokkaido University, N13W8, Kita-ku, 

Sapporo, JAPAN 

b Department of Mechanical Engineering, Kyusyu Sangyo University, Matsukadai 2-3-1, Higashi-ku, 

Fukuoka, JAPAN 

 

Abstract 

This paper presents a unified constitutive model for cyclic viscoplasticity and 

changes occurring in subsequent viscoplastic deformation due to the evolution of 

dislocation structures. The model considers the viscoplastic potential and a modified 

Ramberg-Osgood law. Stress is assumed to divide into three components: back stress 

(the center of the yield surface), flow stress (the radius of the yield surface), and viscous 

stress (overstress). The modification of the Ramberg-Osgood law is carried out 

employing memorized back stress. The applicability of the model to monotonic loading, 

pure creep, tension-compression cyclic loading, subsequent creep, and subsequent 

stress-relaxation were verified by comparing the predictions with experiments of Type 

316L stainless steel at room temperature. The relationships between the internal 

variables in the model and the dislocation structures organized by cyclic deformations 

are also discussed. 
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1. Introduction 

   Micro-structures such as dislocation structures and crystallographic texture in 

materials strongly affect inelastic deformation which in turn affects the dislocation 

structures and crystallographic texture. A number of investigations of the relationship 

between macroscopic inelastic deformation and changes in dislocation structures have 

been reported (e.g. Yang and Lee 1993; Panin 1998; Bocher et al. 2001; Adams et al. 

2004; Trivedi et al. 2004; Houtte et al. 2005; Zhang and Jiang 2005). However the 

relationship between dislocation-structures and macro-deformation is not sufficiently 

understood because there are complex hierarchical phenomena in the scale of 

dislocation structures which occur at an intermediate scale between discrete atomic 

scale and continuous macro scale. 

Zhang and Jiang (2005) investigated reversibility of stress-strain responses and 

dislocation structures and found that the stress-strain curve is reversible when the 

magnitude of the loading is changed from high to low values or when the loading path 

is changed from nonproportional to proportional even when the dislocation 

substructures are not completely reversible. These results imply that a dislocation 

structure is not uniquely correlated to the stress-strain behavior during cyclic loading. 

Similarly, Mayama and Sasaki (2006) showed that dislocation structures are strikingly 

different during cyclic hardening and cyclic softening even when subjected to the 

similar stress-strain curves. Further, even when the stress-strain curves before the 

subsequent tests are very similar, the subsequent viscoplastic deformation such as creep 

and stress relaxation is different for different numbers of cycles of cyclic preloading. 

This leads to the conclusion that a model of cyclic viscoplasticity considering 

subsequent viscoplastic loading must account for both macroscopic deformation 

behavior and also for the dislocation structures.  

Recently, experimental and theoretical investigations have led to the development of 

constitutive models considering the microstructure of materials (Estrin et al. 1996; 



Estrin 1998; Estrin et al. 1998; Teodosiu and Hu 1995; Li et al. 2003; Uenishi and 

Teodosiu 2004; Bucher et al. 2004; Voyiadjis and Abed 2005; Bouvier et al. 2005; Abu 

Al-Rub et al. 2006; Brinckmann et al. 2006; Kuroda et al. 2006). Most of these recent 

physically-based models are developed based on concepts of dislocation structures 

rather than dislocation density as employed by classical Taylor hardening theory. Estrin 

(1998) proposed a dislocation density based constitutive model and extended it to 

describe deformation of all hardening regions. In that model dislocation densities are 

distinguished into a high dislocation density phase (cell wall) and a low dislocation 

density phase (cell interior), and so considers the dislocation structures. In the model 

proposed by Teodosiu and Hu (1995) dislocations are decomposed into currently active 

dislocations in the slip systems and dislocations in persistent dislocation structures 

connected with latent hardening. As a result, this model successfully describes large 

deformations with loading direction changes with only a small number of material 

parameters. 

The present study proposes a constitutive model for cyclic viscoplasticity based on 

observations of dislocation structures. The model consists of a modified 

Ramberg-Osgood law and a kinematic hardening rule obtained from the viscoplastic 

potential. In the model, stress is assumed to divide into three parts: back stress (the 

center of the yield surface), time-independent flow stress, and time-dependent viscous 

stress (overstress) (e.g. Colak 2005; Colak and Krempl 2005). The internal variables in 

the model are defined considering the microstructures organized by inelastic 

deformation. The predictions by the proposed model are compared with the 

experimental results. 

 

2. Formulation of Constitutive Model for Viscoplasticity 

This section proposes a unified phenomenological model for viscoplasticity. The 

relationship between the model and microstructure will be discussed in section 4. 



The viscoplastic potential is assumed as 
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where  indicates the MacAuley bracket ( )1
2x x x= + , H  is the drag stress, 

R is the flow stress, and  is a material constant. The equivalent stress n σ  in Eq.(1) is 

represented as 
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where the colon (:) denotes the tensor product contracted twice,  and  are the 

stress tensor and kinematic back stress tensor, respectively, and C  is the plastic 

deformation induced anisotropic tensor of the 4

σ X

th rank. 

The normality hypothesis gives the following viscoplastic strain rate 
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The viscoplastic work rate is defined as 
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where the period ( ⋅ ) denotes a scalar product. 

Substituting Eq.(3) into (4) gives Eq.(5). 
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Then, from Eqs.(3) and (5), the flow rule is given by Eq.(6). 
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   In Eqs.(1), (3), and (5), the flow stress R  is assumed from conventional formulas, 

depending on the accumulated equivalent viscoplastic strain as 
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where 0R , λ , and  are material constants. The accumulation of the viscoplastic 

strain leads to the increase of the number of mobile and immobile dislocations in 

inelastically deformed material. The strain hardening is considered as a consequence of 

the increase in dislocation density in classical dislocation theory. Therefore, the strain 

hardening and the accumulated viscoplastic strain are correlated in Eq.(7). The 

accumulation of the viscoplastic strain could be correlated to the increase of randomly 

scattering dislocations as discussed in section 4. 

c

From Eq.(5) the equivalent stress becomes 
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where H  is assumed to be rate-dependent and  to be rate-independent. Eqs.(2) and 

(8) show that the equivalent stress may be considered the sum of 3 stress components; 

n



the kinematic back stress , the viscous stress (or overstress) ijX ( )
1

v nH ε& , and the flow 

stress R . Therefore a differentiation of Eq.(8) with respect to time gives Eq.(9). 

 

( ) ( )
1 1 nv

v vn HH
n
εσ ε ε

−

= +
&&

& & && n R+ & .    (9) 

 

Differentiation of Eq.(2) gives 
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The following Ziegler’s law of evolution of the kinematic back stress is used here 
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Substituting Eq.(11) into Eq.(10), Eq.(10) becomes 
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From Eqs.(9) and (12), μ&  is expressed as 

 

( ) ( ) (3 3
2 4

μ
σ σ

= − + − −σ X : C :σ σ X : C : σ X&& & )  



 

( ) ( )
1 1 nv

v vn nH H
n
εε ε R

σ σ σ

−

− −
& &&&

& & − . (13) 

 

Substituting Eq.(13) into Eq.(11), the equation of evolution of back stress is 
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A constitutive model employing an Armstrong-Frederick type kinematic hardening 

rule, like the Chaboche model (1989), defines a plastic modulus, and models of this 

kind can describe non-linearity or roundness of the stress-strain relation. The present 

model, Eq.(14) is derived from the differentiation of the equivalent stress and the 

Ziegler law of evolution of back stress, and it is necessary to define a plastic modulus to 

express non-linearity of the stress-strain relation. 

   The following power law is used to represent the nonlinear plastic modulus. 
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where E  is Young’s modulus and K  is a material constant,  and  are the 

reference stress and the exponent of hardening, and 

D m

σ̂  and ˆvε  are defined in Eqs.(16) 

and (17). 
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here s′σ  and  express the stress deviator component of R′X sσ  and . The RX sσ , 

, and  tensors are the quasi-static stress, the residual back stress, and the residual 

viscoplastic strain, respectively. Figure 1 is a schematic diagram of the concept of the 

constitutive model in the stress space. Now,  and  are defined as the “memory 

point”, the point where the loading direction changes, and  and  are updated to 

the values of  and . As a result, the memory point is the new origin of the stress 

of the power law as shown in Eq.(15). The new memory point  and  maintains 

its value unless the loading direction is changed. Therefore, the differentiation of 

Eq.(15) becomes 

RX Rε
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As shown above, the proposed memory point concept is clear for uniaxial loading 

conditions. For multi-axial non-proportional loading conditions, however, various 

loading direction changes variously in contrast to proportional loading where only fully 

reversed direction change occurs. Therefore, further modification of the model and 

more detailed explanations are necessary when the proposed model is applied to 

non-proportional loading. For example, the authors have been developed the other form 

of the constitutive model for non-proportional loading experimental results in biaxial 

ratcheting loading, and proposed the non-proportionality parameters of loading path 



(Mayama et al., 2004). In the present study, the non-proportionality parameters are not 

included in the model for simplicity because we conducted material tests only under 

uniaxial loading condition. 

The plastic modulus  is defined as G
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In Eqs.(15), (18), and (19)  and  depend on the accumulated viscoplastic strain 

at the memory point, and are assumed as 
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where , iD hα , , ha sα , sa , , im β , and b  are material constants. The  and 

 values become  and  during the initial loading, and  and  after the 

first loading direction change. The changes in  and  are caused by deformation 

induced anisotropy, and it is not necessary to include an anisotropic coefficient in 

Eqs.(16) and (17). 
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   The viscoplastic deformation induced anisotropy coefficient  in the subsequent 

yield surface formulation is represented in terms of viscoplastic strain as in Ishikawa 

(1997) 

C
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where  is the fourth-rank symmetric tensor, expressed by the Kronecker delta I ijδ : 
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where 1A  and 2A  are material constants and ⊗  denotes the tensor product. 

   The following is a description of viscoplastic deformation using the present model. 

Figure 1 is a schematic diagram of the relationship between the stress , the 

quasi-static stress 

σ
sσ , the kinematic back stress , and the residual back stress . 

The relationship between the equivalent quasi-static stress rate 

X RX
sσ&  and the equivalent 

viscoplastic strain rate ˆvε&  from a “memory point” is determined by Eq.(18). Assuming 

that the directions of the stress rate  and quasi-static stress rate σ& sσ&  are the same, the 

quasi-static stress sσ  is equal to the stress  without the viscous stress (or overstress) σ

( )
1

v nH ε&  ( s= −σ σ ), and the total stress is determined by adding the time-dependent 

viscous stress to the quasi-static stress in the direction of the quasi-static stress rate. 

Finally, the kinematic back stress is calculated by Eq.(14). 

 

3. Experimental Results 

3.1 Experimental procedure 

Material tests to verify the applicability of the proposed model were conducted. The 

specimens used were a drawn tube of Type 316L stainless steel subjected to solution 

heat treatment. The tube had a 32mm outer diameter and a 6mm wall thickness and was 



annealed by the manufacturer at 1070˚C for 5 minutes followed by water quenching. 

The chemical composition was 0.014C, 0.41Si, 1.14Mn, 0.028P, 12.15Ni, 16.22Cr, 

2.06Mo, and Fe balance in weight percent. Tubular specimens were machined from this 

tube as shown in Fig.2. Young’s modulus of the specimen at room temperature was 

E=200GPa. 

A servo-controlled axial-torsional testing machine (Shimazu EHF-EB10), with a 

Shimazu 4825 controller and personal computer, were used for the computerized testing 

and data acquisition. Strain was measured using two strain gauges applied on opposite 

sides of the specimen. The axial force was measured using the load cell in the machine. 

Four types of tests were conducted at room temperature: (1) monotonic loading tests 

at strain rates of 0.1, 0.01, or 0.001%/sec; (2) pure creep tests at stresses of 250, 275, or 

300MPa for 1000sec; (3) a subsequent creep tests at a stress level of 330MPa after 10 or 

50 cycles of tension-compression cyclic loading at the 0.01%/sec strain rate with a 

strain range of 1.0%; (4) a subsequent stress relaxation tests at 0.5% of the tensile strain 

after 10 or 50 cycles of tension-compression cyclic loading at the strain rate of 

0.01%/sec with a strain range of 1.0%. 

3.2 Monotonic loading tests 

   Figure 3 shows the stress-strain curves at room temperature of the monotonic 

loading tests under the 0.1%/sec (○), 0.01%/sec (□), and 0.001%/sec (×) strain rates, 

showing a strain rate dependence. The results show that Type 316L stainless steel is 

strain rate dependent at room temperature, i.e. monotonic loading under a faster strain 

rate lead to higher stress. 

3.3 Pure Creep Test 

   Figure 4 shows pure creep curves at room temperature over 1000 seconds at stresses 

of 250MPa (○), 275MPa (□), and 300MPa (×) after the tensile loading at a stress rate of 

5MPa/sec. Significant transient creep is observed at all stress levels. 

3.4 Subsequent Creep Tests after Tension-Compression Cyclic Pre-loading 



   Figure 5 shows the stress-strain curve of cyclic loading with the strain range 1.0% 

under the strain rate 0.01%/sec. The stress-strain curve shows significant cyclic 

hardening. Figure 6 shows the relationship between the maximum peak stress and the 

number of cycles during the cyclic loading with the open circles (○) showing the 

experimental results. The maximum peak stress initially increases and then decreases 

after the 20th cycle. As shown in Fig.6, the maximum peak stresses of the 10 and 50 

cycles are almost the same values. Figure 7 shows the stress-strain curves of the 10 and 

50 cycles. The stress-strain curves are also almost the same. This suggests that there is 

no difference between the macroscopic experimental behaviors of the 10 and 50 cycles. 

It should be noted that the cyclic hardening of austenitic stainless steel depends on the 

strain range as shown by Kang et al. (2003). The strain hardening with larger strain 

ranges is more significant than that with smaller strain ranges, which means that the 

transition from cyclic hardening to cyclic softening is also strain range dependent. 

Therefore, the number of cycles and cyclic hardening and softening behavior shown in 

Figs. 6 and 7 are valid only for the present experimental condition. In the present study, 

we have not concentrate on the amplitude-dependent cyclic loading behavior. In order to 

understand the essential mechanism in cyclic plasticity, however, the further 

investigations have to be made on the relationship between the strain 

amplitude-dependent cyclic loading and the organization of dislocation structures. 

Figure 8 shows the subsequent creep curves after the 10 cycles (○) and 50 cycles (□) 

of cyclic loading shown in Figs.6 and 7. The creep curves are different although the 

stress-strain curves after 10 and 50 cycles are the same as shown in Fig.7. 

3.5 Subsequent Stress Relaxation Tests after Tension-Compression Cyclic 

Pre-loading 

   Figure 9 shows the relationships between relaxed stress and time during the 

subsequent stress relaxation tests at a strain 0.5% after 10 cycles (○) and 50 cycles (□) 

of cyclic loading as shown in Figs.6 and 7. The relationships are clearly different 



although the stress just before the each relaxation tests is the same (310MPa). Therefore, 

the amounts of the relaxed stress decreases with the increase in the number of cycle of 

the cyclic preloading while the stress-strain curves after 10 cycles and 50 cycles are the 

same as shown in Fig.7. 

 

4. Numerical Descriptions and Discussion 

   The subsequent creep and stress relaxation in Figs.8 and 9 show that the subsequent 

viscoplastic deformation on Type 316L stainless steel depends on the cyclic preloading. 

These results are similar to the results for Type 304 stainless steel in a previous paper 

(Mayama and Sasaki 2006). Both Type 304 and Type 304 stainless steels show 

qualitatively similar cyclic hardening and softening, the subsequent creep, the 

subsequent stress relaxation, and dislocation structural changes. From the experimental 

results for Type 304 stainless steel, it has been assumed that the different subsequent 

deformations are caused by different dislocation structures forming due to cyclic 

preloading. The dislocation structures initially increase randomly and cyclic hardening 

occurs. After some number of cycles, the randomly configured dislocations organize 

into cell structures, which are low energy dislocation structures caused by the cyclic 

loadings and the result is a cyclic softening. 

The present study also observed dislocation structures after the cyclic loading of 

Type 316L stainless steel. Figs.10 (a) and (b) show the dislocation structures after 10 

and 50 cycles of tension-compression cyclic loading. The dislocation structure after 10 

cycles shows scattered dislocations and after 50 cycles there are dislocation cell 

structures similar to those in the previous paper (Mayama and Sasaki 2006). The 

subsequent creep and stress relaxation cannot be predicted from conventional 

phenomenological models because these macroscopic models assume that the amount 

of viscoplastic deformation depends on only the strain (or stress) rate. To predict 

subsequent creep and stress relaxation, a model must consider the loading history as it 



relates to the microstructure. 

The experimental results and the observed dislocation structure show that the peak 

stress during the cyclic loading and the amount of viscous deformation decrease and the 

dislocations organize cell structure after the sufficiently large number of cycles of the 

cyclic loading. The decreases of the peak stress and the viscous deformation suggest 

that the viscous stress ( )1 nvH ε&  (or over stress) should decrease in Eq. (8). The 

observation suggests that the dislocation cell structure contribute to the cyclic softening 

while the uniformly scattering dislocations are seen during cyclic hardening. The 

accumulation of the viscoplastic strain may correlated to the cell structure organization 

because the cell structure has been organized after the large number of cyclic hardening. 

In this study, therefore, the decrease of the viscous stress (or over stress) is modeled as 

the scalar function of the accumulated viscoplastic strain H  in Eqs.(8) and (9) as: 
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where satH , η , and sh  are material parameters. 

The experiments in this study are for the uniaxial condition with small strains. For 

uniaxial isotropic loading, Eqs. (14) and (18) reduce to 
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where tcε , tcσ , and tcX  are the tension-compression axial components of the strain, 

stress, and back stress, respectively. 



   Using Eqs.(26), (27), and the internal fuctions Eqs.(7), (20), (21), and (25) with the 

material parameters as shown in Table 1, numerical calculations were conducted. 

In Fig.3 the solid lines show the calculated stress-strain curves and the broken line is 

the calculated back stress arising from the monotonic loading tests. The predicted 

stress-strain curves agree well with the experimental results. The back stress does not 

change due to the strain rate as would be expected when the static hardening surface is 

not affected by strain rate. 

In Fig.4 the solid lines show the calculated creep curves, and the experimental 

results and predictions show good agreement. 

In Fig.6 the solid line shows the model calculations of the relationship between the 

maximum peak stress and the number of cycles during cyclic loading. The model 

predictions and the experimental results show good agreement. In Fig.11 the open 

circles (○) and the solid line show the predicted stress-strain curves after the 10 and 50 

cycles. The predictions for the stress-strain curves agree well with each other, similar to 

the experimental results in Fig.7. 

In Fig.8, the solid lines show the predictions of the subsequent creep curves after 

cyclic preloading. In Fig.9 the solid lines show the predictions of the subsequent stress 

relaxation curves after cyclic preloading. Figures 8 and 9 show the good applicability of 

the proposed model to the different subsequent viscoplastic deformations following 

cyclic preloading. 

Figure 12 is a schematic diagram of the changes in yield and viscous surfaces with 

10 and 50 cycles of preloading. The very similar stress-strain curves after 10 and 50 

cycles in Fig.7 suggest that the back stress-strain trajectories should also be similar, and 

the similar peak stresses at the 10 and 50 cycles suggest that specimens may display 

similar total values of flow stress R  and viscous stress ( )1 nvH ε&  (or over stress). The 

total value of the flow stress R  and viscous stress ( )1 nvH ε&  equals the effective 

stress −σ X . Therefore, ignoring anisotropy in Eq.(8) the following equation is 



obtained 
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where , , 10thR
50thR ( )110th

nvH ε& , ( )150th

nvH ε& , 
10th−σ X , and 

50th−σ X  are the flow 

stresses, viscous stresses, and effective stresses at the 10th and 50th cycle of preloading, 
respectively. 

The experimental results of the different subsequent deformations shown in Figs. 8 

and 9 suggest that the viscous stress at the 10th cycle should be larger than that at the 

50th cycle. Therefore, considering Eq.(28), the following relations are obtained, 

 

10 50th thH H>  ,     L HR R< .    (29) 

 

These changes in internal variables may be correlated to the changes in 

microstructures. From the TEM observations of dislocation structures in Fig.10 and the 

previous paper (Mayama and Sasaki 2006), it can be assumed that the flow stress is 

related to the density of a randomly increased number of scattered dislocations, which 

leads to the cyclic hardening and larger time-dependent deformations, and the viscous 

stress is related to the organization of dislocation structures, which leads to the cyclic 

softening and the decrease in time dependent deformation. The cyclic hardening and 

larger time-dependent deformation would appear to be contradictory phenomena. 

However, they can be explained by some dislocation structures posing limited obstacles 

for cyclic loading and these dislocation structures not acting as obstacles to subsequent 

time-dependent deformation. In other words, hardening and softening could depend on 

the loading conditions. A similar conclusion has been suggested elsewhere (El-Danaf et 

al. 2001, Mayama and Sasaki 2006). 



Thielen et al. (1976) have conducted the strain controlled low cycle fatigue of a 

4140 steel at room temperature. They discuss that transmission electron microscopy 

shows cyclic softening resulted in part from rearrangement of the dislocation structure 

and reduction of dislocation density. Recent investigations also suggest that the 

organization of dislocation structures could lead to cyclic softening (Fujii et al. 2001, 

Petrenec et al. 2006). Fujii et al. (2001) have studied the cyclic softening after the initial 

hardening of a polycrystalline 3003 aluminum alloy. In their high stress amplitude 

cyclic loading tests, cell structures are dominant at the final stage. Petrenec et al. (2006) 

have observed the dislocation structure in polycrystalline X10CrAl24 ferritic stainless 

steel cyclically strained with constant plastic strain amplitude. In their high-amplitude 

cyclic loading, wall, labyrinth and cell structures are produced. They conclude that 

increase in the volume fraction occupied by wall structures is responsible for the cyclic 

softening. Therefore, it might be reasonable to correlate the formation of the cell 

structures to the cyclic softening in the present study. 

 

5. Conclusions 

   This study proposes a unified constitutive model for cyclic plasticity and subsequent 

viscoplastic deformation. The model employs the viscoplastic potential and static 

hardening surface. To describe the subsequent deformation after cyclic preloading, 

internal variables relating to micro-scale dislocation structures were introduced. To 

verify the proposed model experiments of monotonic loading, pure creep, cyclic loading, 

and subsequent viscoplastic deformation of Type 316L stainless steel at room 

temperature were predicted by the model, and the following conclusions were obtained: 

(1) A constitutive model for cyclic viscoplasticity was constructed assuming that the 

cyclic hardening is related to a macroscopic isotropic hardening and an increase in 

microscopic dislocation density, and the cyclic softening is related to a decrease in 

macroscopic viscous stress (or overstress) and the organization of microscopic low 



energy dislocation structures (cell structures). 

(2) The proposed model describes the monotonic loading under constant strain rates, 

pure creep at three different stress levels, and cyclic loading in a constant strain 

range under a constant strain rate. The relationship between the peak stresses and 

the number of cycles during the cyclic loading is well predicted as is the 

stress-strain curve of the cyclic loading. 

(3) Assuming that both the flow stress and viscous stress (or overstress) could change in 

value during cyclic loading, internal functions of accumulated viscoplastic strain 

were incorporated. Consequently, the subsequent viscoplastic deformation is well 

predicted by the model. 

(4) The constitutive modeling and the observations of dislocation structures suggest that 

the increase of flow stress and the decrease of viscous stress could be correlated to 

the increase in randomly scattered dislocations and an organization of dislocation 

structures. 
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Table 1 Material parameters of Type316L stainless steel 
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Fig.1 Schematic diagram of the constitutive model in the stress space 
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Fig.2 The geometry of specimens 
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Fig.3 Stress-strain curves of monotonic loading tests under strain rates of 0.1, 0.01, 

and 0.001%/sec with model predictions 
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Fig.4 Creep curves of pure creep tests at stresses of 250, 275, and 300MPa with 

model predictions 
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Fig.5 Stress-strain curve of cyclic loading under a strain rate of 0.01%/sec with 

strain amplitude 0.5% 
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Fig.6 Maximum peak stresses versus the number of cycles during cyclic loading 

under a strain rate of 0.01%/sec with strain amplitude 0.5% with model 

predictions 



 

 

 

 

 

 

 

 

-400

-300

-200

-100

0

100

200

300

400

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

 10th cycle
 50th cycle

Axial strain , %

A
xi

al
 st

re
ss

 , 
M

Pa

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 The measured stress-strain curves at the 10th and 50th cycle of cyclic loading 

under a strain rate of 0.01%/sec with strain amplitude 0.5% 
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Fig.8 Creep curves of subsequent creep tests at a stress of 330MPa after 10 and 50 

cycles of cyclic loading with model predictions 



 

 

 

 

 

 

 

 

275

280

285

290

295

300

305

310

0 200 400 600 800 1000 1200

After 10cycles
After 50cycles
 Prediction

Time , sec

R
el

ax
ed

 st
re

ss
 , 

M
Pa

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 Stress relaxation curves of subsequent stress relaxation tests at a strain of 0.5% 

after 10 and 50 cycles of cyclic loading with model predictions 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) After 10 cycles                    (b) After 50 cycles 

 

Fig.10 Micrographs of dislocation structures after cyclic loading  

in Type316L stainless steel 
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Fig.11 Predicted stress-strain curves of the 10th and 50th cycle of cyclic loading 
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              (a) After 10 cycles                 (b) After 50 cycles 

 

Fig.12 Schematic diagram of change in yield surface and viscous surface 



 

 

 

 

 

 

 

 

 

 

Table 1  Material parameters of Type 316L stainless steel 

K [MPa] D0 [MPa] ah αh m0 b R0 [MPa] c λ
0.05 110 0.1 0.37 6 0.1 130 0.01 0.1

E [GPa] D1 [MPa] as αs m1 β Hsat [MPa] n η hs

200 175 0.55 0.02 4.5 0.1 110 7 0.6 0.2


