<table>
<thead>
<tr>
<th>Title</th>
<th>Effect of cholecystokinin on cytosolic Ca(^{2+}) dynamics in rat pancreatic B cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KIMURA, Hiroyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Japanese Journal of Veterinary Research, 46(2-3): 129-130</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-11-30</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/2678</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>KJ00003408011.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
proliferated from cultured rat glomeruli. In the course of study, they raised monoclonal antibodies against these macrophagic cells for further analysis. One of the antibodies, named OS-3, was found to selectively detect a cell population scattered in the collecting duct of rat kidney as well as interstitial macrophages in various tissues and Kupffer cells in the liver.

To define distribution and type of the OS-3-immunopositive cells in the rat collecting duct, we performed double staining using antisera against calbindin and cytokeratin. OS-3-immunopositive cells existed in both the connecting segment and cortical collecting duct, and were different from calbindin-positive or cytokeratin-positive epithelial cells.

Definite identification of OS-3-immunopositive cells was performed by the electron microscopic observation of immunostained sections. The positive cells were spherical or triangle in shape with few microprojections on the narrow apical surface. Their dark cytoplasm contained numerous mitochondria, and a number of vesicles developed near the apical membrane. The immunopositive cells exhibited complicated and shallow infoldings of the basolateral membrane. Distribution and morphological properties of the OS-3-immunopositive cells showed that they are type B intercalated cells. Immunoblotting of extracts from the kidney demonstrated an immunoreactive band at a molecular weight of 43 kDa.

Out of the kidney, the author could detect specific and intense immunoreactivity with OS-3 in several tissues. The immunoreactivity was found in the epithelium of pancreatic excretory duct, and glandular cells in the duodenal gland, salivary glands and pyloric gland, which are all HCO$_3^-$-secreting cells. These immunohistochemical findings imply that OS-3 recognizes a common molecule involved in the HCO$_3^-$ synthesis and secretion. The selective localization of the immunoreactivity on the basolateral membrane of cells suggests that the antigen for OS-3 is an ion transporter which is engaged in the HCO$_3^-$ synthesis.

Effect of cholecystokinin on cytosolic Ca$^{2+}$ dynamics in rat pancreatic B cells

Hiroyuki Kimura

Department of Physiology,
Faculty of Veterinary Medicine,
Hokkaido University, Sapporo 060-0818, Japan

1. Cholecystokinin (CCK) has been immunohistochemically identified in nerve fibers innervated to rat pancreatic islets but its physiological role has not fully been understood. The present study was thus carried out to explore the role of CCK in pancreatic endocrine regulation. To begin with, effects of CCK on cytosolic Ca$^{2+}$ dynamics were examined in detail by using pharmacological tools, i.e., various Ca$^{2+}$ antagonists. Cytosolic Ca$^{2+}$ concentration ([Ca$^{2+}$]$_c$) was measured with microfluorometry by using fura-2, a fluorescent Ca$^{2+}$ probe, in isolated rat pancreatic islets.

2. Perfusion of the islets with solution containing CCK-octapeptide (CCK-8; 10$^{-9}$, 10$^{-8}$, 10$^{-7}$ M) for 30 seconds caused an abrupt increase in [Ca$^{2+}$]$_c$ followed by a rapid decrease to the basal concentration (100–150 nM). Repetitive stimulation with CCK-8 at a higher concentration (10$^{-7}$ M) caused a repetitive increase in [Ca$^{2+}$]$_c$
but their peak levels decreased by about 18%.

3. Removal of CaCl₂ from the perifusing solution almost completely abolished CCK-8-induced increases in [Ca²⁺]c. This result suggests that the presence of CaCl₂ in extracellular space of the islet cells is essential for [Ca²⁺]c dynamics induced by CCK-8. This phenomenon may be explained by one of two separate hypothesis; 1) Ca²⁺ influx is important for CCK-8-induced [Ca²⁺]c increase or 2) refilling of Ca²⁺ in intracellular Ca²⁺ stores is mandatory for [Ca²⁺]c increase.

4. Addition of low concentration of NiCl₂ which is shown to selectively block T-type Ca²⁺ channel strongly inhibited CCK-8-induced [Ca²⁺]c increase, suggesting that Ca²⁺ influx via T-type Ca²⁺ channel is occurring during CCK stimulation in this type of cells.

5. This idea was further supported by following evidence. Nifedipine, a selective L-type Ca²⁺ channel blocker, ω-conotoxin GVIA, a selective N-type Ca²⁺ channel blocker, ω-conotoxin MVIIIC, a selective Q-type Ca²⁺ channel blocker, and ω-agatoxin IVA, a selective P-type Ca²⁺ channel blocker, were all without effect on CCK-8-induced [Ca²⁺]c increase.

6. Possible involvement of Ca²⁺ influx by CCK-8 stimulation was also supported by following evidence. U73122, a PLC inhibitor, had no effect on CCK-8-induced [Ca²⁺]c increase, suggesting that PLC-IP₃-Ca²⁺ release cascade is not functioning.

7. It was concluded that CCK may physiologically participate in regulation of pancreatic endocrine secretion by modulating cytosolic Ca²⁺ dynamics which are brought about by possible activation of T-type Ca²⁺ channel but not by L-type, N-type, Q-type, and P-type Ca²⁺ channels.

Effects of nitric oxide on cytosolic Ca²⁺ dynamics in mouse pancreatic islets.

Yayoi Oghihara
Department of Physiology,
Faculty of Veterinary Medicine,
Hokkaido University, Sapporo 060-0818, Japan

1. The purpose of the present study is to explore effects of nitric oxide (NO) on changes in cytosolic Ca²⁺ concentration ([Ca²⁺]c) and to clarify possible sites of action of NO in mouse pancreatic β cells. A microfluorometric method was applied by using Fura-2, a fluorescent Ca²⁺ indicator, in the isolated perifused preparations of mouse pancreatic islets.

2. Increasing glucose concentration of perifusing solution from 3 mM to 10 mM caused biphasic increases in [Ca²⁺]c, the first transient rise (first phase) followed by a continuous [Ca²⁺]c increase on which oscillatory fluctuation was often superimposed (second phase). The first [Ca²⁺]c increase was completely abolished by the addition of 400 µM NOR3, a spontaneous NO donor. The second phase was also calmed by NOR3 (200 µM). This inhibitory effect by NOR3 on glucose-induced [Ca²⁺]c rises was restored by pretreatment with 10 µM oxyhemoglobin, a NO scavenger.

3. The addition of SIN-1, which is known to produce NO and O₂⁻, and resultant peroxynitrite tended to reduce the second phase of [Ca²⁺]c increase induced by 15 mM glucose. Superoxide dismutase which scavenges produced O₂⁻ and thus reduces peroxynitrite production amplified the inhibitory effect by SIN-1. Based on these results, it is suggested that NO but not peroxynitrite plays a major role in the inhibition...