but their peak levels decreased by about 18%.

3. Removal of CaCl₂ from the perifusing solution almost completely abolished CCK-8-induced increases in [Ca²⁺]c. This result suggests that the presence of CaCl₂ in extracellular space of the islet cells is essential for [Ca²⁺]c dynamics induced by CCK-8. This phenomenon may be explained by one of two separate hypothesis; 1) Ca²⁺ influx is important for CCK-8-induced [Ca²⁺]c increase or 2) refilling of Ca²⁺ in intracellular Ca²⁺ stores is mandatory for [Ca²⁺]c increase.

4. Addition of low concentration of NiCl₂ which is shown to selectively block T-type Ca²⁺ channel strongly inhibited CCK-8-induced [Ca²⁺]c increase, suggesting that Ca²⁺ influx via T-type Ca²⁺ channel is occurring during CCK stimulation in this type of cells.

5. This idea was further supported by following evidence. Nifedipine, a selective L-type Ca²⁺ channel blocker, ω-conotoxin GVIA, a selective N-type Ca²⁺ channel blocker, ω-conotoxin MVIIIC, a selective Q-type Ca²⁺ channel blocker, and ω-agatoxin IVA, a selective P-type Ca²⁺ channel blocker, were all without effect on CCK-8-induced [Ca²⁺]c increase.

6. Possible involvement of Ca²⁺ influx by CCK-8 stimulation was also supported by following evidence. U73122, a PLC inhibitor, had no effect on CCK-8-induced [Ca²⁺]c increase, suggesting that PLC-IP₃-Ca²⁺ release cascade is not functioning.

7. It was concluded that CCK may physiologically participate in regulation of pancreatic endocrine secretion by modulating cytosolic Ca²⁺ dynamics which are brought about by possible activation of T-type Ca²⁺ channel but not by L-type, N-type, Q-type, and P-type Ca²⁺ channels.

Effects of nitric oxide on cytosolic Ca²⁺ dynamics in mouse pancreatic islets.

Yayoi Oghara

Department of Physiology,
Faculty of Veterinary Medicine,
Hokkaido University, Sapporo 060-0818, Japan

1. The purpose of the present study is to explore effects of nitric oxide (NO) on changes in cytosolic Ca²⁺ concentration ([Ca²⁺]c) and to clarify possible sites of action of NO in mouse pancreatic β cells. A microfluorometric method was applied by using Fura-2, a fluorescent Ca²⁺ indicator, in the isolated perifused preparations of mouse pancreatic islets.

2. Increasing glucose concentration of perifusing solution from 3 mM to 10 mM caused biphasic increases in [Ca²⁺]c, the first transient rise (first phase) followed by a continuous [Ca²⁺]c increase on which oscillatory fluctuation was often superimposed (second phase). The first [Ca²⁺]c increase was completely abolished by the addition of 400 μM NOR3, a spontaneous NO donor. The second phase was also calmed by NOR3 (200 μM). This inhibitory effect by NOR3 on glucose-induced [Ca²⁺]c rises was restored by pretreatment with 10 μM oxyhemoglobin, a NO scavenger.

3. The addition of SIN-1, which is known to produce NO and O₂⁻, and resultant peroxynitrite tended to reduce the second phase of [Ca²⁺]c increase induced by 15 mM glucose. Superoxide dismutase which scavenges produced O₂⁻ and thus reduces peroxynitrite production amplified the inhibitory effect by SIN-1. Based on these results, it is suggested that NO but not peroxynitrite plays a major role in the inhibition
by NO donors of glucose-induced $[\text{Ca}^{2+}]_c$ dynamics.

4. A K^+_{ATP} channel inhibitor, tolbutamide (300
μM), caused a $[\text{Ca}^{2+}]_c$ rise and this increase was also inhibited by NOR3 (200 μM). The inhibition by NOR3 was restored by oxyhemoglobin. A high K^+ (50 mM)-induced transient $[\text{Ca}^{2+}]_c$ rise was not influenced by NOR3 (400 μM). These results suggest that NO has no direct action on voltage-dependent Ca^{2+} channels, but it opens K^+_{ATP} channels directly or indirectly, resulting in cessation of glucose-induced $[\text{Ca}^{2+}]_c$ dynamics in mouse pancreatic islet cells.

5. It has been shown that NO causes damage on DNA strands, which initiates an ATP-consuming repair process by activation of poly(ADP-ribose) synthetase (PARS), causing a reduction of cytosolic ATP concentration ($[\text{ATP}]_c$). There would be a possibility that this reduction of $[\text{ATP}]_c$ might be related to NO-induced inhibition of $[\text{Ca}^{2+}]_c$ dynamics. This possibility was examined by using 3-aminobenzamide (3-AB), a PARS inhibitor. In the presence of 3-AB (1 mM), the inhibitory effect by NOR3 on glucose-induced $[\text{Ca}^{2+}]_c$ dynamics was not affected. This result suggests that the ATP-consuming PARS cascade is not directly involved in the NO-induced inhibition. In conclusion, it is implied that NO but not peroxynitrite interferes with glucose-induced closure of K^+_{ATP} channels probably via reduction of mitochondrial ATP production in mouse pancreatic β cells.

Ca$^{2+}$ CHANNEL SUBTYPES IN GUINEA PIG ADRENAL CHROMAFFIN CELLS

Yoshihiro Kanamoto
Laboratory of Pharmacology,
Department of Biomedical Sciences,
School of Veterinary Medicine,
Hokkaido University, Sapporo 060–0818, Japan

1. The effects of selective Ca$^{2+}$ channel blockers on Ca$^{2+}$ currents and 60 mM K^+-induced catecholamine release were examined to investigate the subtypes of Ca$^{2+}$ channels and their contribution to catecholamine release in isolated guinea pig adrenal chromaffin cells.

2. Application of nifedipine (3 μM) for 4 min, an inhibitor of L-type Ca$^{2+}$ channel, ω-conotoxin GVIA (1 μM), an inhibitor of N-type Ca$^{2+}$ channel, ω-agatoxin IVA (0.1 μM), an inhibitor of P-type Ca$^{2+}$ channel and ω-conotoxin MVIIC (3 μM), an inhibitor of N/P/Q-type Ca$^{2+}$ channel, inhibited peak amplitude of Ca$^{2+}$ current by 33%, 15%, 23%, 33%, respectively.

3. When nifedipine, ω-conotoxin GVIA, ω-agatoxin IVA and ω-conotoxin MVIIC were applied sequentially onto the same cell, Ca$^{2+}$ current was inhibited additively. This result suggests that guinea pig adrenal chromaffin cells possess at least L-, N-, P- and Q-type Ca$^{2+}$ channels.

4. Even after L-, N-, P- and Q-type Ca$^{2+}$ currents were inhibited by selective Ca$^{2+}$ channel blockers (nifedipine (3 μM), ω-conotoxin GVIA (1 μM), ω-agatoxin IVA (0.1 μM) and ω-conotoxin MVIIC (3 μM), Ca$^{2+}$ currents, with the amplitude of about 23% of control cur rents, were evoked by the depolarizing pulses to $+10$ mV for 50 ms from a holding potential -70 mV.

5. The Ca$^{2+}$ current insensitive to these Ca$^{2+}$ channel blockers was considered to be mediated through R-type Ca$^{2+}$ channel (one of high voltage activated Ca$^{2+}$ channels) or T-type Ca$^{2+}$ channel (typical low voltage activated Ca$^{2+}$ channel).