<table>
<thead>
<tr>
<th>Title</th>
<th>Some Morphological and Physiological Aspects of the Eggs of Teleostean Fishes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YAMAMOTO, Tadashi S.</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大学理学部紀要, 13(1-4), 484-488</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1957-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/27279</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>13(1_4)_P484-488.pdf</td>
</tr>
</tbody>
</table>

Note: The table contains information about the document's title, author, citation, issue date, document URL, type, and file information.
Some Morphological and Physiological Aspects of the Eggs of Teleostean Fishes\(^1\)

By

Tadashi S. Yamamoto

(Zoological Institute, Hokkaido University)

I

Since T. Yamamoto devised an excellent method for the observation of fertilization in the eggs of fresh-water fish in 1939, works on fish eggs have played an important part in recent advances in the fields of embryology and cell physiology. He found that the ripe unfertilized eggs of Medaka (*Oryzias latipes*) can be kept in isotonic Ringer's solution without any changes and that the development proceeds normally after insemination in this solution. Since the time of T. Yamamoto's paper extensive studies have been made on the physiology of fertilization or activation in fish eggs.

The advantages in the use of fish eggs are not far to seek: they are readily available in large numbers and are physiologically uniform; the large size of an egg is favorable for handling of the egg; they develop readily under laboratory conditions.

The present works, which were performed from 1952 to 1956, were undertaken in order to gain information on the physiology of fertilization or activation in the eggs of the teleostean fishes, Medaka (*Oryzias latipes*), Pacific herring (*Clupea pallasi*) and Dog salmon (*Oncorhynchus keta*).

II

As has long been well known, the egg of teleostean fishes is clothed in tough membrane. In many cases the egg membrane consists of more than two layers. The outermost one is called the adhesive layer in some fish eggs for the adhesion of the egg is mainly due to the presence of this layer. This is found typically in the eggs of herring (Kanoh '49). In the eggs of Medaka the adhesive layer is absent on the surface of the egg membrane but a filamentous structure of the vegetative pole is of service to the attachment of eggs.

The chemical nature of the egg membrane was studied histochemically (T. S. Yamamoto '55a, '57a) and enzymologically. Polysaccharides and protein are dominant constituents of the egg membrane and probably disulfide bridges are also contained, at least in the case of herring eggs. The presence of protein was ascertained by the enzymological experiment. The egg membranes of Medaka and herring are easily digested with proteolytic enzymes such as trypsin and pancreatin. In the case of salmon, the membrane of unactivated eggs is dissolved only when double treatment with acidulated Ringer's solution and pancreatin

1) Contribution No. 394 from the Zoological Institute, Faculty of Science, Hokkaido University, Sapporo, Japan.

484
is performed (Kanoh and Yamamoto '57). Differing from the case of Medaka and herring the membrane of the activated salmon egg is, however, not dissolved with the double treatment applied on the unactivated eggs (T. S. Yamamoto'57b). This fact indicates, therefore, that the nature of the egg membrane of the salmon had been changed at the time of activation.

The entry of the spermatozoon into the egg is carried out only through the micropyle at the animal pole of the egg, because the spermatozoa can not pass through the egg membrane. Thus the micropyle has an important role in fertilization. The formation of the micropyle has been observed as reported in the study of oogenesis in Medaka (T.S. Yamamoto '55a). As has been described in some teleostean fishes by Eigenmann ('90), a particular cell penetrates into the micropylar canal. This particular cell called "micropylar cell" is different in size and in affinity to some dyes from the other follicular cells. It is found on the surface of young oocyte. As the formation of the egg membrane does not occur at the site of the micropylar cell, a pit through the egg membrane appears in this part of the egg surface. It was found in the study of ovulation in the eggs of salmon and herring that the micropylar cell degenerated in situ prior to ovulation (T.S. Yamamoto '55b).

The nucleus of ripe unfertilized eggs of fishes shows the metaphase spindle of the second maturation division lying near the periphery of the animal pole. In the preceding stages the nucleus of the egg shows germinal vesicle and is located almost in the center of the oocyte. As the transition of the nucleus is commenced toward the animal pole, the chromosomes appear in the germinal vesicle. On the other hand, yolk granules which had been fully formed in the cytoplasm of oocyte begin to fuse from vegetative pole at the same time. Thus the time of the commencement of the nuclear transition coincides with that of the fusion of yolk granules. At the time of ovulation the nucleus of the salmon or herring eggs shows metaphase spindle of the second maturation division, in other words, the nucleus of these eggs attains the stage of matured eggs even in the ovary (T.S. Yamamoto '55b). This finding does not coincide with that in amphibian eggs in which the nucleus of the eggs just ovulated shows germinal vesicle.

The first visible change at fertilization is a wave-like breakdown of the cortical alveoli which are embedded in the cortical cytoplasm of ripe unfertilized egg (cf. Kanoh '52a). Since the release of colloidal substance from the cortical alveoli is the cause of the formation of the perivitelline space (T. Yamamoto '56), the chemical nature and the origin of the cortical alveoli have recently attracted attention. It has been ascertained histochemically by many authors that the main components of the cortical alveoli are polysaccharides (Kusa '54, Aketa '54, T.S. Yamamoto '55a, etc.). According to K. Yamamoto ('56) fish eggs are divided into two groups by the nature of polysaccharide substance in the cortical alveoli. Examples of the first group are herring and flounder eggs; their cortical alveoli contain mucoids alone. In the second group are the eggs of smelt, salmon and
Medaka; their cortical alveoli contain mucoids associated with acid mucopoly-
saccharides. However, the cortical alveoli of fish eggs may not contain polysaccha-
rides alone. In fact the cortical alveoli of herring eggs show a distinct positive
reaction to Millon’s test for protein and also show the presence of disulfide bridges
as a result of the application of the revised method of ferric-ferricyanide technique
(T. S. Yamamoto ’57a). Concerning the origin of the cortical alveoli the present
author investigated in Medaka (T. S. Yamamoto ’55a) and concluded that the
cortical alveoli originate from the “vesicles” which appear in the cytoplasm of the
young oocyte and correspond to the “proteineous yolk vesicles” of Guthrie (’28)
or “gouttes claires” of Konopacka (’35, ’37). The same conclusion had been
reached by K. Yamamoto (’56) in some teleostean fishes.

III

The fertilization in fish eggs is monospermic. What kind of mechanism
blocks polyspermy? Concerning this problem, two possibilities have been con-
sidered. The one is that the block of polyspermy may be due to instantaneous
changes of plasma surface occurring at the time of entry of the effective sperma-
tozoon. This is held true in the case of sea urchin eggs. The other possibility
is that the instantaneous changes may occur at the micropylar canal of egg mem-
brane, in other words, the mechanism blocking the polyspermy occurs in the egg
membrane. As an experimental approach to decide this problem, the fertilization
in denuded egg, of which the membrane had been removed by double treatment
with acidulated Ringer’s solution and pancreatin, was observed. The result
indicated apparently that the fertilization was polyspermic in these eggs (Kanoh
and Yomamoto ’57). Thus, the latter possibility may be considered to be of
primary importance in the case of fish eggs, though the question remains still
unsolved because the plasma surface of the denuded egg might have been some-
what damaged with this treatment. On these problems further discussion has
been given in greater detail by Kanoh (’57).

Differing from the eggs of herring and Medaka, the inseminated eggs of salmon
remain unactivated in isotonic Ringer’s, NaCl and KCl solutions (Kanoh ’50).
The activation of the eggs of salmon is induced when the eggs are immersed in
hypotonic solution. Cleavages of the fertilized eggs are also considerably in-
hibited in the isotonic Ringer’s solution (K. Yamamoto ’51). Thus the isotonic
Ringer’s solution inhibits both the activation and the cleavage in the salmon eggs.
In the eggs immersed in isotonic CaCl₂ or MgCl₂ solution, however, the formation
of distinct blastodisc happens without breakdown of the cortical alveoli and
female pronucleus locates in the center of the blastodisc (Kanoh ’52b, Kusa ’53).
Furthermore, the fertilized eggs immersed in this solution begin to cleave without
treatment with hypotonic solution. Thus the isotonic CaCl₂ or MgCl₂ solutions
do not inhibit the formation of blastodisc nor the cleavage of the egg. In this
connection, the present author has recently investigated the effects of ZnCl₂ or
ZnSO₄, known as very toxic salts, on the eggs of salmon. It was found that when the eggs are immersed in isotonic Ringer's solution containing Zn-salt, they show no indication of cytolysis and ooplasm of the eggs begins to form the blastodisc at animal pole without breakdown of cortical alveoli and in some eggs, cleavages of blastodisc without nuclear divisions are observed to be caused. Thus the toxic action of Zn ions is not found in this case, probably because that toxic action may be arrested antagonistically by the presence of Na and K ions (cf. Loeb and Gies '02). When the eggs inseminated in isotonic Ringer's solution are transferred into Zn-Ringer's solution, cleavages of blastodisc proceed with nuclear divisions but the blastomeres thus formed show irregular arrangement. Therefore, it is clear that Zn-Ringer's solution does not inhibit but induces both the formation of blastodisc and its cleavages in the salmon egg. As mentioned already, the effects of Ca or Mg ions are found by the use of isotonic solutions which do not contain Na and K ions, in other words, by the use of solutions of the single salt (Kanoh '52b, Kusa '53). The present author performed further experiments using Ca- or Mg-Ringer's solutions having the same concentrations of Zn-Ringer's solutions but there occurred no visible change in the eggs. Thus it is concluded that the effect of Zn ions is more remarkable than that of Ca or Mg ions.

These results seem to contribute to knowledge concerning the effect of bivalent cations, but further investigation is needed to clarify the mechanism of the formation of blastodisc by these ions.

IV

In this paper, the formation and structure of the fish eggs were described briefly and the effects of Zn ions on the intact eggs of salmon were discussed in comparison with those of Na, K, Ca and Mg ions.

The author wishes to express his sincere thanks to Professor A. Ichikawa for the careful revision of this manuscript. Thanks are also due to Dr. Y. Kanoh for his constant guidance in the course of the work.

Literature cited

T. S. Yamamoto