## Instructions for use

### Title

Drosophila Survey of Hokkaido, XXXVI: Seasonal Changes in the Reproductive Condition of Wild and Domestic Species of Drosophila (With 4 Text-figures and 1 Table)

### Author(s)

WATABE, Hide-aki

### Citation


### Issue Date

1979-07

### Doc URL

http://hdl.handle.net/2115/27643

### Type

bulletin

### File Information

21(4)_P365-372.pdf
Drosophila Survey of Hokkaido, XXXVI. Seasonal Changes in the Reproductive Condition of Wild and Domestic Species of Drosophila

By

Hide-aki Watabe

Zoological Institute, Hokkaido University

(With 4 Text-figures and 1 Table)

Seasonal changes in the reproductive condition have been investigated in wild populations of various drosophilids since the pioneer work of Dobzhansky and Epling (1944). The dynamic aspects of population and voltinism of species in a given district can be clarified by analyzing the ovarian condition of females throughout the active seasons (Begon, 1976; Watabe, 1977; Toda and Kimura, 1978). In cool and cold regions, the females of fall Drosophila populations are characterized as virgins with undeveloped ovaries and heavy sheets of fat in the abdomen. Such hibernal flies have been known to spend the winter in a state of reproductive diapause (Basden, 1954; Geyspits and Simonenko, 1970; Lakovaara, et al., 1972; Lumme, et al., 1974, 1975; Begon, 1976). Moreover photoperiodic control of the diapause has been ascertained in wild species overwintering as adults.

On the other hand, it seems reasonable that some domestic species of Drosophila would be unable to survive outdoors during the winter in cool districts such as in Hokkaido (cf. Takada and Toyofuku, 1961; Chiang, et al., 1962; Dobzhansky, 1965; Watabe, unpubl.).

In the present paper, seasonal changes in the females’ reproductive condition are shown in some wild and domestic Drosophila, which are common near Sapporo. The effects of the photoperiodic reactions of these species on diapause determination are investigated, and the results obtained are discussed in relation to climatic adaptation to the northern environment.

The author is greatly indebted to Prof. Eizi Momma for his sincere encouragement and reading of the manuscript, and Messrs. M. J. Toda, M. T. Kimura, K. Beppu, N. Ichijo and N. Minami for their kind advice and help in collections.


365
Area Surveyed and Collection Methods

The University Botanical Garden at Sapporo (43°N) was selected to be the surveyed area, because both wild and domestic Drosophila have been obtained in abundance (Momma, 1965). The vegetation and geography of this semi-natural area have also been described by Momma (1965). The flies have been collected in three successive years from 1975 to 1977, using “retainer” traps baited with fermenting banana (Toda, 1977). The samples were fixed with Kahle’s solution and removed weekly. The reproductive condition of the females was examined under the stereoscopic binocular microscope. The developmental condition of ovaries was divided into four stages: Stage I, undeveloped; Stage II, developing; Stage III, mature; Stage IV, post-mature (Watabe and Beppu, 1977).

Methods of Experiments on Photoperiodism

Eggs taken from the wild-caught females and stocks were collected daily and treated with 70% alcohol to inhibit mold. About 40 eggs were placed in a culture vial containing the Drosophila medium, and incubated at 15±1°C and 18±1°C. Light cycles were administered by white fluorescent tubes. The newly emerged adults were transferred to a vial with a fresh medium. The diapause was investigated by the delay of ovarian development in a short daily light condition, and quantitatively estimated from the percentage of females with undeveloped ovaries within the total number of females dissected.

The experimental methods have been described in more detail elsewhere (cf. Watabe and Beppu, 1977).

Results and Remarks

1. Field-survey

The seasonal activity and age constitution of wild species were different from those of domestic. Wild species: The fall population of D. bifasciata consisted exclusively of females with undeveloped ovaries (Fig. 1). A heavy fat body was observed in the abdomens of flies caught in fall. The spring active peak, which consisted of the hibernated individuals, was recorded in mid April. In June, the increase in number was due to the emergence of the first generation. The new females soon developed their ovaries. The second generation adults continued to emerge from mid July to early August and performed the second breeding. The third generation flies began to emerge from mid August. The generation of this species would overlap during the summer months. The fourth generation flies collected in October and November did not develop ovaries and entered hibernation. In Sapporo, D. bifasciata had four, or partially three, generations per year. Nine common species, D. confusa, D. auraria, D. biauraria, D. testacea, D. nigromaculata, D. brachynephros, D. unispina, D. histrio and D. multispina, showed a similar pattern.
Seasonal Changes in Drosophila

Though the number of generations per year was somewhat different from species to species, they had a multivoltine life cycle near Sapporo. Populations fluctuated in correspondence with the changes of generation (Watabe, 1977).

Domestic species: During the entire collecting season, the populations of *D. melanogaster*, *D. simulans* and *D. immigrans* (Fig. 2) always included representatives of all the developmental stages of ovaries. Even in late fall when the first snow was observed, females with developing and mature ovaries were collected but soon after seemed to die from the low temperatures. A conspicuous accumulation of fat in the abdomen was not observed during this time unlike the wild species. Four species, *D. busckii, D. melanogaster, D. simulans* and *D. immigrans*, showed the same pattern. They have rarely or never been collected from spring to early summer.

![Fig. 1. Seasonal changes of female reproductive age structure and male individual numbers of *Drosophila bifasciata*. Black (Stage I), white (Stage II), vertical line (Stage III) and dot (Stage IV).](image)

2. Experiment

In the females of *D. bifasciata*, a short daylength (LD 10:14) induced a delay in the development of ovaries (Fig. 3-A). Ovarian development proceeded without interruption when the flies were reared in a long-day photoperiod, LD 24:0. The critical daylength fell near 14 hours of light per day (Fig. 3-B). On the other hand, ovaries of *D. melanogaster* were not interrupted by a short-day photoperiod in their development and growth (Fig. 4-A).

Most ovaries matured at least within 8 days after eclosion at 15°C and 2 days at 18°C. *D. immigrans* was also a rapid breeder and the development of ovaries proceeded without any delay (Fig. 4-B). The length of time required for development was identical between a short and long photoperiodic condition in *D. melanogaster* and *D. immigrans* (Table 1).
Fig. 2. Seasonal changes in female reproductive condition of *D. melanogaster* (A), *D. simulans* (B) and *D. immigrans* (C).

Fig. 3. A: The percentage of females with undeveloped ovaries. Flies were cultured at 18±1°C. B: Photoperiodic response curve for *D. bifasciata*. Flies were examined at the age of 16 days after eclosion.
Fig. 4. The percentage of undeveloped ovaries within about 40 females dissected. Flies were reared in three photoperiodic regimes. A, *D. melanogaster*; B, *D. immigrans*.

Table 1. The duration required for development from egg to eclosion in a short and a long daily light regime

<table>
<thead>
<tr>
<th></th>
<th><em>D. melanogaster</em></th>
<th><em>D. immigrans</em></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15±1°C</td>
<td>18±1°C</td>
</tr>
<tr>
<td>LD 10:14</td>
<td>34.3±0.096</td>
<td>33.0±0.070</td>
</tr>
<tr>
<td>LD 14:10</td>
<td>34.2±0.083</td>
<td>18.2±0.091</td>
</tr>
</tbody>
</table>

Mean±S.E. (days).

**Discussion**

*D. bifasciata*, belonging to the *obscura* species group of the subgenus *Sophophora*, is distributed widely in the northern parts of the Holarctic. Lakovaara, *et al.* (1972) has reported the adult diapause of the Finnish *D. bifasciata*. In the Sapporo population, the reproductive diapause under a short daylength was ascertained. The actual length of the critical photoperiods would vary with the ten
wild species mentioned above, and therefore the timing of the induction of the diapause might also differ. Field data suggest that they would spend the winter in the state of adult diapause. In fact some hibernating adults were found in the snowy season.

On the other hand, four species (D. melanogaster, D. simulans, D. immigrans and D. busckii) were very rare in occurrence during spring. No interruption of development of their ovaries was observed in the short daily light regimes.

Lumme (1978) reports that photoperiodism was not detected in D. melanogaster. Alpatov (1929) reported that early instars of D. melanogaster had undergone diapause, but MacKenzie (1975) considers that this might reflect genetic variation within a population. In the Sapporo population, no change in photoperiod influenced the developmental period from egg to adult. Therefore the overwinterings by these domestic species would not appear to involve the mechanism of a strict diapause (cf. Andrewartha, 1952; Mansingh, 1971; MacKenzie, 1975). They can hibernate only in manprotected warm places in Sapporo.

This seems to be related to the original distribution of domestic species. The present distribution is due to modern commerce and transportation. They are immigrants from tropical regions of the Old World. D. melanogaster and its sibling D. simulans belong to the melanogaster species group of the subgenus Sophophora (Bock and Wheeler, 1972). The group under discussion itself almost surely arose in tropical regions of the Old World (cf. Throckmorton, 1975). D. immigrans is a member of the immigrans group of the subgenus Drosophila, being regarded as originating in South-eastern Asia (cf. Throckmorton, 1975). Perhaps D. busckii is also originally from the tropical regions of the Old World.

The hibernal diapause may not be necessary for their survival in a tropical environment.

In conclusion, domestic species of Drosophila originating in tropical regions would not adapt to seasonal changes in the northern environment.

Summary

The seasonal changes of the females' reproductive condition of ten wild and four domestic species of Drosophila have been surveyed at the Botanical Garden in Sapporo. The photoperiodic responses of one wild and two domestic species were studied.

1. In ten wild species, the fall populations consisted of females having undeveloped ovaries and a heavy fat body in the abdomen.
2. The adult diapause of D. bifasciata was ascertained and occurred when night was 10 hours or longer.
3. In domestic species, the populations included females at all developmental stages of ovaries during the entire collecting season.
4. The development of ovaries of D. melanogaster and D. immigrans proceeded without any interruption in a short daily light condition.
Seasonal Changes in Drosophila

References


H. Watabe