<table>
<thead>
<tr>
<th>Title</th>
<th>A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kitajyo, Yoshikazu; Nawa, Yumiko; Tamaki, Masaki; Tani, Hirofumi; Takahashi, Kenji; Kaga, Harumi; Satoh, Toshifumi; Kakuchi, Toyoji</td>
</tr>
<tr>
<td>Citation</td>
<td>Polymer, 48(16): 4683-4690</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-07-27</td>
</tr>
<tr>
<td>Doc URL</td>
<td><a href="http://hdl.handle.net/2115/28011">http://hdl.handle.net/2115/28011</a></td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>PLM48-16.pdf</td>
</tr>
</tbody>
</table>
Regular Article

A Unimolecular Nanocapsule. Encapsulation Property of Amphiphilic Polymer Based on Hyperbranched Polythreitol

Yoshikazu Kitajyo,¹ Yumiko Nawa,¹ Masaki Tamaki,¹ Hirofumi Tani,¹ Kenji Takahashi,² Harumi Kaga,³ Toshifumi Satoh,¹,⁴* and Toyoji Kakuchi¹*  

¹ Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan  
² Division of Material Chemistry, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, 920-1192, Japan  
³ National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan  
⁴ Division of Innovative Research, Creative Research Initiative “Sousei” (CRIS), Hokkaido University, Sapporo, 001-0021, Japan  

Correspondence to: T. Satoh (E-mail: satoh@poly-bm.eng.hokudai.ac.jp)

Keywords amphiphiles / core-shell polymers / micelles

ABSTRACT:

Hyperbranched polythreitol (1) with different molecular weights (\(M_{w,SLS}; 1.18 \times 10^4\) and \(4.79 \times 10^4\)) was reacted with trityl chloride in DMF to afford a novel amphiphilic polymer (2) consisting of 1 as the hydrophilic core and the trityl groups as the hydrophobic shell. 2 was tested for its ability to act as a unimolecular nanocapsule toward the water-soluble dye, rose bengal (RB). Their encapsulation and
release properties were also evaluated by comparison with the degree of substitution (DS) of the trityl groups, i.e., the hydrophobic shell-density. The polymers were found to have very good unimolecular nanocapsule characteristics even at extremely low concentrations. The average number of RBs per polymer molecule depended on the hydrophilic core size and the hydrophobic shell-density. The increasing DS value led to a decrease in the encapsulated amount due to the decrease in the hydrophilic core space, while the low DS value (< ca. 20 mol-%) led to a destabilization as a unimolecular nanocapsule and a lower encapsulation ability. In particular, 2 with an ca. 23% DS value showed an efficient encapsulation. Based on a release test of the RB-loaded unimolecular nanocapsules, the polymers showed a high RB-holding ability in water.

Introduction

A spherical amphiphile with a core-shell morphology is, due to its three-dimensional structure, an attractive nano-scale material. An amphiphilic structure consisting of a covalently linked dendritic core and shell parts promised to be a unimolecular micelle in solution, which could stably exist under various conditions, such as when the concentration, temperature, and pH were significantly changed. [1-4] The high stability as a unimolecular micelle is produced in a certain cavity in the interior of the spherical amphiphile, and this space could encapsulate suitable guest molecules. Therefore, there have been many studies on the design and synthesis of amphiphilic dendritic polymers as nanomaterials, such as a drug delivery agent, [5-10] nanoreactors, [11-14] and nanocapsules. [15-23] For example, Fréchet et al. reported the synthesis and enhanced catalytic activity of an amphiphilic dendrimer bearing a benzophenone derivative core as a light-driven catalytic site. [24, 25] Okada et al. also reported the synthesis and characterization of a fluorescent-probe encapsulated glycodendrimer, the so-called “sugar ball”. [26]

Hyperbranched polymers have recently received much attention as one class of spherical
compounds even with their imperfectly branched structures when compared to a dendrimer, because their preparations were quite convenient vs. the dendrimer synthesis. [27-29] Thus, it is interesting to use hyperbranched polymers as the key starting materials for the preparation of a spherical amphiphile with a unimolecular micellar property. For example, Frey et al. reported the synthesis and encapsulation properties of an amphiphilic “molecular nanocapsule” consisting of a hyperbranched polyglycerol core. [30-32] Brooks et al. also reported the effect of amphiphilic hyperbranched polyglycerols as a nanoreactor for unimolecular elimination reactions. [33] In addition, we reported the synthesis of novel unimolecular reversed micelles consisting of a hyperbranched polysaccharide core and a polylactide [34] or L-leucine ethyl ester [35] shell, which had encapsulation and slow-release abilities for hydrophilic molecules.

However, recent research has indicated that some of the amphiphilic dendritic polymers do not become a unimolecular micelle and form a large micellar structure in solution. For example, Richtering et al. reported that the amphiphilic hyperbranched polyglycerol with a low alkyl group functionality underwent strong aggregation in a hydrophobic solvent, [36] indicating that the molecular form of the amphiphilic hyperbranched polymer can differ according to the outer functionality, i.e., the shell-density of the polymer. The structural transition from a unimolecular form to an aggregate form should have an obvious effect on its molecular encapsulation property and release property. Therefore, it is very important to elucidate the effect of the shell-density on the encapsulation properties for amphiphilic hyperbranched nanocapsules, but it has not yet been reported. In order to discuss the relation between the shell-density of the amphiphilic hyperbranched nanocapsule and its encapsulation property for a guest molecule, we now report the preparation and unimolecular reversed miceller property of a novel unimolecular nanocapsule (2) consisting of a hydrophilic hyperbranched polythreitol (1) [37] core and a hydrophobic trityl shell.
Experimental

Materials. Hyperbranched polythreitol (1), which is a hyperbranched carbohydrate polymer with a high water solubility, was synthesized from 2,3-anhydro-erythritol according to our previous paper. [37] In this study, two samples of 1 with the weight average-molecular weight value estimated by static light scattering ($M_{w,\text{SLS}}$) of $1.18 \times 10^4$ and $4.79 \times 10^4$ were used as the core molecule. The weight average-molecular weight value estimated by size exclusion chromatography ($M_{w,\text{SEC}}$) of these samples were $1.43 \times 10^3$ ($M_{w,\text{SEC}}/M_{n,\text{SEC}}: 1.66$) and $1.85 \times 10^3$ ($M_{w,\text{SEC}}/M_{n,\text{SEC}}: 1.58$), respectively. Polymer 1 was dried in vacuo at 40 °C for 2 days, followed by azeotropic distillation with dry toluene just before use. The degree of branching (DB) value of 1 was 0.47, which was calculated using the ratio of the terminal units ($T$, 0.31) in 1. [37] The ratio of the primary hydroxyl groups on the polymer 1 surface was 31 mol-% of the total hydroxyl groups, which was calculated using eq.1.
\[
\frac{\text{number of the primary hydroxyl groups of terminal units in } I}{\text{number of the total hydroxyl groups in } I} \times 100
\]

\[
= \frac{(M_{w, \text{SLS of } I} / M_{w, \text{cry}}) \times T \times (\text{number of the primary hydroxyl groups per terminal unit})}{(M_{w, \text{SLS of } I} / M_{w, \text{cry}}) \times (\text{number of hydroxyl groups per monomer unit})} \times 100
\]

\[
= \frac{(M_{w, \text{SLS of } I} / M_{w, \text{cry}}) \times T \times 2}{(M_{w, \text{SLS of } I} / M_{w, \text{cry}}) \times 2} \times 100 \% \quad \text{(eq.1)}
\]

\[M_{w, \text{cry}}: \text{molecular weight of erythritol repeating unit} = 104.1.\]

Trityl chloride (99 %) was purchased from Kanto Chemical Co., Ltd. (Tokyo, Japan), and used as received. 4-(Dimethylamino)pyridine (DMAP, > 99 %) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan), and recrystallized from dry toluene. N,N-Dimethylformamide (DMF, Kanto Chemical Co., Ltd., > 99.0 %) was dried over CaH₂ and distilled prior to use under reduced pressure. Triethylamine (Kanto Chamical Co., Ltd., > 99 %) was distilled over CaH₂. Dry toluene (> 99.5 %, water content < 0.001 %) was purchased from Kanto Chemical Co., Ltd. (Tokyo, Japan) and used without further purification. Rose bengal (RB) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Methanol (> 99.5 %), acetone (> 99.0 %), ethyl acetate (> 99.0 %), chloroform (> 99.0 %, spectroscopic grade), and dimethyl sulfoxide (DMSO, > 99.7 %, spectroscopic grade) were purchased from Kanto Chemical Co., Ltd. (Tokyo, Japan), and used without further purification. The dialysis membrane (Spectra/Por 6 regenerated cellulose, MWCO 1000) was purchased from Spectrum Laboratories, Inc.

**Instrumentation.** The \(^1\)H NMR spectra were recorded using a JEOL JNM-A400II instrument. The IR spectra were recorded using a Perkin-Elmer Paragon 1000. Size exclusion chromatography (SEC) was performed in an aqueous sodium nitrate (NaNO₃) solution (0.2 mol·L⁻¹, 1.0 mL·min⁻¹) at 40 °C
using a Tosoh HPLC system (HLC-8020) equipped with two TSKgel GMPW\textsubscript{XL} columns (pore size, 12.5 - 100 nm; bead size, 13 \textmu m; exclusion limit, 5 \times 10^7) and a refractive index detector. The \( M_{\text{w,SEC}} \) and the \( M_{\text{w,SEC}}/M_{\text{n,SEC}} \) values were calculated on the basis of a poly(ethylene glycol) calibration. The preparative SEC was performed in chloroform (3.8 mL\textperiodcentered min\textsuperscript{-1}) at 23 °C using a JAI LC-908 equipped with a JAI JAIGEL-2H polystyrene column (pore size, 40 - 50 Å; bead size, 15 \textmu m; exclusion limit, 5 \times 10^3), a JAIGEL-2.5H polystyrene column (pore size, 60 - 70 Å; bead size, 16.5 \textmu m; exclusion limit, 2 \times 10^4), and JAI UV-310 and JAI RI-5HC detectors. The ultraviolet-visible (UV-vis) spectra were measured in CHCl\textsubscript{3} and CHCl\textsubscript{3}/DMSO (1/7, v/v) with a 10-mm path length at 23 °C using a Jasco V-550 spectrometer. Static light scattering (SLS) measurements of 1 were performed in an aqueous NaNO\textsubscript{3} solution (0.2 mol\textperiodcentered L\textsuperscript{-1}) at 40 °C using an Otsuka Electronics CALLS-1000 light scattering spectrophotometer (\( \lambda = 632.8 \) nm). The refractive index increments (\( dn/dc \)) of 1 were 0.140 (\( M_{\text{w, SLS}} \) of 1.18 \times 10^4) and 0.135 (\( M_{\text{w, SLS}} \) of 4.79 \times 10^4) which were measured in an aqueous NaNO\textsubscript{3} solution (0.2 mol\textperiodcentered L\textsuperscript{-1}) at 40 °C using an Otsuka Electronics DRM-1021 double-beam differential refractometer (\( \lambda = 632.8 \) nm).

**Synthesis of tritylated hyperbranched polythreitol (2b).** All procedures were performed under an argon atmosphere. A solution of trityl chloride (0.82 g, 2.94 mmol) in freshly distilled DMF (10 mL) was added dropwise into a solution of 1 (0.30 g, 5.77 mmol-hydroxyl group; \( M_{\text{w, SLS}} \), 1.18 \times 10^4), DMAP (0.057 g, 0.47 mmol), and triethylamine (1.2 mL, 8.6 mmol) in freshly distilled DMF (2.5 mL) at 23 °C. After 24 h, methanol was added to quench the reaction. The organic solvent was evaporated, and the residue was purified by dialysis (MWCO, 1000) in acetone for 2 days. After the acetone was evaporated to dryness, the residue was subjected to preparative SEC to remove any unreacted chemicals. The solvent was evaporated and the residue was dried in vacuo to afford 2b. The yield was 0.46 g. \(^1\text{H} \)NMR (400 MHz, CD\textsubscript{2}Cl\textsubscript{2}): \( \delta \) (ppm) 5.12 - 2.55 (br, polythreitol), 7.61 - 6.69 (br, trityl group). IR (KBr): \( \nu \) (cm\textsuperscript{-1}) 704, 751 (Ar, bend), 1077 (-C-O-C-, stretch), 1216 (ArC-O, stretch), 1447, 1491 (Ar, stretch),
2877, 2924 (C-H, stretch), 3025, 3055 (Ar, stretch), 3399 (OH, stretch). The degree of substitution (DS) was 23.8 %, which was calculated using eq. 2.

\[
\text{DS} = \left( \frac{\text{the peak area due to trityl group}}{n_{t}} \right) \times \frac{\text{the peak area due to } 1 \text{ moiety}}{n_{t}} \times 100 \% \quad (\text{eq. 2})
\]

\( n_{t} \) : number of proton per trityl group = 15.

\( n_{OH} \) : number of hydroxyl groups per monomer unit = 2.
\( n_{1} \) : number of proton per monomer unit = 6.

The calculated molecular weights (\( M_{\text{cal}} \)) of 2a-f were estimated using eq.3 based on the \( M_{\text{w,SLS}} \) of 1 and DS value.

\[
M_{\text{w,SLS}} \text{ of } 1 + \frac{M_{\text{w,SLS}} \text{ of } 1}{M_{\text{w,H}}} \times \frac{DS}{100} \left( M_{\text{w,Tr}} - M_{\text{w,H}} \right) \quad (\text{eq. 3})
\]

\( M_{w,Tr} \) : molecular weight of trityl group = 243.3.
\( M_{w,H} \) : molecular weight of proton = 1.0.

**Encapsulation property of rose bengal.** A typical procedure for the solid/liquid phase transfer is as follows: RB (20 mg, 20 mmol) was added to a solution of 2 in chloroform (3.85 mg·mL\(^{-1}\)), and the suspension was then placed in a water bath shaker at 37 °C. After 24 h, any undissolved dye was removed by filtration using 0.45 \( \mu \)m PTFE membrane filters. The colored filtrate was diluted with chloroform for characterization by UV-vis spectroscopy (UV-vis (CHCl\(_3\), 10 mm cell); \( \lambda_{\text{max (abs)}} = 562 \) nm (1.15)). The RB-loaded 2 (RB/2, 0.3 mL) system was diluted with DMSO (2.1 mL) and the
encapsulated RB per 2 (N_{RB}) was quantitatively determined by its UV-vis measurement. UV-vis (CHCl3/DMSO = 1/7, v/v, 10 mm cell); λ_{max} (abs) = 565 nm (0.207). ε_{max} = 1.47 \times 10^5 \text{ mol}^{-1}\cdot\text{L} \cdot \text{cm}^{-1}. \quad N_{RB} = 1.4.

**Dynamic light scattering (DLS) measurements.** DLS measurements of obtained polymers were performed in chloroform at 20 °C using an Otsuka Electronics FDLS-3000 light scattering spectrophotometer (λ = 532 nm, scattering angle = 90°). Before the measurement, the samples were filtered using 0.45 μm PTFE membrane filters to eliminate any dust particles. Data analysis was carried out using the histogram methods including the Marquadt analysis.

**Release property of encapsulated guest.** The particulate of the RB-encapsulating polymer (RB/2, 5.00 mg), which was prepared by evaporation of the RB/2 system in chloroform, was placed in a vial with a 0.067 mol·L^{-1} phosphate buffer solution (pH 7.4, 50 mL), and the suspension was then agitated in a bath shaker at 37 °C. The phosphate buffer of pH 7.4 was used to maintain near neutral conditions during the release experiment. A sample of the solution was taken, and the RB concentration was determined by a UV-vis measurement (λ_{max} = 549 nm, ε_{max} = 9.08 \times 10^4 \text{ mol}^{-1}\cdot\text{L} \cdot \text{cm}^{-1}).

**Results and discussion**

**Preparation of amphiphilic tritylated hyperbranched polythreitol**

The reaction of the hyperbranched polythreitol with trityl chloride is shown in Scheme 1. Two hyperbranched polythreitols (1) with different molecular weights (M_{w,SLS}; 1.18 \times 10^4 and 4.79 \times 10^4) were partially reacted with trityl chloride in dry N,N-dimethylformamide (DMF) and 4-(dimethylamino)pyridine (DMAP), affording the organic solvent-soluble products. The reaction homogeneously proceeded to produce a brown solid after purification by dialysis and preparative size
exclusion chromatography (preparative SEC). The $^1$H NMR spectrum of the product clearly showed the presence of signals due to the trityl groups that appeared at 6.9 - 7.6 ppm along with the characteristic signals at 2.6 - 4.8 ppm due to 1 as the core (Figure 1a). In addition, the peaks due to the trityl group appeared at 700 - 750, 1400 - 1500, and 3000 - 3100 cm$^{-1}$ in the IR spectrum, as shown in Figure 1b. These results indicated that the product was assignable to the tritylated hyperbranched polythreitol (2a-f).

Table 1 summarizes the reaction conditions and results. The degree of substituents (DS), which was estimated by the $^1$H NMR analysis (eq. 2), could be controlled by the feed molar ratio of the trityl chloride and hydroxyl groups in 1 ([$\text{Tr}$]/[$\text{OH}$]); that is, the increasing [Tr]/[OH] values lead to increasing DS values. The DS value was 15.7 mol-% under the condition of [Tr]/[OH] of 0.25 at 23 $^\circ$C for 24 h (2a), 23.8 mol-% for [Tr]/[OH] of 0.50 (2b), and 38.7 mol-% for [Tr]/[OH] of 1.50 (2c). The disagreement between the [Tr]/[OH] and DS values, i.e., the DS values were always lower than the [Tr]/[OH] values, could be caused by the lower reactivity of the sterically hindered inner hydroxyl groups in 1 than that of the outer one.
Figure 1. (a) $^1$H NMR spectrum of 2d in CD$_2$Cl$_2$. (b) IR spectra of 1 (upper) and 2d (lower) on KBr film.
Table 1. Synthesis of tritylated hyperbranched polythreitol (2a-f)\(^a\)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>[Tr] / [OH] (^d)</th>
<th>DS (^e)</th>
<th>(M_{cal} \times 10^{-4} )</th>
<th>(N_{RB} )^(^g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a (^b)</td>
<td>0.25</td>
<td>15.7</td>
<td>1.61</td>
<td>0.5</td>
</tr>
<tr>
<td>2b (^b)</td>
<td>0.50</td>
<td>23.8</td>
<td>1.83</td>
<td>1.4</td>
</tr>
<tr>
<td>2c (^b)</td>
<td>1.50</td>
<td>38.7</td>
<td>2.24</td>
<td>1.3</td>
</tr>
<tr>
<td>2d (^c)</td>
<td>0.50</td>
<td>23.2</td>
<td>7.37</td>
<td>4.9</td>
</tr>
<tr>
<td>2e (^c)</td>
<td>1.00</td>
<td>43.2</td>
<td>9.60</td>
<td>4.4</td>
</tr>
<tr>
<td>2f (^c)</td>
<td>2.00</td>
<td>61.0</td>
<td>11.60</td>
<td>4.3</td>
</tr>
</tbody>
</table>

\(^a\) Ar atmosphere; DMAP, 0.08 equiv.; temp., 23 °C; time, 24 h. \(^b\) Prepared from 1 with \(M_{w,SLS} = 1.18 \times 10^4\). \(^c\) Prepared from 1 with \(M_{w,SLS} = 4.79 \times 10^4\). \(^d\) Feed molar ratio of trityl chloride to the hydroxyl group in 1. \(^e\) Degree of substitution determined by \(^1\)H NMR spectra in CD\(_2\)Cl\(_2\). \(^f\) Calculated molecular weight values estimated by eq. 3 (see Experimental). \(^g\) Number of encapsulated rose bengal per 2.

The solubility characteristics of 2a-f with certain DS values were examined using various solvents and are summarized along with that of 1 in Table 2. 1 was soluble in water and methanol, but insoluble in other organic solvents, while 2a-f was soluble in chloroform and acetone, but insoluble in water. The solubilities of 2a-f were also changed by the DS values, i.e., 2c, 2e, and 2f with high DS values were soluble in toluene and ethyl acetate, but insoluble in methanol, while 2a, 2b, and 2d with low DS values were soluble in chloroform, but insoluble or swelling in toluene and ethyl acetate.
Table 2. Solubility of hyperbranched polythreitol (1) and tritylated hyperbranched polythreitol (2a-f) \(^{a)}\)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>DS [mol-%]</th>
<th>(\text{H}_2\text{O})</th>
<th>MeOH</th>
<th>Acetone</th>
<th>CHCl(_3)</th>
<th>AcOEt</th>
<th>Toluene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2a</td>
<td>15.7</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2b</td>
<td>23.8</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2c</td>
<td>38.7</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>2d</td>
<td>23.2</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2e</td>
<td>43.2</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>2f</td>
<td>61.0</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

\(^{a)}\) Examined by using 5 mg of polymer in 0.5 mL of solvent at room temperature (++: soluble; +: swelling; -: insoluble).

**Encapsulation properties of 2a-f toward rose bengal**

To investigate the encapsulation properties of 2a-f, the encapsulation characteristics of the water-soluble dye, rose bengal (RB), were examined using the solid/liquid phase transfer method. RB as a solid was added to a chloroform solution of 2a-f, and the heterogeneous mixture was then shaken for 24 h at 37 °C. After removal of any undissolved RB, the chloroform phases were apparently colorized (Figure 2a). In contrast, the control experiment without 2a-f showed no coloration, meaning that RB is almost insoluble in chloroform. Figure 2b shows the UV-vis spectra of the chloroform solutions used in these experiments. For the RB-loaded 2a-f (RB/2a-f) systems, the characteristic absorption due to RB appeared in the visible region from 470 to 600 nm even though the RB absorption did not appear for the control, indicating that 2a-f possessed an encapsulation property toward RB. In addition, the results also
suggested that RB existed under a more compatible environment than in chloroform, i.e., the hydrophilic hyperbranched polythreitol core in 2a-f, as shown in Scheme 1.

**Figure 2.** (a) Demonstration of the encapsulation property of 2c toward RB in chloroform (left vial: RB/2c; right vial: control). (b) UV-vis spectra of RB/2c and control in chloroform.

The quantification of RB in the RB/2a-f systems was carried out by measuring the absorbance at 565 nm due to RB in the CHCl₃/DMSO (1/7, v/v) mixed solvent. The average number of RB molecules per 2a-f molecule is shown as $N_{RB}$ in Table 1. Two tendencies between $N_{RB}$ and the polymer structure were recognized in the table. One is that $N_{RB}$ increased with the increasing hydrophilic core size, i.e., 0.5 - 1.4 for 2a-c and 4.3 - 4.9 for 2d-f. The other is that $N_{RB}$ depends on the DS value, i.e., the shell-density of the trityl groups. Based on the results in Table 1, it seems that polymer 2 with an ca. 23 % DS value showed the maximum efficiency. The decrease in the $N_{RB}$ value with the increasing DS value (e.g., 2b > 2c, and 2d > 2e > 2f) should be due to a decrease in the hydrophilic core space. Figure 3a shows the plot
of the absorbance at the $\lambda_{\text{max}}$ (562 nm) of RB versus the polymer concentration in chloroform. In general, the encapsulation capacities of the unimolecular micelles are invariable at any polymer concentration. Thus, if these polymers act as unimolecular reversed micelles, the absorbance values are expected to proportionally increase with the polymer concentration. RB/2d with a DS of 23.2 % shows a proportional and linear relation between the absorbance value and polymer concentration even at extremely low concentrations, indicating that 2d existed as a unimolecular reversed micelle in chloroform. However, a non-linear relationship with a deflection point at ca. $1.2 \times 10^{-5}$ mol·L$^{-1}$ is obtained for RB/2a with the DS of 15.7 %. This result suggested that the RB-encapsulation state of 2a was quite different from that of the unimolecular reversed micelle.
Figure 3. (a) Absorbance at $\lambda_{\text{max}}$ (562 nm) of RB/2a and RB/2d in chloroform. (b) Particle size distribution and number average hydrodynamic diameter ($<D_h>$) estimated by dynamic light scattering (DLS) measurements of 2d (left side) and 2a (right side) in chloroform.

To compare the solution structure of 2a with that of 2d, we performed dynamic light scattering (DLS) measurements at various concentrations in chloroform (Figure 3b). The number average hydrodynamic diameter ($<D_h>$) of 2d was ca. 10 nm, which has no influence on the polymer
concentration in the range from $5.6 \times 10^{-7}$ to $5.6 \times 10^{-5}$ mol·L$^{-1}$. This result reveals that no self-aggregation occurred at those concentrations. On the other hand, the $<D_h>$ value of 2a drastically changed with the changing polymer concentration, i.e., the $<D_h>$ value (ca. 103 nm) of $1.4 \times 10^{-5}$ mol·L$^{-1}$ was ca. 20 times greater than that (ca. 5 nm) of $5.6 \times 10^{-6}$ mol·L$^{-1}$, indicating that 2a formed a large aggregate above $1.4 \times 10^{-5}$ mol·L$^{-1}$ and its aggregate dissociated into a unimolecular form at $5.6 \times 10^{-6}$ mol·L$^{-1}$. In Figure 3a, no absorbance of RB was observed at $5.6 \times 10^{-6}$ mol·L$^{-1}$ of 2a, thus, it is clear that 2a was incapable of encapsulating RB as a unimolecular form.

The primary hydroxyl groups of 1, which can react with trityl chloride, on the polymer surface are present at 31 mol-% of the total hydroxyl groups, as calculated by eq.1 in the experimental section. Therefore, when all of the primary hydroxyl groups on the polymer surface had reacted, the DS value is also 31 mol-%, which should be the ideal DS value for the formation of a unimolecular nanocapsule. This ideal DS value was close to those (ca. 23 mol-%) of 2b and 2d possessing a high encapsulation efficiency in the range of the polymer concentrations. On the other hand, 2a with a low DS value could not form a stable unimolecular reversed micelle and could not encapsulate RB at a low polymer concentration, because 2a had an incomplete shell to confine RB to a polymer core. But 2a at a high polymer concentration became to show an encapsulation property by the formation of an aggregate, as shown in Chart 1.

![Chart 1](image-url)
Release study on RB/2a-f

Because 2a-f are able to encapsulate a hydrophilic compound, release tests were performed. The particulates of the RB-encapsulating polymers (RB/2a-c) were suspended in a 0.067 mol·L⁻¹ phosphate buffer solution (pH 7.4), and the resulting solutions were shaken at 37 °C. Figure 4 shows the RB-release results. The amount of RB released from the RB/2a-c was measured by UV-vis spectroscopy at 549 nm. For the RB/2a aggregate capsule, the encapsulated RB molecules were rapidly released from the polymer and the amount of the released RB remained constant at ca. 55 % after 20 h. On the contrary, a slight release of less than 10 % was observed for the RB/2b-2c unimolecular capsules even after more than 120 h. These results indicated that the release rate of the encapsulated RB molecules mostly depended on the type of the molecular form of 2 when RB was entrapped. A slight release was also observed for RB/2d-f, meaning that the unimolecular reversed micelles 2b-f have a high RB-holding ability in water.

![Figure 4](image)

**Figure 4.** Release test of RB from RB/2a-c in phosphate buffer solution (pH 7.4).

Conclusions

A novel amphiphilic polymer having a hydrophilic hyperbranched polythreitol core and a hydrophobic trityl shell has been prepared by the reaction of the hyperbranched polythreitol with trityl
chloride. The obtained amphiphile (2) exhibited an encapsulation ability toward rose bengal (RB) as the hydrophilic molecule, and the encapsulation ability mainly depended on the degree of substitution (DS) value of the trityl groups, i.e., the hydrophobic shell-density. The low DS value (< ca. 20 mol-%) of 2 led to the destabilization as a molecular capsule due to the lower hydrophobicity and a decrease in the encapsulated amount. On the contrary, 2 with a high DS value (> ca. 20 mol-%) behaved as a unimolecular reversed micelle and its performance was retained at any polymer concentration. Especially, 2 with an ca. a 23% DS value showed an excellent encapsulation capacity. Based on a release test of the RB-loaded nanocapsules, 2 with a high DS value exhibited a high RB-holding ability in water.

In this study, we demonstrated that the unimolecular reversed micellar properties of 2, such as the molecular form, encapsulation property, and release property, were dramatically changed with the tuning of the hydrophobic shell-density of 2. Hence, our study possibly provides a strategy for the development of novel molecular nanocapsules, and the further molecular design of amphiphilic hyperbranched polymers will be used for medical applications such as drug delivery.

Acknowledgment

This study was supported by Research Fellowships from the Japan Society for the Promotion of Science (JSPS) for Young Scientists and Industrial Technology Research Grant Program in 2005 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. The authors thank the OPEN FACILITY (Hokkaido University Sousei Hall) for the polymer characterization.

References


