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AbstratThe restruturing of partile lusters having a dense paking struture under uid stress isinvestigated numerially. The rearrangement of partiles in the luster and the breakage of theirinterpartile bonds in simple shear ow are examined by the Lagrangian-type simulation. Thehydrodynami fore exerted on multiple partiles is estimated by Stokesian dynamis approah.The interpartile fore is alulated from the retarded van der Waals potential based on the Lifshitztheory. The simulation results show that the partile luster rotates with the rotation of thesurrounding ow and deforms due to the uid stress along the prinipal axes of the stress tensor.These omplex e�ets bring the irreversible hange of the internal struture to the luster. Itis found that the strutural hange of the luster an be explained by the initial rearrangementof primary partiles and the suessive rak growth that takes a long time. Suh a long-termstrutural hange is analogous to that of the fatigue rak growth of solid materials. We disuss thedynamis of the restruturing of a dense luster from this point of view and propose a mathematialmodel whih desribes the restruturing proess in a ow �eld.Keywords : partile luster; breakup; shear ow; numerial analysis; restruturing; Stokesiandynamis
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IntrodutionThe dispersion proess of partile lusters suspended in a uid is important for various ap-pliations in industrial �elds. For example, the dispersion state of partile a�ets the rheologialproperties of the suspension. Also, it plays a key role in handling of miro- and nano partiles suhas the fabriation of the ordered assemblies [1℄.The aggregation and the fragmentation of partile lusters in uid ow have been studied inthe �elds related to olloidal siene [2℄. In the previous studies, population balane models havebeen developed for prediting the size distribution of partile lusters [3℄. The population balaneapproahes are based on \addition" and \division" of partile lusters. That is, the lusters ollideand unite in the motion of surrounding ow with a ertain frequeny. On the other hand, thelusters are divided into small piees by uid stress at a ertain rate. By modeling these uide�ets, one an predit the size distribution of lusters in global sales.In the population balane model, some parameters are required for representing loss and growthof the lusters. They are usually de�ned as funtions of the size and the parameters related tothe struture of the luster suh as the interpartile onnetivity and the spae-�lling property asexplained below. However, it is diÆult to determine the parameters preisely beause the atuale�et of the surrounding ow on the luster is more ompliated. The uid ow deforms, warps,entangles and disentangles the lusters. Consequently the lusters hange their internal strutures.In other words, not only does the uid ow immediately ontribute to \addition" and \division"of the partile lusters, but also it a�ets their loss and growth rates. For quantitative preditionof the dispersion state of partiles in uid, the detailed understanding of suh ompliated e�etsof the surrounding ow has been required. However, even the restruturing kinetis of an isolatedluster has not been understood satisfatorily.The restruturing of partile luster an be frequently found espeially in shear ow. This isbeause shear ow onsists of both the rotation and the extension of uid, and this ombinationbrings about the peuliar motion of immersed objets. The motion of partile lusters in shearow has been interesting not only in olloidal siene but in various �elds suh as uid dynamis[4℄ and polymer siene [5℄.In the �eld of olloidal siene, the restruturing of partile lusters has been often reported froma viewpoint of the hange in spae-�lling properties[6℄-[8℄. Generally the spae-�lling propertiesof lusters are expressed by the fratal dimension and it is lose to 3 if the luster has a ompatshape [2℄. However, in ase of non-fratal partile luster, the internal onnetivity ould be3



hanged with its fratal dimension kept onstant. Reently authors have studied the restruturingof a non-fratal partile luster in shear ow by numerial simulation [9℄. We demonstrated that aloose non-fratal luster inreases the oordination number and it turns into a dense luster owingto the uid stress. That is, the uid stress brings about the rearrangement of primary partilesand onsequently the interpartile onnetivity hanges inside the luster.The purpose of this study is to understand the strutural hange of a non-fratal partile lusterunder uid stress, i.e., the hange in the interpartile onnetivity due to the surrounding ow. Weexamined the dynami behavior of a partile luster in shear ow by Lagrangian partile simulation.There have been some numerial studies on the dynamis of a partile luster in a ow �eld byusing uid fore models [10℄-[12℄. However, the aurate estimations of both the short- and thelong-range hydrodynami interation of partiles are required for the quantitative understandingof the strutural hange of luster. Thus we adopted the Stokesian dynamis approah for thealulation of hydrodynami e�et of surrounding ow. In this study, we fous on the mehanismof the restruturing of a dense partile luster and disuss its inuene on the fragmentationproess.Numerial MethodsThe motion of an isolated partile luster in simple shear ow is simulated by Stokesian dynam-is approah. The basi equations and the numerial sheme are similar to the original Stokesiandynamis analysis [13℄. On the assumption that the inertias of both partile and uid are ade-quately small, the mobility matrix of partile is derived from multipole expansion of Oseen tensorin Stokes ow and Faxen's law. By the mobility matrix, the external fore, torque, and the stressletare related to the partile veloity, angular veloity and the rate of strain tensor of the undisturbedow �eld. The grand mobility matrixM, whih desribes the mobility of all partiles, is invertedandM�1 is divided in the following omponents.0�FTS1A =M�10� U� u1
�
1�E1 1A ; (1)M�1 = 0�RFU RF
 RFERTU RT
 RTERSU RS
 RSE 1A ; (2)where F, T and S are the external fore, torque ating on all partiles and the stresslet, U and
 arethe partile veloity and the rotational veloity, u1, 
1 and E1 are the ow veloity, rotational4



veloity and the rate of strain tensor respetively. RFU ,RF
, � � � indiate the omponent resistanematries of M. The full desription of the grand mobility matrix M an be found in the artileby Durlofsky et al.[14℄.From Eqs.(1) and (2), the veloity and the angular veloity of individual partiles are alulatedas follows; �U
� = � u1
1 �+� �RFU �RF
�RTU �RT
 ��1 ��FT�+� �RFE�RTE � : E1� ; (3)where �R is the modi�ed resistane matrix taking lubriation e�et into onsideration and is al-ulated as �R = R+R2B �M�12B ; (4)where R2B is the resistane matrix for a pair of partiles [15, 16℄. M2B is the pair mobility matrixalulated in a similar way to the grand mobility matrixM. The instantaneous position of partilesis alulated by numerial integration of Eq.(3).The surrounding ow �eld is simple shear ow and is expressed as follows;u1 (r) = 
1 � r+E1 � r; (5)where 
1=� _20� 0011A ; E1= _20� 0 1 01 0 00 0 01A (6)and _ is shear rate. The shemati diagram and the oordinate system of the simulation are shownin Fig.1. From Eq.(6), one an easily �nd that a simple shear ow onsists of pure rotation withangular veloity _=2 and also planar extension along y = x and ompression along y = �x withstrength _=2 respetively.As also shown in Fig.1, the partile luster used here is dense random paking of one hundredprimary partiles having a non-fratal struture. The fratal dimension Fr, whih expresses thespae-�lling property of luster, is set to 3.0. The average oordination number for the initialondition k0 is 5:54. Generally, the oordination number expresses the density of the ontat-network among partiles in the system of granular materials. In this study, the average oordinationnumber is de�ned by the average number of partiles existing within 2nm from eah partile.k0 is somewhat less than the well-known value of dense random paking of spherial partiles(k = 6:0 � 8:0). This is beause the partile luster used here onsists of only a hundred primarypartiles, and onsequently the number of partiles near the luster surfae, whih annot bondthe neighboring partiles suÆiently, is omparable with the total number of partiles.5



The primary partile is assumed to be a perfetly smooth sphere with the diameter 2a = 650nm.For the physial properties of partile and uid, those of polystyrene and ethanol are used. Thepartile and the uid density are �p = 1056kg/m3, �f = 790 kg/m3 respetively and the uidvisosity is � = 1:2�10�3 Pa�s. The interpartile fore is alulated from the retarded van derWaalspotential. The potential is alulated by the rigorous approah whih is the ombination of retardedHamaker onstant based on Lihshitz theory and a Hamaker geometrial fator [17, 18℄. Theorresponding non-retarded Hamaker onstant is A = 9:68� 10�21J. The Brownian perturbationfore is negleted on the assumption of large P�elet number Pe = 6��a3 _=kBT . (kB : Boltzmannonstant, T : temperature). In this simulation, Pe> O(103) is satis�ed for all onditions for thetemperature T =300K.The assumption that both the partile and uid inertia an be negleted is reasonable on theondition that the dimensionless parameters Re= �faU=� and St= �paU=� are less than unity.Where U is the harateristi veloity and is de�ned by both U = A=6��a2 (the harateristiveloity of the response to the interpartile fore) and U = a _ (the harateristi veloity ofsurrounding ow). The parameters de�ned by the former U adequately satisfy Re, St� 1 for givenuid and partile properties. In addition, we set the shear rate so as to satisfy Re, St� 1 de�nedby the latter U .In the simulation, if the distane between partiles is loser than the ontat distane Æ = 1nm, van der Waals fore ating on them is set equal to zero and any repulsive fore is not giventhem. Owing to lubriation e�et, any overlap of partiles (i.e., the distane between the entersof the partile r < 2a) does not our in this simulation. The ontat distane used here seemsto be greater beause it is generally onsidered as the several angstroms [19, 20℄. In angstromlengthsales, there are various omplex e�ets aused by the moleular nature of the surroundinguid i.e., the strutural fore, the lubriation e�et at moleular sale and also the Brownian e�et,are signi�ant. In this study, we ignored these mirosopi e�ets so as to fous on the partiledynamis for a given interpartile fore.The veri�ation of the simulation method, the alulation ondition suh as time step, and thefurther disussions on the assumptions used here an be found in our previous artile [9℄.Results and disussion 6



Strutural hange of non-fratal lusterFigure 2 shows the dynami behavior of a non-fratal partile luster in shear ow for � _=23.9Pa.The blak arrows in the �gure illustrate the rotational motion of the luster, while the gray onesillustrate the translational motion. As shown in Fig.2, the partile luster initially rotates likea rigid body with the rotation of ow (Fig.2(b)) and slightly translates in x diretion owing toits asymmetri on�guration (Fig.2(b)-(d)). The rotation speed of the luster is almost identialwith that of the ow (the nondimensional time per a rotation _t = 4�). After the luster rotatesrigidly for a very long time (approximately a hundred rotations), it begins to deform irreversibly(Fig.2(f)-(h)). Finally, the luster ruptures and divides into two hild lusters (Fig.2(i)).In our previous study [9℄, the fragmentation proess of loose partile lusters whih have dif-ferent spae-�lling properties was examined by the same simulation method. We showed that thestrutural hange before rupture plays a signi�ant role on the fragmentation proess of loose lus-ters having high fratal dimensions. However, suh a long-term strutural hange of dense lustersas shown here was not observed in the ase of loose lusters. Therefore, this behavior is peuliarto dense paking lusters.Long-term growth of raks in lustersIn order to investigate the long-term deformation of the dense luster as shown in Fig.2, we hereexamine the hange in the internal struture of the luster before rupture. Figure 3 shows the rela-tion between the nondimensional time _t and the average oordination number k for � _=23.9Pa.It is found that the hange in the oordination number is divided into three harateristi stages,that is, (I) rapid hange from the initial oordination number to the stable one, (II) slow dereaseover a long period of time and (III) rapid and irregular derease toward the rupture.The inset of Fig.3 is a lose-up of the hange in the average oordination number at an earlystage. As shown in the inset, the stage I is short and orresponds to the period that the lusterrotates one or a few times. In ontrast, the stage II is surprisingly long. Throughout the stageII, the oordination number dereases irreversibly with the utuation. The amplitude of theutuation keeps almost onstant value and it seems to be synhronized with the rotation ofthe luster (See also Fig.5. Beause the luster experienes twie ompression/expansion per arotation, the utuation period is almost _t = 2�). This utuation of the oordination numberan be interpreted as the periodi strutural hange in the luster as a result of periodi passagesthrough the prinipal axes of the stress tensor due to the rotation of the luster. On the other hand,7



the irreversible hange of the oordination number implies that aws (raks) inrease graduallyin the partile luster.Figure 4 shows the hange in the average oordination number of the partile luster for variousuid stresses � _. The inset of the �gure indiates the oordination number at early stages for someonditions. The initial struture of the luster is ommon and the initial oordination number k0is 5.54 for all onditions. Figure 4 indiates that there are similarities between the hanges inthe oordination number for all � _. As mentioned above, they an be divided into three stages.Initially the oordination number reahes the respetive stable values (kS) by the time the lusterrotates a few times (stage I). The inset of the �gure shows that the stable oordination number kSdereases with inreasing � _. This reason is explained as follows. The larger uid stress enlarges theperiodi deformation of the luster whih ours during the stage II. Consequently, the onnetivityin the partile luster dereases for larger applied stress � _ sine the luster requires the largermobility for suh a short-term periodi derormation. Therefore the stage I an be interpreted asthe transition period from the initial struture to the possible struture being subjeted to theperiodi deformation. The latter struture onsists of various probable on�gurations under theapplied ow �eld.After the oordination number reahes the stable one, it dereases linearly (stage II). The slopeof the derease in the oordination number is more abrupt for larger � _. During this stage, theluster rotates like a rigid body for small � _ or rotates with the periodi deformation for large � _.However the irreversible hange in the struture ours by degrees and aws inrease inside theluster. After a while, the oordination number dereases rapidly (stage III) and �nally the lusterruptures in all ases.Here we examine the dependene of the stable oordination number kS on the luster struture.Figure 5 shows the oordination number k in lusters having di�erent initial strutures at an earlystage. The solid line indiates the luster for initial oordination number k0 = 5:54 and the dashedline indiates the luster having a rather loose struture for k0 = 5:04. As shown in Fig.5, theoordination numbers of primary partile in both lusters reah the similar values. As mentionedabove, the initial rearrangement of primary partiles is interpreted as the strutural hange fromthe initial struture to that suitable for the periodi deformation. It is found from Fig.5 that thestable oordination number kS , whih allows the periodi deformation of luster for respetive uid
8



stresses � _, is not dependent on the initial struture and it is determined only by the ondition ofthe sorrounding ow.Saling of long-term deformation of lusterIn this setion, we disuss the mehanism of the long-term deformation of dense partile lustersshown above. The deformation of the luster arises from the breakage of interpartile bonds and itis determined by a balane between the strength of lusters resulting from the interpartile foreand the uid stress ating on the luster. In the previous studies, Fragmentation number Fa wasused for haraterizing the fragmentation proess of partile lusters in uid ow [2℄. It is de�nedas the ratio of the uid stress to the ohesive strength H and Fa = � _=H . Here we onsider theharateristi ohesive strength H = A=a3 (the harateristi inter-partile fore A=a divided bythe harateristi ross-setional area a2) and de�ne Fa = � _a3=A in the simplest way, and disussthe long-term deformation of the partile luster by the fragmentation number Fa.Figure 6 shows the relationship between the oordination number k�kS and the saled time. Asshown in the �gure, the derease of the oordination number is well saled with a nondimensionaltime Fa2:5 _t. Sine k � kS indiates the derease of the oordination number from the stableone, �(k � kS) an be interpreted as the amount of the aw in the partile luster. The solidline indiates the �tting exponential funtion k � kS = C exp ��Fa2:5 _t�, where C and � are the�tting onstants and C = �0:05 and � = 2:5� 10�8 respetively. This exponential funtion is thesolution of the following di�erential equation;d (k � kS)d ( _t) = �Fa2:5 (k � kS) : (7)The form of Eq.(7) is idential with that of the simplest population balane equation. That is,the rate of the aw inrease (the derease in the number of the interpartile bond per unit time)is proportional to the instantaneous amount of the aw in the luster. This equation implies thatthe inrease of the aw weakens the strength of the partile luster as time passes.The well-known theory on the strength of partile agglomerates was developed by Rumpf [21℄.In his theory, the strength of the agglomerate is onsidered as the mean ohesive fore ausedby the interpartile fore per a fragmentation area. On the other hand, Kendall [22℄ derived theagglomerate strength based on the frature mehanis. In Kendall's theory, the partile agglom-erate is onsidered as a solid body whih satis�es the GriÆth energy riterion of frature, and thestrength is alulated by a frature model based on the rak growth in the agglomerate.9



Here we suggest one possible interpretation of the the aw inrease as shown in Fig.6 by thesimilar approah to Kendall's theory, that is, the analogy to the rak growth in solid materials.In the material siene, the fatigue rak growth under yli load is expressed as Paris law [23℄and is given by ddN � (�K)m (8)where  is the rak length, N is the number of yles. �K is the di�erential stress intensity fatorKmax�Kmin where Kmin, Kmax are the minimum and maximum stress intensity fators duringthe yli load. m is the parameter and is generally 2� 4. The stress intensity fator is given byK = �p� where � is the applied stress. Substituting these quantities to Eq.(8), the followingrelation is obtained; ddN � ��mm=2 (9)where �� is the di�erene between the minimum and maximum applied stresses.As mentioned above, the partile luster periodially passes the prinipal axes of the uid stresstensor owing to its rotation. Therefore we an onsider the partile luster in shear ow is exposedto the yli stress �min,max = �� _ for a period _t = 4�. If the interpartile fore is onstant,�� is diretly proportional to Fa. Sine �(k � kS) an be interpreted as the amount (length) ofthe aw , Eq.(7) is similar to Eq.(9) with m= 2 or m= 2:5. We onluded that the long-termstrutural hange of dense partile lusters might be explained by the analogy of the fatigue rakgrowth in the luster.In most of the previous studies on the breakup of the partile luster in uid ow, it has beenexplained that the breakup proess is dominated by an stati balane between the ohesive strengthof the luster and the uid stress. Although our alulation system is somewhat far from the atualsystem, i.e., less primary partiles, no onsideration of penetration e�et, et., the obtained resultssuggest the breakup behavior of the partile lusters should be onsidered as the dynami one.ConlusionsThe long-term strutural hange of a dense partile luster in shear ow has been investigatednumerially. The simulation results indiate that the both rotation and strain e�ets of shear owbring about the restruturing of the partile luster. The hange in the struture shows similaritiesif any uid stress is applied and is explained as the initial rearrangement of primary partiles andthe suessive rak growth that takes a long time. The rak growth in the luster is similar tothat of the solid materials under yli load and ould be explained by the analogy of the fraturemehanis. 10
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Fig.1 Shemati diagram of alulation system and initial on�guration of partile lusterFig.2 Instantaneous motion of partile luster on x-y plane in steps of normalized time _t = 200 for owondition � _ = 23:9PaFig.3 Average oordination number of primary partile before rupture for � _ = 23:9PaFig.4 Average oordination number of primary partile before rupture for various � _Fig.5 Average oordination number of primary partile in lusters having di�erent strutures (solid line:k0 = 5:54, dashed line: k0 = 5:04)Fig.6 Relation between nondimensional time Fa2:5 _t and average oordination number k � kS
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Fig.1 Shemati diagram of alulation system and initial on�guration of partile luster
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(a)(b)()(d)(e)(f)(g)(h)(i)Fig.2 Instantaneous motion of partile luster on x-y plane in steps of normalized time_t = 200 for ow ondition � _ = 23:9Pa
14



Fig.3 Average oordination number of primary partile before rupture for � _ = 23:9Pa
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Fig.4 Average oordination number of primary partile before rupture for various � _
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Fig.6 Relation between nondimensional time Fa2:5 _t and average oordination numberk � kS
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