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Abstract In the large amoeboid organisiRinysarum, biochemical oscillators are
spatially distributed throughout the organism and thellective motion exhibits
phase waves, which carry physiological signals. The basiara of this wave be-
haviour is not well-understood because, to date, an impbeffect has been ne-
glected, namely, the shuttle streaming of protoplasm whai@ompanies the bio-
chemical rhythms. Here we study the effects of self-coasistiow on the wave
behaviour of oscillatory reaction-diffusion models prepd for thePhysarum
plasmodium, by means of numerical simulation for the disioer relation and
weakly nonlinear analysis for derivation of the phase dquatVe conclude that
the flow term is able to increase the speed of phase waveddsitmielongation
of wave length). We compare the theoretical consequendisreal waves ob-
served in the organism and also point out the physiologmakrof these effects
on control mechanisms of intracellular communication.
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1 Introduction

The amoeboid plasmodium of the true slime mBkysarum polycephalum shows
tactic movement which develops due to an underlying meshabased on wave
phenomena arising in an oscillatory field [13,14]. The datty field consists
of the collective motion of spatially distributed intralegar biochemical oscilla-
tors [6,27]. So far, these wave phenomena have been stugiediig oscilla-
tory reaction-diffusion equations, but recent experirakrgsults suggest that the
overall wave behaviour is strongly affected by the hydradyit flow of proto-
plasm [18]. To take this into account, a reaction-diffusamvection model was
recently proposed for the system and the arising wave betawas analysed
in [16,28]. The flow is protoplasmic streaming, which is ged from a biolog-
ically active process and said to be self-consistent [28nRly, the flow is not
constant but varies with respect to space and time, depgdinthe state of the
system. This is a difficulty and the reason why the wave behavs not well
understood.

1.1 Biological background

The plasmodium is a large aggregate of protoplasm with dieemorphology
and it shows rhythmic contraction everywhere within theamigm. While this
cyclic contraction is coupled with oscillations of biochieal components in-
cluding C&*, ATP, H" and NADH, it produces motive force (hydrostatic pres-
sure) leading to protoplasmic streaming [19,26,29-31F $tneaming direction
is switched periodically back and forth, depending on thatiap difference of
the contraction phase. For these reasons, it is necessdrththplasmodium is
regarded as a coupled oscillator system with advectior2B]6,In fact, phase
waves of cellular rhythm are observed in the real organism, @ay a signifi-
cant role in regulating the mechanisms controlling chexistahermotaxis and
phototaxis [13,14,17]. Although these tactic responsesheaexplained by the
nonlinear dynamics of the phase wave, these phase wavesbdaebeen anal-
ysed for a conventional oscillatory reaction-diffusiondaet and the effect of the
flow has been ignored for the sake of simplicity.

1.2 Aims and outline

We begin by motivating our study with some examples of phasewinPhysarum
polycephalum. We show the spatio-temporal patterns of rhythmic osadiathat
arise in the organism under different external conditidfie.then move to take
a more theoretical approach: studying, in general, thecesffef self-consistent
flow on the wave behaviour of oscillatory reaction-diffusiequations. We use
numerical techniques to calculate the dispersion reldbopropagating waves,
and analyse the effects of the flow on travelling plane walater we consider a
more general setting: we derive an approximation for thexdyins of phase waves
arising in a generic reaction-diffusion-advection modeiieans of a perturbation
method. Finally we suggest possible physiological rolebefelf-consistent flow
in the Physarum plasmodium.
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Fig. 1 Acceleration of phase waves in the actual organism. (a)csipatio-temporal pattern
of rhythmic oscillation, measured by the conventional @gtimethod [13], in a plasmodium
extending freely along a lane of agar gel, as shown on the Iefthe figure, the organism,
indicated by shading, moved downward as indicated by théldoarrow. The phase of the
oscillation was almost synchronous through the width ofltime. We recorded the time series
observed along a middle line of the lane width. The propagatpeed of the wave was faster in
the rear than in the frontal tip (the boundary between these¢gions is indicated). The lower
figure, drawn on an enlarged time scale, shows more clealglifference in propagation speed.
(b) Slower wave propagation on a nutrient-containing geldiv the arrows). In all figures, the
vertical and horizontal directions indicate space and tigpectively. The oscillation phase of
cell thickness was discretised into two states, increaseKpand decrease (white). Scale bar:
10 minutes except for the enlarged figure of (a). Length o&oigm was 2-4 cm.

2 Wave acceleration of real organism in relation to variations in
protoplasmic streaming

Figure 1 shows a plasmodium extending freely along a langaxfgel (see upper-
left part of figure): as time progresses the plasmodium elgtaiong the lane, from
top to bottom (double arrow). The different parts of Figurghbw some real pat-
terns of rhythmic contraction in relation to changes inrggta of protoplasmic
shuttle streaming. In order to demonstrate the oscillatitire phase of cell thick-
ness was discretised into two states: increasing (blackplaoreasing (white).

In Figure 1(a) we see that in the frontal tip of the freely exliag organism
(below an imaginary line connecting the two horizontal s wave propagation
is slower than in the rear part of the organism (above the iinaag line). This
slow propagation arises as a result of the changes in thegpasimic flow rate:
weaker in the frontal tip of the organism. The phenomenonbeaobserved more
clearly in chemotaxis of the organism, as shown in Figur§.Xpm the nutrient
site (below the imaginary line connecting the arrows), tlevevspeed is much
slower: it is known that protoplasmic flow is weaker at nuitieich sites than at
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(a) Concentration profiles (b) Phase diagram
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Fig. 2 Numerical solution of the spatially homogeneous systBmv(= 0 in equation (1)) with
Schnakenberg kinetics. (a) shows the concentration psaifla (solid line) andv (dashed line)
over time. (b) is a phase diagram and clearly shows that $tersyquickly tends to a limit cycle.
Parameters are as follows= 0.1, b = 0.5, u(0) = 0.6, v(0) = 0.6 and both plots are shown for
t €[0,80.

other sites (above the imaginary line). From these resuis;onclude that wave
propagation is accelerated by increased protoplasmic flow.

These findings motivate our study: we investigate the effetflow on wave
propagation rates in oscillatory reaction-diffusion syss, in order to determine
whether protoplasmic streaming rates can affect the phasesiwobserved in the
plasmodium.

3 Numerical calculation of the dispersion relation

A recently proposed model for contraction dynamics of Phgsarum plasmod-
ium is a system of reaction-diffusion equations with flonmerf7, 16, 28]. To nu-
merically calculate a dispersion relation, we specify avemtional two-variable
model with self-consistent flow [28]:

% +w.0u = f(u,v)+ DO,
ov
E - g(U,V), (1)

whereu andv are chemical concentrations. Here, we assume that one olietab
chemical described by flows with the endoplasmic streaming while the other
chemical described by is bound to ectoplasm. The quantilyis the diffusion
constant of the chemical The velocity of the self-consistent flowy, is deter-
mined by the concentration of the metabolic chemical as

w = gOu, (2

whereq is a (constant) parameter expressing the intensity of tie flo
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Model equations 1 and 2 take the form of a generalized readiitusion-
advection model with self-consistent flow proposed in [28] they can be ob-
tained by some simplification from a previously proposed ehodth three com-
ponents [16]. In the previous model, the variableandv are chemicals which
display oscillatory behavior in ectoplasm. Whilés bound in the ectoplasm,is
a free component which can interact with contractile prateind exchanges with
the same chemical in flowing endoplasm (gryThe dynamics of has an ad-
vection term dependent an Although this exchange afandzis not so fast, we
assume, for the sake of simplicity, thats always similar taz and has an advec-
tion term in addition to its intrinsic diffusion term. Ourstification for this comes
from the fact that we make the advection coefficignptsmall enough. From this,
equation 1 is obtained.

The reaction kinetics are chosen to exhibit a limit cycleileg@on. Here the
functionsf andg are taken to be the Schnakenberg (tri-molecular) reactimt-k
ics [15,24]:

f(uv)=a—u+u?, g(uv)=hb—uy, (3)

wherea andb are positive constants. Under spatially homogeneous tonsli
(D = 0 andw = 0), the system has a stable limit cycle for a > (a+ b)3 [15].
We chose this reaction system because the shape of the Jiohit in the phase
space is similar to that of the calcium oscillation in thespf@dium, which is a
strong candidate for the primary chemical clock underlyting rhythmic activ-
ity. Figure 2 shows plots of the numerical solution of thetggly homogeneous
system and clearly demonstrates the limit cycle kinetics.

Plane wave solutions of the system given by equations (1a+of the form

ux,t) =U(wt—kx) and v(xt)=V(wt—kx), 4

wherew is the wave frequency (so that the peribd= 217/ w) andk is the wave
number (so that the wave length= 2r/k). The propagation velocity can be
calculated a® = w/k.

To obtain the dispersion relation for travelling waves, aeried out numer-
ical calculations for equations (1)-(3) with the followipgocedure. We initiated
a pulse travelling on a ring (a one-dimensional region whehperiodic boundary
conditions), and solved the system until the solution becpariodic in time. Af-
ter measuring the rotating period of the travelling pulsetanring, we repeated
the calculation for rings of different lengths. Thus we dah¢a the dispersion re-
lation for periodic wave trains with stable propagation.

We used the explicit Euler method for the reaction terms pavind differenc-
ing method for the advection terms, and an implicit methadHe diffusion terms.
A more detailed outline of the numerical calculations, itthg the initial condi-
tions and numerical discretisation employed, can be foapipendix A. In our
calculations, the parameter values were taken ta-bé.1, b= 0.5 andD = 1.0.
To see if these results are typical of the behaviour of théegyswe undertook
an analytical investigation: it is time consuming to carot a detailed numeri-
cal investigation over a wide parameter space. The anaysiimed in Section 4
will allow us to approximate the dispersion relation by nuite calculation of
just two integrals. In this way we can quickly investigateetiier the behaviour
observed with the parameter set of Figure 3 is represeatatithat observed for
more general parameter choices.
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(a) Concentration profile for u (b) Concentration profile for v
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Fig. 3 Numerical solution of the given by equations (1)-(3). Thenesical method is outlined
in Appendix A. (a) shows the concentration profile foover (x,t)-space while (b) shows the
concentration profile fov. Parameters are as follows= 0.1,b = 0.5,g= 1.0 andD = 1.0.

Figure 3 shows a plot of the numerical solution of equatidng3) and clearly
demonstrates the periodic behaviouruadindv. Plane waves with a wave length
of A =25 (k= 0.25) occur with a period of approximately= 10 (w =~ 0.63).

Dispersion curves for the reaction-diffusion-advectigstem, given by equa-
tions (1)-(3), are shown in Figure 4 (wave numberagainst frequencyy) and
Figure 5 (periodT = 2711/ w, against velocityy = w/K) for various values of the
advection constanty. It can clearly be seen from the figures that variations in the
self-consistent flow have a pronounced effect on plane wesygagation,and that
propagation behaviour depends on both the wave length attteaign ofg.

Following [1, 2, 23], we classify our waves into phase wavesd wavelength,
low wave number) and trigger waves (short wavelength, higheanumber) by
two branches of the curve separated by the inflection poimts& classifications
have been marked on both Figure 4 and Figure 5.

In both cases positive and negative), agis increased (while the wave num-
ber,k, is kept constant) the oscillation frequency of phase wawesemains es-
sentially constant (note that the plots of Figure 4 are ofedifit scales). How-
ever, the change in frequency is marked for trigger wavesy Asincreased, the
oscillation frequency of trigger waves decreases: theghamfrequency is more
significant forg < 0. We note that this implies that as thedulus of the flow is
increased, opposite effects occur according to whetheftdiveis in a positive or
negative direction. For example, for trigger waves gne 0, w decreases gs||
increases, while fog < 0, w increases aj| increases.

In contrast we see that ags increased (while the oscillation frequenay,is
kept constant) the wave numbgyof trigger waves increases. Again we note that
this results in opposing effects when consideringrtiodulus (i.e. the ‘strength’)
of the flow.
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Fig. 4 Dispersion curves obtained by numerical calculations &mitive (upper panel) and neg-
ative (lower panel) values @f. The oscillation frequencyp, monotonically increases with the
wave numberk, and has bulk frequenayy = 0.495 in the limitk — 0.

3.1 Application toPhysarum plasmodium

In the previous section, the parametgrexpressing the intensity of flow, was
shown to be crucial to the rate of wave propagation. This vaascbefficient
through which the chemical oscillator was related to theivadiorce of proto-
plasmic flow. Thereforey is associated with the power which is produced by the
mechano-chemical apparatus of actomyosin in the orgaig®cent simulation
for the rhythmic amoeboid movement®ysarum plasmodium claimed that this
type of parameter, which in that report was called the 1s#iffs of ectoplasmic
gel’, played a key role in determining the speed and staitia of wave propa-
gation [7,25]. This also indicates that the coefficient ofvflor stiffness is a key
parameter for regulation of phase wave propagation.

In the actual case of tHéhysarum plasmodiuny is positive, provided that the
contraction force is maximum when chemical concentragoninimum. Such be-
haviour is observed for G4, which is the most probable candidate for a primary
chemical clock in the plasmodium [16].
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Fig. 5 Relation between period,, and velocityyv. The propagation velocity,, was determined
as the phase velocity/k for the positive (upper panel) and negative (lower pageljhe ve-
locity becomes large and goes to infinity at the bulk perige- 12.7. For negative values @f,
the curves show large convex regions in period correspgriditrigger waves.

Hereafter, we will focus only on the phase wave which is ctimrésed by a
low wave numberk, since only low wave numbers were observed in the actual or-
ganism. The results of this section show that self-consiskew has a number of
profound effects on the phase waves, such as acceleratibe wfive. This can be
thought of as equivalent to elongation of the wave lengtigesthe frequency of
the phase waves remains almost unchanged. Clearly thit bfie advantages for
intracellular signal communication because physioldgifarmation is encoded
in the phase of oscillation [13,14]. By making use of the ém@ion, the plas-
modium can maintain a system as large as up to the order ofra faatexample,
in spite of it being a unicellular organism with no nervoustsyn.
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4 Derivation of phase dynamics and estimation of dispersiorelation for a
generic model

In this section, we consider a general type of reactionsdiffn system with flow
terms [28]:
Ju
ot
whereu is anN-component vector of chemical concentrations varying space,
X, and time,t. The reaction kinetics, denoted Iljyare of limit cycle type and
the quantityD is a positive diagonal matrix of diffusion constants. Théoge
ity of chemical flow resulting from protoplasmic streamisgdietermined by the
concentration of the chemicals BKJu, where the tensdvl represents advection
coefficients. To consider the effect of flow on the dispersiation, we derive
the phase dynamics from equation (5), and estimate a disperdation for the
phase wave.

By means of limit cycle perturbations, the dynamics of phaaeges in stan-
dard reaction-diffusion systems for oscillatory media described by Burgers
equation [10,11,20-22]. We adopt a similar method for tetaity reaction-diffusion
equations with this type of flow term.

We assume that the limit cycle is described by a solution aaddqgn (5) under
spatially homogeneous oscillation with frequenay

U=uo(T), T=ant, (6)

whereug satisfiesipug = f(Up) andug(T + 21m) = ug(T). Since the system (5) is
invariant under time translation, it has a solutios= ug(T + () wherey is an
arbitrary constant.

We introduce multiple scales

+MDOu.0u = f(u) + DU, (5)

X=vex, T=upt, T =c¢t, (7)
and the asymptotic expansion,
U=up(T+y)+eur(t+y)+..., (8)

whereg is a small parameter anfl = (X, T). Substitution of equations (7) and
(8) into equation (5) yields a hierarchy of linear equatiforseach order ire:

Jdu
@2 = f(uo). (©)
Zuj = bj, (10)
where ) e
£ = W5~ %(Uo) (11)

Hereb; denotes the inhomogeneous term of jtreorder equation fof = 1,2,... ..
For the first order equation, the inhomogeneous term is

0
7%7MDxU0.Don+ DD>2<U0, (12)

oy
oT

by =

= —Up—— — Mugug| Ox | + Dug| Dx|* + DupCx @, (13)
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wherely is the nabla operator with respect to the scaled coordiXatéhus the
solvability condition foru; gives the dynamics of the phase waves:

oy

W _ 2 2
3T c1Ox @+ co|Oxy|“. (14)

The coefficientg; andc, are obtained from the relations,

(V)
Cj= , (15)
P v ug)
where
vi =Dup, and vy = Dug— Mugug. (16)
Here
21T
v = [T, an
0

andv’ is the nontrivial periodic solution to the adjoint diffeten equation? v’ =
0. Equation (14) describes slow modulation of the homoges®@suillation with
frequencyay by the phasel. We note that the coefficient of the nonlinear term,
C2, shows ‘competition’ between diffusion and flow.

In terms of the quantity = wot + Y, equation (14) becomes

0
6_(tp = wy+ 1020+ c|Ogl% (18)

The dispersion relation is thus estimated from the phasatinu(18) through the
wave characteristio® = d¢/dt andk = O as [1,2]

W= n+Ck+..., (19)

wherek = |k|.

Since the scaling of coordinates in the perturbation expasq7) means a
slow spatial modulatiork = O(+/€), equation (19) is the Taylor expansion for the
dispersion curvew = w(k), in the vicinity ofk = 0. Thus, the coefficient of the
nonlinear term in equation (18) ¢ = w”(0)/2. Here equation (19) has no linear
term ink because of reflectional symmetry in the space of equatio®&shown
above in equation (16X, depends on advection constants as well as diffusion
constants.

The dispersion relation, equation (19), shows that the wawraber,k, can
decrease at a fixed value of the frequengyasc, varies, depending on the flow
term. Butc, also depends on the diffusion term and the concrete form ef th
function was given by equation (16).

We note that the dispersion relation, (19), is only applieab periodic waves
with constant speed. It does not apply to waves with noneamfphase gradi-
ents [23]. In such cases, we need to use the phase equaBpmi(analyse equa-
tion (5) directly.
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4.1 Application to thePhysarum plasmodium model

We now apply the results of this section to determine an aqmate dispersion
relation for the model of Section 3. From equations (1)-(8)sse that the operator
¢ and its adjoint,#" are given by:

9 af ot
9 9% (Yo, v — 9% (ug, v

o &bgrag au (Uo, Vo) da\,(‘?go 0 (20)
—3a(Uo,Vo)  Wogz — 5y (Uo, Vo)

and
ot ~wZ 9w, vo)  —%9(uo,vo) 21

= of g ag . (21)

—%(Uo,Vo)  —angr — g (Uo, Vo)

This results in a solvability condition of

0= AZHT_ld_LII_ /2|:| 2 DIID 2 D/DZ d
s Uo | ~Yoz7 0(Up)“|Ox Y| + Dup| Ox | + Dup| Ox ¢| | dT
2 aw
Tl —vh==|d 22
+/0 VO|: OdT:| T, ( )
whereug, Vo, ug andvg satisfy the equations
9 f (up, Vo)
0 . 0, V0
- ( ,,_) ~ (g, 3)
o1
and
o ﬂ(u Vo) @(u Vo) ul
—wy de _ glfl 0, VO gu 0, VO ( 9) (24)
% S (Uo,Vo) 53 (uo,Vo) | \ Vo
From this we have a dispersion relation of the form
W= n+Ck+..., (25)

for smallk, where
27T T 2T T T
Co= /0 up [DUg — q(up)?] dr//o [u{)uo +\/0v0} dr. (26)

Since equations (23) and (24) cannot be solved analytjcatyemploy nu-
merical techniques to gain an estimate of the coeffiaigribr varying values of
the flow parametery. We solve the system of differential equations in Matlab
and then evaluate the integrals by employing the trapeknitia The dispersion
relation for differing values ofj is plotted in Figure 6.

Application of the method of Section 4 to tiRhysarum plasmodium model
neatly demonstrates the competition between rates ofsififfiuD, and advection,
g in determining the dispersion relation (see equation (28pwever, without
the aid of numerical tools, it is difficult to make remarkstiier qualitative or
guantitative) on the behaviour @b asD and q are varied. This is due to the
highly nonlinear nature of the problem: the effects of vagyg andD will depend
specifically on the problem at hand.
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Dependence of the dispersion relation upon flow
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Fig. 6 Dependence of the dispersion relation upon the flow. Equai23) and (24) were solved
numerically and then the parametgrwas calculated for varying values of the flow parameter,
g. Asqis increased the frequenay, increases for fixed values of the wave numkekVe note
that this is in agreement with numerical simulations of thstem shown in Figures 4 and 5.
Parameters were as follows= 0.18,b = 0.5 andD = 1.0.

5 Conclusion

We began by motivating our theoretical studies with obg@weaof wave propa-
gation rates in the actual organisPhysarum plasmodium. From consideration
of the spatio-temporal patterns of rhythmic oscillationinferred that decreased
protoplasmic flow results in a decrease in wave propagatieac

We then studied the effects of self-consistent flow on wavebeur of the
oscillatory reaction-diffusion model proposed for #lgysarum plasmodium. We
used numerical techniques to solve the system of equatigr(8), and through
this obtained a dispersion relation for varying values efftow rate,g, and wave
numberk. The addition of self-consistent flow had a number of protbeffects
on the phase waves, such as acceleration of the wave. Wethatddis is equiv-
alent to elongation of the wave length since the frequencthefphase waves
remained almost unchanged.

These theoretical results are in agreement with the infe®of Section 2 re-
garding the actual organism: the protoplasmic streamirggakeée to accelerate the
phase wave speed. As discussed in the text, it is clear fieistebuld provide ad-
vantages for intracellular signal communication due tofélee that physiological
information is encoded in the phase of oscillation.

To consider the effect of flow on the dispersion relation in@ergeneral set-
ting, we derived phase dynamics for a generic reactionuslifih system, given by
equation (5) and used asymptotic techniques to derive amatstof the disper-
sion relation for phase waves. The dispersion relationatouo (19), showed that
the wave number decreased at a fixed value of frequency earied depending
on the flow term. The flow effect on wave acceleration couldrdmbeustood by this
generic relation. We concluded that the flow term was abletelarate the phase
wave speed (similar to elongation of wave length).
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A Numerical methods

The system solved numerically in Section 3 was of the form:

du

5t Ta0u0u = f(u,v) + D%y, (27)
ov
E - g(U,V), (28)

where f andg are as in equation (3). The system was solved on the doraifD,A], with
periodic boundary conditionsi(0,t) = u(A,t), and similarly forv. The initial conditions were
taken in the form of a ‘pulse’:

u(x,t) % +sin (ZTHX) , (29)

1 9 2nx
v(x,t) 5 + 5cos( 3 ) . (30)
The system was discretised using the following methoddi@xguler method for the reaction
terms; upwind method for the advection term; leapfrog metfay the flow, w, and implicit
method for the diffusion terms.

Letting U ~ u(x;,ta) andV}" ~ v(xj, tn), wherex;j.1 — xj = Ax andt"*! —t" = At, results
in the following discretised system:

+1 n+1 n+1 n+1
urtt-up Uls—Ua] (YR Y _ (UM +D unt— 20t Ut
At 2(Ax) Ax > (Ax)?
V_n+l_v_n
S =9V, (31)

For each value of the flow parametgqr,accuracy was ensured by suitably refining the spatial
and temporal mesh parameters.
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