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Abstract In the large amoeboid organismPhysarum, biochemical oscillators are
spatially distributed throughout the organism and their collective motion exhibits
phase waves, which carry physiological signals. The basic nature of this wave be-
haviour is not well-understood because, to date, an important effect has been ne-
glected, namely, the shuttle streaming of protoplasm whichaccompanies the bio-
chemical rhythms. Here we study the effects of self-consistent flow on the wave
behaviour of oscillatory reaction-diffusion models proposed for thePhysarum
plasmodium, by means of numerical simulation for the dispersion relation and
weakly nonlinear analysis for derivation of the phase equation. We conclude that
the flow term is able to increase the speed of phase waves (similar to elongation
of wave length). We compare the theoretical consequences with real waves ob-
served in the organism and also point out the physiological roles of these effects
on control mechanisms of intracellular communication.
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1 Introduction

The amoeboid plasmodium of the true slime moldPhysarum polycephalum shows
tactic movement which develops due to an underlying mechanism based on wave
phenomena arising in an oscillatory field [13,14]. The oscillatory field consists
of the collective motion of spatially distributed intracellular biochemical oscilla-
tors [6,27]. So far, these wave phenomena have been studied by using oscilla-
tory reaction-diffusion equations, but recent experimental results suggest that the
overall wave behaviour is strongly affected by the hydrodynamic flow of proto-
plasm [18]. To take this into account, a reaction-diffusion-advection model was
recently proposed for the system and the arising wave behaviour was analysed
in [16,28]. The flow is protoplasmic streaming, which is derived from a biolog-
ically active process and said to be self-consistent [28]. Namely, the flow is not
constant but varies with respect to space and time, depending on the state of the
system. This is a difficulty and the reason why the wave behaviour is not well
understood.

1.1 Biological background

The plasmodium is a large aggregate of protoplasm with sheet-like morphology
and it shows rhythmic contraction everywhere within the organism. While this
cyclic contraction is coupled with oscillations of biochemical components in-
cluding Ca2+, ATP, H+ and NADH, it produces motive force (hydrostatic pres-
sure) leading to protoplasmic streaming [19,26,29–31]. The streaming direction
is switched periodically back and forth, depending on the spatial difference of
the contraction phase. For these reasons, it is necessary that the plasmodium is
regarded as a coupled oscillator system with advection [16,28]. In fact, phase
waves of cellular rhythm are observed in the real organism, and play a signifi-
cant role in regulating the mechanisms controlling chemotaxis, thermotaxis and
phototaxis [13,14,17]. Although these tactic responses can be explained by the
nonlinear dynamics of the phase wave, these phase waves haveso far been anal-
ysed for a conventional oscillatory reaction-diffusion model, and the effect of the
flow has been ignored for the sake of simplicity.

1.2 Aims and outline

We begin by motivating our study with some examples of phase waves inPhysarum
polycephalum. We show the spatio-temporal patterns of rhythmic oscillation that
arise in the organism under different external conditions.We then move to take
a more theoretical approach: studying, in general, the effects of self-consistent
flow on the wave behaviour of oscillatory reaction-diffusion equations. We use
numerical techniques to calculate the dispersion relationfor propagating waves,
and analyse the effects of the flow on travelling plane waves.Later we consider a
more general setting: we derive an approximation for the dynamics of phase waves
arising in a generic reaction-diffusion-advection model by means of a perturbation
method. Finally we suggest possible physiological roles ofthe self-consistent flow
in thePhysarum plasmodium.
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Fig. 1 Acceleration of phase waves in the actual organism. (a) Typical spatio-temporal pattern
of rhythmic oscillation, measured by the conventional optical method [13], in a plasmodium
extending freely along a lane of agar gel, as shown on the left. In the figure, the organism,
indicated by shading, moved downward as indicated by the double arrow. The phase of the
oscillation was almost synchronous through the width of thelane. We recorded the time series
observed along a middle line of the lane width. The propagation speed of the wave was faster in
the rear than in the frontal tip (the boundary between these two regions is indicated). The lower
figure, drawn on an enlarged time scale, shows more clearly the difference in propagation speed.
(b) Slower wave propagation on a nutrient-containing gel (below the arrows). In all figures, the
vertical and horizontal directions indicate space and time, respectively. The oscillation phase of
cell thickness was discretised into two states, increase (black) and decrease (white). Scale bar:
10 minutes except for the enlarged figure of (a). Length of organism was 2-4 cm.

2 Wave acceleration of real organism in relation to variations in
protoplasmic streaming

Figure 1 shows a plasmodium extending freely along a lane of agar gel (see upper-
left part of figure): as time progresses the plasmodium extends along the lane, from
top to bottom (double arrow). The different parts of Figure 1show some real pat-
terns of rhythmic contraction in relation to changes in strength of protoplasmic
shuttle streaming. In order to demonstrate the oscillations, the phase of cell thick-
ness was discretised into two states: increasing (black) and decreasing (white).

In Figure 1(a) we see that in the frontal tip of the freely extending organism
(below an imaginary line connecting the two horizontal arrows), wave propagation
is slower than in the rear part of the organism (above the imaginary line). This
slow propagation arises as a result of the changes in the protoplasmic flow rate:
weaker in the frontal tip of the organism. The phenomenon canbe observed more
clearly in chemotaxis of the organism, as shown in Figure 1(b). On the nutrient
site (below the imaginary line connecting the arrows), the wave speed is much
slower: it is known that protoplasmic flow is weaker at nutrient-rich sites than at
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Fig. 2 Numerical solution of the spatially homogeneous system (D,w = 0 in equation (1)) with
Schnakenberg kinetics. (a) shows the concentration profiles of u (solid line) andv (dashed line)
over time. (b) is a phase diagram and clearly shows that the system quickly tends to a limit cycle.
Parameters are as follows:a = 0.1, b = 0.5, u(0) = 0.6, v(0) = 0.6 and both plots are shown for
t ∈ [0,80].

other sites (above the imaginary line). From these results,we conclude that wave
propagation is accelerated by increased protoplasmic flow.

These findings motivate our study: we investigate the effects of flow on wave
propagation rates in oscillatory reaction-diffusion systems, in order to determine
whether protoplasmic streaming rates can affect the phase waves observed in the
plasmodium.

3 Numerical calculation of the dispersion relation

A recently proposed model for contraction dynamics of thePhysarum plasmod-
ium is a system of reaction-diffusion equations with flow terms [7,16,28]. To nu-
merically calculate a dispersion relation, we specify a conventional two-variable
model with self-consistent flow [28]:

∂ u
∂ t

+w.∇u = f (u,v)+D∇2u,

∂ v
∂ t

= g(u,v), (1)

whereu andv are chemical concentrations. Here, we assume that one metabolic
chemical described byu flows with the endoplasmic streaming while the other
chemical described byv is bound to ectoplasm. The quantityD is the diffusion
constant of the chemicalu. The velocity of the self-consistent flow,w, is deter-
mined by the concentration of the metabolic chemical as

w = q∇u, (2)

whereq is a (constant) parameter expressing the intensity of the flow.
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Model equations 1 and 2 take the form of a generalized reaction-diffusion-
advection model with self-consistent flow proposed in [28] but they can be ob-
tained by some simplification from a previously proposed model with three com-
ponents [16]. In the previous model, the variablesu andv are chemicals which
display oscillatory behavior in ectoplasm. Whilev is bound in the ectoplasm,u is
a free component which can interact with contractile proteins and exchanges with
the same chemical in flowing endoplasm (sayz). The dynamics ofz has an ad-
vection term dependent onu. Although this exchange ofu andz is not so fast, we
assume, for the sake of simplicity, thatu is always similar toz and has an advec-
tion term in addition to its intrinsic diffusion term. Our justification for this comes
from the fact that we make the advection coefficient,q, small enough. From this,
equation 1 is obtained.

The reaction kinetics are chosen to exhibit a limit cycle oscillation. Here the
functions f andg are taken to be the Schnakenberg (tri-molecular) reaction kinet-
ics [15,24]:

f (u,v) = a−u+u2v, g(u,v) = b−u2v, (3)

wherea and b are positive constants. Under spatially homogeneous conditions
(D = 0 andw = 0), the system has a stable limit cycle forb− a > (a + b)3 [15].
We chose this reaction system because the shape of the limit cycle in the phase
space is similar to that of the calcium oscillation in the plasmodium, which is a
strong candidate for the primary chemical clock underlyingthe rhythmic activ-
ity. Figure 2 shows plots of the numerical solution of the spatially homogeneous
system and clearly demonstrates the limit cycle kinetics.

Plane wave solutions of the system given by equations (1)-(3) are of the form

u(x, t) = U(ωt − kx) and v(x, t) = V (ωt − kx), (4)

whereω is the wave frequency (so that the periodT = 2π/ω) andk is the wave
number (so that the wave lengthλ = 2π/k). The propagation velocity can be
calculated asν = ω/k.

To obtain the dispersion relation for travelling waves, we carried out numer-
ical calculations for equations (1)-(3) with the followingprocedure. We initiated
a pulse travelling on a ring (a one-dimensional region with the periodic boundary
conditions), and solved the system until the solution became periodic in time. Af-
ter measuring the rotating period of the travelling pulse onthe ring, we repeated
the calculation for rings of different lengths. Thus we obtained the dispersion re-
lation for periodic wave trains with stable propagation.

We used the explicit Euler method for the reaction terms, an upwind differenc-
ing method for the advection terms, and an implicit method for the diffusion terms.
A more detailed outline of the numerical calculations, including the initial condi-
tions and numerical discretisation employed, can be found in Appendix A. In our
calculations, the parameter values were taken to bea = 0.1, b = 0.5 andD = 1.0.
To see if these results are typical of the behaviour of the system, we undertook
an analytical investigation: it is time consuming to carry out a detailed numeri-
cal investigation over a wide parameter space. The analysisoutlined in Section 4
will allow us to approximate the dispersion relation by numerical calculation of
just two integrals. In this way we can quickly investigate whether the behaviour
observed with the parameter set of Figure 3 is representative of that observed for
more general parameter choices.
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Fig. 3 Numerical solution of the given by equations (1)-(3). The numerical method is outlined
in Appendix A. (a) shows the concentration profile foru over (x,t)-space while (b) shows the
concentration profile forv. Parameters are as follows:a = 0.1, b = 0.5, q = 1.0 andD = 1.0.

Figure 3 shows a plot of the numerical solution of equations (1)-(3) and clearly
demonstrates the periodic behaviour ofu andv. Plane waves with a wave length
of λ = 25 (k ≈ 0.25) occur with a period of approximatelyT = 10 (ω ≈ 0.63).

Dispersion curves for the reaction-diffusion-advection system, given by equa-
tions (1)-(3), are shown in Figure 4 (wave number,k, against frequency,ω) and
Figure 5 (period,T = 2π/ω, against velocity,ν = ω/k) for various values of the
advection constant,q. It can clearly be seen from the figures that variations in the
self-consistent flow have a pronounced effect on plane wave propagation,and that
propagation behaviour depends on both the wave length and onthe sign ofq.

Following [1,2,23], we classify our waves into phase waves (long wavelength,
low wave number) and trigger waves (short wavelength, high wave number) by
two branches of the curve separated by the inflection point. These classifications
have been marked on both Figure 4 and Figure 5.

In both cases (q positive and negative), asq is increased (while the wave num-
ber,k, is kept constant) the oscillation frequency of phase waves, ω, remains es-
sentially constant (note that the plots of Figure 4 are on different scales). How-
ever, the change in frequency is marked for trigger waves. Asq is increased, the
oscillation frequency of trigger waves decreases: the change in frequency is more
significant forq < 0. We note that this implies that as themodulus of the flow is
increased, opposite effects occur according to whether theflow is in a positive or
negative direction. For example, for trigger waves andq > 0, ω decreases as|q|
increases, while forq < 0, ω increases as|q| increases.

In contrast we see that asq is increased (while the oscillation frequency,ω, is
kept constant) the wave number,k, of trigger waves increases. Again we note that
this results in opposing effects when considering themodulus (i.e. the ‘strength’)
of the flow.
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Fig. 4 Dispersion curves obtained by numerical calculations for positive (upper panel) and neg-
ative (lower panel) values ofq. The oscillation frequency,ω , monotonically increases with the
wave number,k, and has bulk frequencyω0 = 0.495 in the limitk → 0.

3.1 Application toPhysarum plasmodium

In the previous section, the parameterq, expressing the intensity of flow, was
shown to be crucial to the rate of wave propagation. This was the coefficient
through which the chemical oscillator was related to the motive force of proto-
plasmic flow. Therefore,q is associated with the power which is produced by the
mechano-chemical apparatus of actomyosin in the organism.A recent simulation
for the rhythmic amoeboid movement inPhysarum plasmodium claimed that this
type of parameter, which in that report was called the ‘stiffness of ectoplasmic
gel’, played a key role in determining the speed and stabilisation of wave propa-
gation [7,25]. This also indicates that the coefficient of flow or stiffness is a key
parameter for regulation of phase wave propagation.

In the actual case of thePhysarum plasmodiumq is positive, provided that the
contraction force is maximum when chemical concentration is minimum. Such be-
haviour is observed for Ca2+, which is the most probable candidate for a primary
chemical clock in the plasmodium [16].
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Fig. 5 Relation between period,T , and velocity,ν . The propagation velocity,ν , was determined
as the phase velocityω/k for the positive (upper panel) and negative (lower panel)q. The ve-
locity becomes large and goes to infinity at the bulk periodτ0 = 12.7. For negative values ofq,
the curves show large convex regions in period corresponding to trigger waves.

Hereafter, we will focus only on the phase wave which is characterised by a
low wave number,k, since only low wave numbers were observed in the actual or-
ganism. The results of this section show that self-consistent flow has a number of
profound effects on the phase waves, such as acceleration ofthe wave. This can be
thought of as equivalent to elongation of the wave length, since the frequency of
the phase waves remains almost unchanged. Clearly this effect has advantages for
intracellular signal communication because physiological information is encoded
in the phase of oscillation [13,14]. By making use of the acceleration, the plas-
modium can maintain a system as large as up to the order of a metre, for example,
in spite of it being a unicellular organism with no nervous system.
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4 Derivation of phase dynamics and estimation of dispersionrelation for a
generic model

In this section, we consider a general type of reaction-diffusion system with flow
terms [28]:

∂u
∂ t

+M∇u.∇u = f(u)+D∇2u, (5)

whereu is anN-component vector of chemical concentrations varying overspace,
x, and time,t. The reaction kinetics, denoted byf, are of limit cycle type and
the quantityD is a positive diagonal matrix of diffusion constants. The veloc-
ity of chemical flow resulting from protoplasmic streaming is determined by the
concentration of the chemicals asM∇u, where the tensorM represents advection
coefficients. To consider the effect of flow on the dispersionrelation, we derive
the phase dynamics from equation (5), and estimate a dispersion relation for the
phase wave.

By means of limit cycle perturbations, the dynamics of phasewaves in stan-
dard reaction-diffusion systems for oscillatory media aredescribed by Burgers
equation [10,11,20–22]. We adopt a similar method for oscillatory reaction-diffusion
equations with this type of flow term.

We assume that the limit cycle is described by a solution of equation (5) under
spatially homogeneous oscillation with frequencyω0:

u = u0(τ), τ = ω0t, (6)

whereu0 satisfiesω0u′
0 = f(u0) andu0(τ + 2π) = u0(τ). Since the system (5) is

invariant under time translation, it has a solutionu = u0(τ + ψ) whereψ is an
arbitrary constant.

We introduce multiple scales

X =
√

εx, τ = ω0t, T = εt, (7)

and the asymptotic expansion,

u = u0(τ +ψ)+ εu1(τ +ψ)+ . . . , (8)

whereε is a small parameter andψ = ψ(X ,T ). Substitution of equations (7) and
(8) into equation (5) yields a hierarchy of linear equationsfor each order inε:

ω0
∂u0

∂ τ
= f(u0), (9)

L u j = b j, (10)

where

L = ω0
∂

∂ τ
− ∂ f

∂u
(u0). (11)

Hereb j denotes the inhomogeneous term of thejth order equation forj = 1,2, . . ..
For the first order equation, the inhomogeneous term is

b1 = −∂u0

∂ T
−M∇Xu0.∇Xu0 +D∇2

X u0, (12)

= −u′
0

∂ ψ
∂ T

−Mu′
0u′

0|∇X ψ|2 +Du′′
0|∇X ψ|2 +Du′

0∇2
X ψ, (13)
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where∇X is the nabla operator with respect to the scaled coordinateX . Thus the
solvability condition foru1 gives the dynamics of the phase waves:

∂ ψ
∂ T

= c1∇2
X ψ + c2|∇X ψ|2. (14)

The coefficientsc1 andc2 are obtained from the relations,

c j =
〈v†,v j〉
〈v†,u′

0〉
, (15)

where

v1 = Du′
0, and v2 = Du′′

0 −Mu′
0u′

0. (16)

Here

〈v†,v〉 =
∫ 2π

0
(v†,v)dτ, (17)

andv† is the nontrivial periodic solution to the adjoint differential equationL †v† =
0. Equation (14) describes slow modulation of the homogeneous oscillation with
frequencyω0 by the phaseψ. We note that the coefficient of the nonlinear term,
c2, shows ‘competition’ between diffusion and flow.

In terms of the quantityφ = ω0t +ψ, equation (14) becomes

∂ φ
∂ t

= ω0 + c1∇2φ + c2|∇φ |2. (18)

The dispersion relation is thus estimated from the phase equation (18) through the
wave characteristicsω = ∂ φ/∂ t andk = ∇φ as [1,2]

ω = ω0 + c2k2 + . . . , (19)

wherek = |k|.
Since the scaling of coordinates in the perturbation expansions (7) means a

slow spatial modulation,k = O(
√

ε), equation (19) is the Taylor expansion for the
dispersion curve,ω = ω(k), in the vicinity of k = 0. Thus, the coefficient of the
nonlinear term in equation (18) isc2 = ω ′′(0)/2. Here equation (19) has no linear
term ink because of reflectional symmetry in the space of equation (5). As shown
above in equation (16),c2 depends on advection constants as well as diffusion
constants.

The dispersion relation, equation (19), shows that the wavenumber,k, can
decrease at a fixed value of the frequencyω, asc2 varies, depending on the flow
term. But c2 also depends on the diffusion term and the concrete form of the
function was given by equation (16).

We note that the dispersion relation, (19), is only applicable to periodic waves
with constant speed. It does not apply to waves with non-uniform phase gradi-
ents [23]. In such cases, we need to use the phase equation, (18), or analyse equa-
tion (5) directly.
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4.1 Application to thePhysarum plasmodium model

We now apply the results of this section to determine an approximate dispersion
relation for the model of Section 3. From equations (1)-(3) we see that the operator
L and its adjoint,L † are given by:

L =

(

ω0
∂

∂ τ −
∂ f
∂ u (u0,v0) − ∂ f

∂ v (u0,v0)

− ∂ g
∂ u(u0,v0) ω0

∂
∂ τ −

∂ g
∂ v (u0,v0)

)

, (20)

and

L
† =

(

−ω0
∂

∂ τ −
∂ f
∂ u (u0,v0) − ∂ g

∂ u(u0,v0)

− ∂ f
∂ v (u0,v0) −ω0

∂
∂ τ −

∂ g
∂ v (u0,v0)

)

. (21)

This results in a solvability condition of

0 =

∫ 2π

0
u†

0

[

−u′0
∂ ψ
∂ T

−q(u′0)
2|∇X ψ|2 +Du′′0|∇X ψ|2 +Du′0|∇2

X ψ|
]

dτ

+

∫ 2π

0
v†

0

[

−v′0
∂ ψ
∂ T

]

dτ, (22)

whereu0, v0, u†
0 andv†

0 satisfy the equations

ω0

(

∂ u0
∂ τ
∂ v0
∂ τ

)

=

(

f (u0,v0)
g(u0,v0)

)

, (23)

and

−ω0





∂ u†
0

∂ τ
∂ v†

0
∂ τ



=

(

∂ f
∂ u (u0,v0)

∂ g
∂ u (u0,v0)

∂ f
∂ v (u0,v0)

∂ g
∂ v (u0,v0)

)

(

u†
0

v†
0

)

. (24)

From this we have a dispersion relation of the form

ω = ω0 + c2k2 + . . . , (25)

for smallk, where

c2 =

∫ 2π

0
u†

0

[

Du′′0 −q(u′0)
2]dτ

/

∫ 2π

0

[

u′0u†
0 + v′0v†

0

]

dτ. (26)

Since equations (23) and (24) cannot be solved analytically, we employ nu-
merical techniques to gain an estimate of the coefficientc2 for varying values of
the flow parameter,q. We solve the system of differential equations in Matlab
and then evaluate the integrals by employing the trapezoidal rule. The dispersion
relation for differing values ofq is plotted in Figure 6.

Application of the method of Section 4 to thePhysarum plasmodium model
neatly demonstrates the competition between rates of diffusion,D, and advection,
q in determining the dispersion relation (see equation (26)). However, without
the aid of numerical tools, it is difficult to make remarks (either qualitative or
quantitative) on the behaviour ofc2 as D and q are varied. This is due to the
highly nonlinear nature of the problem: the effects of varyingq andD will depend
specifically on the problem at hand.
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Fig. 6 Dependence of the dispersion relation upon the flow. Equations (23) and (24) were solved
numerically and then the parameterc2 was calculated for varying values of the flow parameter,
q. As q is increased the frequency,ω , increases for fixed values of the wave number,k. We note
that this is in agreement with numerical simulations of the system shown in Figures 4 and 5.
Parameters were as follows:a = 0.18,b = 0.5 andD = 1.0.

5 Conclusion

We began by motivating our theoretical studies with observation of wave propa-
gation rates in the actual organism,Physarum plasmodium. From consideration
of the spatio-temporal patterns of rhythmic oscillation weinferred that decreased
protoplasmic flow results in a decrease in wave propagation speed.

We then studied the effects of self-consistent flow on wave behaviour of the
oscillatory reaction-diffusion model proposed for thePhysarum plasmodium. We
used numerical techniques to solve the system of equations (1)-(3), and through
this obtained a dispersion relation for varying values of the flow rate,q, and wave
number,k. The addition of self-consistent flow had a number of profound effects
on the phase waves, such as acceleration of the wave. We notedthat this is equiv-
alent to elongation of the wave length since the frequency ofthe phase waves
remained almost unchanged.

These theoretical results are in agreement with the inferences of Section 2 re-
garding the actual organism: the protoplasmic streaming was able to accelerate the
phase wave speed. As discussed in the text, it is clear this effect could provide ad-
vantages for intracellular signal communication due to thefact that physiological
information is encoded in the phase of oscillation.

To consider the effect of flow on the dispersion relation in a more general set-
ting, we derived phase dynamics for a generic reaction-diffusion system, given by
equation (5) and used asymptotic techniques to derive an estimate of the disper-
sion relation for phase waves. The dispersion relation, equation (19), showed that
the wave number decreased at a fixed value of frequency asc2 varied depending
on the flow term. The flow effect on wave acceleration could be understood by this
generic relation. We concluded that the flow term was able to accelerate the phase
wave speed (similar to elongation of wave length).
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A Numerical methods

The system solved numerically in Section 3 was of the form:

∂ u
∂ t

+q∇u.∇u = f (u,v)+D∇2u, (27)

∂ v
∂ t

= g(u,v), (28)

where f and g are as in equation (3). The system was solved on the domainx ∈ [0,λ ], with
periodic boundary conditions:u(0,t) = u(λ ,t), and similarly forv. The initial conditions were
taken in the form of a ‘pulse’:

u(x,t) =
1
2

+sin

(

2πx
λ

)

, (29)

v(x,t) =
1
2

+
9
5

cos

(

2πx
λ

)

. (30)

The system was discretised using the following methods: explicit Euler method for the reaction
terms; upwind method for the advection term; leapfrog method for the flow,w, and implicit
method for the diffusion terms.

LettingUn
j ≈ u(x j ,tn) andV n

j ≈ v(x j ,tn), wherex j+1− x j = ∆x andtn+1− tn = ∆t, results
in the following discretised system:

Un+1
j −Un

j

∆t
+q

[

Un
j+1−Un

j−1

2(∆x)

][

Un
j+1−Un

j

∆x

]

= f (Un
j ,V

n
j )+D

[

Un+1
j+1 −2Un+1

j +Un+1
j−1

(∆x)2

]

V n+1
j −V n

j

∆t
= g(Un

j ,V
n
j ). (31)

For each value of the flow parameter,q, accuracy was ensured by suitably refining the spatial
and temporal mesh parameters.
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