RAPID HYDROGEN RANDOMIZATION IN AMMONIA

Miyahara, Koshiro; Ozaki, Atsumu; Kimura, Takeo

JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 11(2): 124-129

1963-11

http://hdl.handle.net/2115/28058

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Short Note

RAPID HYDROGEN RANDOMIZATION IN AMMONIA

By Koshiro MIYAHARA*, Atsumu OZAKI** and Takeo KIMURA***

(Received June 19, 1968)

A remarkable memory effect observed in the case of mass spectrometric measurements of ammonia has given rise to a question how far the equilibrium composition of mixture NH₃ of NP₃, NP₂D, NPD₂ and ND₃ by a mere process of putting ND₃ to mass spectrometric measurement.

It has now been confirmed that the composition of NH₃ corresponds to the equilibrium distribution whether the sample of ammonia be ND₃ directly put to mass spectrometric measurement or resultant ammonia of exchange reaction between NP₃ and D₂ conducted in the presence of metallic catalysts. Fig. 1 shows the mole percents of NP₃, NP₂D, NPD₂ and ND₃ in NH₃ observed by mass spectrometer versus its overall deuterium percent; a), b) and c) show the results obtained from resultant NH₃ of exchange reaction conducted in the presence of metallic catalysts indicated in the Figure, while d) and e) refer to the results of mere process of putting ND₃ to mass spectrometric measurement. Full lines show the equilibrium values calculated by assuming the random distribution of deuterium over NH₃-molecules. Mass spectrometers used in the above five cases are different from each other and the electron accelerating voltage has been kept for every case so low as to suppress fragmentation and recombination of ammonia in the ionization chamber and to obtain a spectrum consisting of peaks of parent ion NH₃ alone. In the case of d) furthermore the mass spectrometer was improved to reduce its catalytic activity by the use of a gold orifice and coating the inner surface of the ionization chamber with gold. The results of Fig. 1 show that mass spectrometric measurement of deuteroammonia results inevitably in the random distribution of deuterium accompanied with a remarkable depression of deuterium content.

REDING and HONIG⁰ have found by infrared absorption spectrometry that an equimolar gaseous mixture of NP₃ and ND₃ was converted in a glass vessel into an equilibrium mixture of NP₃, NP₂D, NPD₂ and ND₃ at room temperature within a week after mixing. One of the present authors (K.M.) reexamined their results⁰

*) Research Institute for Catalysis, Hokkaido University, Sapporo.
**) Tokyo Institute of Technology, Tokyo.
***) H represents protium P and deuterium D.

— 124 —
and found that the above hydrogen randomization was completed in a glass vessel, preliminarily evacuated at 300°C to 1×10⁻⁴ mmHg, instantaneously on mixing at room temperature as shown in Figures 2, 3, 4 and 5. Fig. 2 or 3 shows the degenerated deformation band of the infrared absorption spectrum of NP₃(1630 cm⁻¹) or ND₃(1190 cm⁻¹) respectively. ND₃ sample used for this observation was newly
Fig. 2. Infrared absorption spectrum of NP$_3$.

Fig. 3. Infrared absorption spectrum of ND$_3$.
Fig. 4. Infrared absorption spectrum of a mixture of NP$_3$ and ND$_3$ just after mixing.

Fig. 5. Infrared absorption spectrum of the same sample as that of Fig. 4 after being heated at 200°C in a glass vessel for 5 minutes.
made from heavy water and magnesium nitride and contained considerable amount of NPD$_2$(1470 cm$^{-1}$) as shown in Fig. 2. Fig. 4 is a spectrum of a mixture of NP$_3$ and ND$_3$ obtained just after mixing and Fig. 5 is that obtained after heating the same sample at 200°C for five minutes in the same glass vessel as used for mixing. Fig. 4 and 5 are identical with each other with weak bands for NP$_3$ and ND$_3$ and strong ones for NP$_2$D(1600 cm$^{-1}$) and NPD$_2$, showing that the mixture gas completed the hydrogen randomization in ammonia instantaneously on mixing at room temperature.

One of the present authors (K. M.) has found that hydrogen exchange between D$_2$ and NP$_3$ did not practically take place in a mass spectrometer or in a glass vessel even at 150°C. This result shows that chemisorbed hydrogen, if any, is not responsible for the observed rapid hydrogen randomization in ammonia or such dilution of deuterium in ND$_3$ by protium in a mass spectrometer. The latter result might hence be due to water held by metal or glass.

KEMBALL19 has examined the catalytic hydrogen exchange between D$_2$ and NP$_3$ on various evaporated metal films and found that the relative abundances of respective deuterioammonias formed with different metals under different conditions could be plotted on same ourves by a suitable selection of the time scale, as shown in Fig. 1. He concluded from this result a mechanism that a single hydrogen atom was exchanged between hydrogen and ammonia molecules by one act of the reaction. Plots b) in Fig. 1 is the results obtained by one of the present authors (K. M.19) of the same hydrogen exchange catalyzed by evaporated nickel film, and plots c) in the same figure the results of the present author (A. O.19) for the same reaction catalyzed by doubly promoted ammonia synthetic catalyst. All of these plots are coincident with theoretical curves of the random distribution of hydrogen in ammonia similarly as those of mass spectrometric measurements of ND$_3$ mentioned above, which shows that these observed distributions of deuterioammonias are due to the rapid hydrogen randomization in ammonia in a mass spectrometer. Consequently any reaction mechanism could not be deduced from above results of distribution of deuterioammonias thus observed$^{1-2}$. Previous analysis of experimental results by one of the present authors (K. M.19) will be corrected in the next short note with due regard to the above effect.

The authors wish to express their sincere thanks to Professor Juro HORIJUTI for his helpful discussion, to Dr. S. MATSUSHITA and Miss. T. NAKATA both in Department of Chemistry, Faculty of Science, Hokkaido University for their kind helps of measuring infrared absorption and especially to Toyo Rayon Foundation for the Promotion of Science and Technology for a grant by which a mass spectrometer of type Hitachi RMU–6 was purchased.
On the Hydrogen Exchange between Deuterium and Ammonia

References
2) K. MIYAHARA, This Journal 9, 159 (1961).
3) A. OZAKI and T. KIMURA, unpublished.

ON THE HYDROGEN EXCHANGE
BETWEEN DEUTERIUM AND AMMONIA CATALYZED
BY EVAPORATED NICKEL FILM

By Koshiro MIYAHARA
[Received June 19, 1963]

In the previous short note it was shown that rapid hydrogen randomization in ammonia takes place in a mass spectrometer used for measurement, which invalidated any reaction mechanism of catalyzed hydrogen exchange between deuterium and ammonia deduced from the distribution of deuteroammonias thus observed.

It was found, on the other hand, that the relative abundances of P_2, PD, and D_2, where P or D denotes protium or deuterium respectively, were practically not affected by a mass spectrometer, providing hence a sound basis of analyzing the mechanism of the exchange. Table 1 reproduces the initial rate $V_{p_2}^o$, V_{PD}^p or $V_{D_2}^p$ of evolution of P_2, PD or D_2 respectively observed in the previous experiments with an evaporated nickel film, which were corrected for change of catalytic activity by multiplying observed values of $V_{p_2}^o$ etc. in the second or the third series by the ratio of the rate of a standard reaction conducted prior to the first series to the rate of the same standard reaction conducted prior to the latter series. The rate of the standard reaction was given by the amount of $[PD]/[D_2]$ in 3:1 mixture of D_2 and NP at 44 mmHg total pressure observed at 100°C, 5 minutes after the latter mixture being brought into contact with the catalyst, where $[PD]$ or $[D_2]$ is the concentration of PD or D_2. The y^P in Table 1 is the fraction of the number of adsorbed deuterium $D(a)$ over the sum of the numbers of $D(a)$ and adsorbed protium $P(a)$, which was calculated by the relation derived in the previous paper ignoring isotopic difference that $y^P = V_{pD}^o/(2V_{p_2}^o + V_{PD}^p)$.

$V_{p_2}^o$ in Table 1 is the initial increasing rate $100(2V_{p_2}^o + V_{PD}^p)/2[H_2]$ of P atom percent in hydrogen gas, where H represents P and D.

—129—