ON THE HYDROGEN EXCHANGE BETWEEN DEUTERIUM AND AMMONIA CATALYZED BY EVAPORATED NICKEL FILM

By Koshiro Miyahara

(Received June 19, 1963)

In the previous short note1) it was shown that rapid hydrogen randomization in ammonia takes place in a mass spectrometer used for measurement, which invalidated any reaction mechanism2,3) of catalyzed hydrogen exchange between deuterium and ammonia deduced from the distribution of deuteroammonias thus observed.

It was found, on the other hand, that the relative abundances of P2, PD and D2, where P or D denotes protium or deuterium respectively, were practically not affected by a mass spectrometer, providing hence a sound basis of analyzing the mechanism of the exchange. Table 1 reproduces the initial rate $V_{\text{P}2}$, V_{PD} or $V_{\text{D}2}$ of evolution of P2, PD or D2 respectively observed in the previous experiments with an evaporated nickel film3), which were corrected for change of catalytic activity by multiplying observed values of $V_{\text{P}2}$ et al. in the second or the third series by the ratio of the rate of a standard reaction conducted prior to the first series to the rate of the same standard reaction conducted prior to the latter series. The rate of the standard reaction was given by the amount of [PD]/[D2] in 3:1 mixture of D2 and NP3 at 44 mmHg total pressure observed at 100°C, 5 minutes after the latter mixture being brought into contact with the catalyst, where [PD] or [D2] is the concentration of PD or D2. The y^D in Table 1 is the fraction of the number of adsorbed deuterium D(a) over the sum of the numbers of D(a) and adsorbed protium P(a), which was calculated by the relation derived in the previous paper ignoring isotopic difference3) that

$$y^\text{D} = \frac{V_{\text{PD}}}{2V_{\text{P}2} + V_{\text{PD}}}.$$

(1)

$V_{\text{P}2}$ in Table 1 is the initial increasing rate 100(2$V_{\text{P}2}$+V_{PD})/2[H2] of P atom percent in hydrogen gas, where H represents P and D.
TABLE 1. The Observed Initial Formation Rates of P_2 and PD, y^D, V^I, $V^I)$ and $V^I)/V^I($).

<table>
<thead>
<tr>
<th>No. of series</th>
<th>Partial pressure, mmHg</th>
<th>Reaction temp. °C</th>
<th>Initial formation rate, mmHg/min.</th>
<th>y^D</th>
<th>V^I</th>
<th>$V^I)$</th>
<th>$V^I)/V^I($</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>11</td>
<td>100</td>
<td>-0.76</td>
<td>0.63</td>
<td>0.13</td>
<td>0.70</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>11</td>
<td>120</td>
<td>-1.42</td>
<td>1.22</td>
<td>0.21</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>-7.19</td>
<td>6.97</td>
<td>0.22</td>
<td>0.94</td>
</tr>
</tbody>
</table>

The results of Table 1 are now reexamined on the basis of a reaction scheme that

$$H_2 \rightarrow 2H(a) + NH_3,$$

where I is the step of hydrogen chemisorption and II that of exchanging H(a) with H in ammonia.

The total forward or backward rate of I balanced with each other, i.e. V^I is evaluated as given in the second last column of Table 1 from the values of V^I and y^D by the relation

$$V^I = V^D/\left\{(y^D)^2 - 1\right\},$$

which is the special case of the formation rate of D_2 given, ignoring the isotopic difference, as

$$V^D = V^I \left\{(y^D)^2 - y^D\right\}$$

at the initial stage of the reaction, where $V^D = V^I$ and the mole fraction y^D of D_2 in hydrogen gas equals unity.

The steady state condition of P(a) is now given as

$$V^I \left\{2y^D - (1-y^D)^2 - 2y^D - (1-y^D)\right\} + V^I \left\{(1-y) - (1-y^D)\right\} = 0. \quad (3)$$

where V^I denotes the total forward or backward rate of step II, y^D or y^P the fraction of the number of P_2 or PD over the sum of those of P_2, PD and D_2 and y the atomic fraction of D in ammonia gas. It follows from (3) that

$$V^I/V^I = y^D/2(1-y^D) \quad (4)$$

at the initial stage of the reaction, where y, y^P and y^D are respectively zero. The values of $V^I/V^I(II)$ calculated by (4) are shown in the last column in Table 1.

From values of V^I of the first and the second series in Table 1 the activation energy of the exchange reaction of 3:1 mixture of D_2 and NP is at 44 mmHg total pressure is evaluated as

$$E_a = -R\ln V^I/V^I(1/T) = 8.9 \text{ Kcal/mole.}$$
On the Hydrogen Exchange between Deuterium and Ammonia

This value is in conformity with the activation energy deduced by KEMBALL\(^2\) from the decreasing rate of NP\(_2\) at the initial stage of its exchange reaction with D\(_2\), where deuteroammonia formed was practically exclusively NP\(_2\)D; this decreasing rate may be identified with \(V_1^\prime\), provided that NP\(_2\)D content was little affected by the mass spectrometric measurement. The activation energy of step I is determined from values of \(V(I)\) as

\[
E(I) = -R\theta \ln \frac{V(I)}{\theta(1/T)} = 11.5 \text{ Kcal/mole} \tag{5}
\]

in conformity with that obtained by HORIUTI and SUZUKI\(^4\) for the chemisorption of hydrogen. It follows, on the other hand, from values of \(V(I)/V(II)\) of the first and the second series in Table 1 that

\[
E(I) - E(II) = -R\theta \ln \left\{ \frac{V(I)}{V(II)} \right\} /\theta(1/T) = 3.6 \text{ Kcal/mole}, \tag{6}
\]

hence with reference to (5)

\[
E(II) = 7.9 \text{ Kcal/mole}.
\]

It is deduced from the values \(E(I)-E(II)\) and \(V(I)/V(II)\) of series 1 and 2 that either I or II governs the rate of the present exchange reaction at lower or higher temperature respectively, which is in conformity with the conclusion arrived at in the previous paper\(^3\); for instance \(V(I)/V(II)\) is evaluated as 3.92, 0.37 or 0.037 at 200°C, 0°C or \(-100°C\) respectively. It follows, on the other hand, from the large excess of D\(_2\) that the temperatures, where step I governs the rate, should be remarkably low as compared with those in series 1 or 2, as seen from the values of \(V(I)/V(II)\), 3.90 or 0.29 at 0°C or \(-100°C\) respectively as calculated similarly identifying the appropriate value of \(E(I)-E(II)\) with that in series 1 and 2.

The author wish to express his sincere thank to Professor Juro HORIUTI for his helpful discussions.

References

3) K. MIYAHARA, This Journal 9, 156 (1961).
4) J. HORIUTI and J. SUZUKI, Shokubai (Catalyst) No. 4, 1 (1947).