<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE HYDROGEN EXCHANGE BETWEEN DEUTERIUM AND AMMONIA CATALYZED BY EVAPORATED NICKEL FILM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MIYAHARA, Koshiro</td>
</tr>
<tr>
<td>Citation</td>
<td>JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 11(2): 129-131</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1963-11</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/28059</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>11(2)_P129-131.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
On the Hydrogen Exchange between Deuterium and Ammonia

References
2) K. MIYAHARA, This Journal 9, 159 (1961).
3) A. OZAKI and T. KIMURA, unpublished.

ON THE HYDROGEN EXCHANGE
BETWEEN DEUTERIUM AND AMMONIA CATALYZED
BY EVAPORATED NICKEL FILM

By Koshiro MIYAHARA
(Received June 19, 1963)

In the previous short note¹ it was shown that rapid hydrogen randomization in ammonia takes place in a mass spectrometer used for measurement, which invalidated any reaction mechanism²,³ of catalyzed hydrogen exchange between deuterium and ammonia deduced from the distribution of deuteroammonias thus observed.

It was found, on the other hand, that the relative abundances of P_2, PD and D_2, where P or D denotes protium or deuterium respectively, were practically not affected by a mass spectrometer, providing hence a sound basis of analyzing the mechanism of the exchange. Table 1 reproduces the initial rate $V_{P_2}^o$, V_{PD}^o or $V_{D_2}^o$ of evolution of P_2, PD or D_2 respectively observed in the previous experiments with an evaporated nickel film³, which were corrected for change of catalytic activity by multiplying observed values of $V_{P_2}^o$; etc. in the second or the third series by the ratio of the rate of a standard reaction conducted prior to the first series to the rate of the same standard reaction conducted prior to the latter series. The rate of the standard reaction was given by the amount of $[PD]/[D_2]$ in 3:1 mixture of D_2 and NP_3 at 44 mmHg total pressure observed at 100°C, 5 minutes after the latter mixture being brought into contact with the catalyst, where $[PD]$ or $[D_2]$ is the concentration of PD or D_2. The y^o in Table 1 is the fraction of the number of adsorbed deuterium D(a) over the sum of the numbers of D(a) and adsorbed protium P(a), which was calculated by the relation derived in the previous paper ignoring isotopic difference³ that

$$y^o = \frac{V_{PD}^o}{2V_{P_2}^o + V_{PD}^o}.$$ \hspace{1cm} (1)

$V_{P_2}^o$ in Table 1 is the initial increasing rate $100(2V_{P_2}^o + V_{PD}^o)/2[H_2]$ of P atom percent in hydrogen gas, where H represents P and D.

— 129 —
Short Note

TABLE 1. The Observed Initial Formation Rates of \(\text{P}_2 \) and \(\text{PD} \), \(y^P \), \(V_0^P \), \(V(I) \) and \(V(I)/V(II) \).

<table>
<thead>
<tr>
<th>No. of series</th>
<th>Partial pressure, mmHg</th>
<th>Reaction temp. (^\circ \text{C})</th>
<th>Initial formation rate, mmHg/min.</th>
<th>(y^P)</th>
<th>(V_0^P)</th>
<th>(V(I))</th>
<th>(V(I)/V(II))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>11</td>
<td>100</td>
<td>-0.76</td>
<td>0.63</td>
<td>0.13</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.49</td>
<td>1.17</td>
<td>1.50</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>11</td>
<td>120</td>
<td>-1.42</td>
<td>1.22</td>
<td>0.21</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.94</td>
<td>3.25</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>-7.19</td>
<td>6.97</td>
<td>0.22</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.41</td>
<td>6.20</td>
<td>11.8</td>
<td></td>
</tr>
</tbody>
</table>

The results of Table 1 are now reexamined on the basis of a reaction scheme that

\[
\text{H}_2 \text{I} \rightarrow 2\text{H(a)} \rightarrow \text{NH}_3 \text{II},
\]

where I is the step of hydrogen chemisorption and II that of exchanging H(a) with H in ammonia.

The total forward or backward rate of I balanced with each other, \(i.e. \) \(V(I) \) is evaluated as given in the second last column of Table 1 from the values of \(V_0^P \) and \(y^P \) by the relation

\[
V(I) = V_0^P/\left\{y^P_2^P - 1\right\},
\]

which is the special case of the formation rate of \(\text{D}_2 \) given, ignoring the isotopic difference, as

\[
V_0^D = V(I) \left\{y^P_2^D - y^P_2\right\}
\]

at the initial stage of the reaction, where \(V_0^D = V_0^D \) and the mole fraction \(y^P_2 \) of \(\text{D}_2 \) in hydrogen gas equals unity.

The steady state condition of P(a) is now given as

\[
V(II) \left\{2y^P - y^P_2 - 2(1-y^P_2^P - 2y^D(1-y^P)) + V(II)\left\{1-y-(1-y^P)\right\}\right\} = 0, \quad (3)
\]

where \(V(II) \) denotes the total forward or backward rate of step II, \(y^P \) or \(y^P_2 \) the fraction of the number of \(\text{P}_2 \) or PD over the sum of those of \(\text{P}_2 \), PD and \(\text{D}_2 \) and \(y \) the atomic fraction of D in ammonia gas. It follows from (3) that

\[
V(I)/V(II) = y^P/2(1-y^P) \quad \text{at the initial stage of the reaction},
\]

where \(y \), \(y^P_2 \) and \(y^P_2 \) are respectively zero. The values of \(V(I)/V(II) \) calculated by (4) are shown in the last column in Table 1.

From values of \(V_0^P \) of the first and the second series in Table 1 the activation energy of the exchange reaction of 3:1 mixture of \(\text{D}_2 \) and NP, at 44 mmHg total pressure is evaluated as

\[
E_{ex} = -R \ln \left(V_0^P/\theta(1/T)\right) = 8.9 \text{ Kcal/mole}.
\]

--- 130 ---
This value is in conformity with the activation energy deduced by KEMBALL from the decreasing rate of NP₂ at the initial stage of its exchange reaction with D₂, where deuteroammonia formed was practically exclusively NP₂D; this decreasing rate may be identified with \(V₁^₂ \), provided that NP₂D content was little affected by the mass spectrometric measurement. The activation energy of step I is determined from values of \(V(I) \) as

\[
E(I) = -R \ln \frac{V(I)}{\theta(1/T)} = 11.5 \text{ Kcal/mole} \tag{5}
\]

in conformity with that obtained by HORIUTI and SUZUKI for the chemisorption of hydrogen. It follows, on the other hand, from values of \(V(I)/V(II) \) of the first and the second series in Table 1 that

\[
E(I) - E(II) = -R \ln \left\{ \frac{V(I)}{V(II)} \right\} /\theta(1/T) = 3.6 \text{ Kcal/mole}, \tag{6}
\]

hence with reference to (5)

\[
E(II) = 7.9 \text{ Kcal/mole}.
\]

It is deduced from the values \(E(I) - E(II) \) and \(V(I)/V(II) \) of series 1 and 2 that either I or II governs the rate of the present exchange reaction at lower or higher temperature respectively, which is in conformity with the conclusion arrived at in the previous paper; for instance \(V(I)/V(II) \) is evaluated as 3.92, 0.37 or 0.037 at 200°C, 0°C or -100°C respectively. It follows, on the other hand, from the large excess of D₂ that the temperatures, where step I governs the rate, should be remarkably low as compared with those in series 1 or 2, as seen from the values of \(V(I)/V(II) \), 3.90 or 0.29 at 0°C or -100°C respectively as calculated similarly identifying the appropriate value of \(E(I) - E(II) \) with that in series 1 and 2.

The author wish to express his sincere thank to Professor Juro HORIUTI for his helpful discussions.

References

3) K. MIYAHARA, This Journal 9, 156 (1961).
4) J. HORIUTI and J. SUZUKI, Shokubai (Catalyst) No. 4, 1 (1947).