Proinsulin C-peptide Induces Phosphorylation of Mitogen-Activated Protein Kinases (MAPK) in Swiss 3 T 3 and 3 T 3-F442A Cells.

Takanori Kitamura

Laboratory of Biochemistry, Department of Biomedical Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan

C-peptide, a cleavage product of proinsulin, had been considered to have no biological activity. However, several recent studies indicate that C-peptide is a biologically active peptide, which increases glucose uptake in skeletal muscle, decreases glomerular hyperfiltration, improves autonomic nerve function and microcirculation in insulin-dependent diabetic patients and its animal models. Despite these findings, however, the molecular and cellular mechanisms of the actions of C-peptide have been poorly elucidated. In the present study, I examined the effect of C-peptide on the activation of the mitogen-activated protein kinases (MAPK) cascade in various cell lines by measuring phosphorylation of MAPK. I found that human C-peptide enhanced phosphorylation of MAPK in fibroblast cell lines, Swiss 3 T 3 and 3 T 3-F442A cells, but not in 3 T 3-L1 cells. In Swiss 3 T 3 cells, C-peptide induced phosphorylation of MAPK in a time- and concentration-dependent manner, showing maximal response at 1 min and at 1 nM C-peptide. Pretreatment of the cells with pertussis toxin abolished the stimulatory effect of C-peptide. My results indicate that C-peptide activates the MAPK cascade in some types of cell, probably through a putative G-protein-coupled receptor for C-peptide.

The relationship between uncoupling proteins and obesity-resistance in mice.

Akira Nakagawa

Department of Biomedical Sciences Laboratory of Biochemistry School of Veterinary Medicine Hokkaido University, Sapporo 060-0818, Japan

Uncoupling protein 1 (UCP-1) is exclusively expressed in brown adipose tissue (BAT) and located in inner mitochondrial membrane. UCP-1 functions as an uncoupler of mitochondrial respiration and liberates energy as heat. Genetic ablation of BAT by modifying UCP-1 gene develops obesity in mice. Therefore, UCP-1 exerts as a key molecule not only the thermogenic function of BAT but also energy expenditure regulation in whole animals. Recently, novel members of the UCP family, UCP-2 and UCP-3, have been
cloned and shown to function as a partial un-coupler. The expression of UCP-2 and UCP-3 is not limited to BAT. UCP-2 is widely expressed in many tissues, whereas UCP-3 is specific to skeletal muscles and adipose tissues. However, physiological function of these new UCPs remains to be determined.

In the present study, I examined UCPs mRNA expression in a model of diet-induced obesity between prone (C57BL) versus resistant mice (A/J). After 3 weeks feeding cafeteria-diet or normal laboratory chow, C57BL mice with cafeteria-diet showed a large increase in body weight compared to control diet group. In contrast, there was no difference in body weight increase between control and cafeteria-diet groups in A/J mice. From these results it is confirmed that A/J mice strain is resistant to cafeteria-diet induced obesity. In the control diet group, expression levels of UCP-1 and UCP-2 in BAT, and UCP-2 in white adipose tissue (WAT) were higher in A/J mice than in C57BL. After feeding cafeteria-diet, UCP-2 expression in BAT and WAT tended to increase in A/J mice, but no change was observed in C57BL mice. Therefore, I suggest that there is a possible relation between the induction of UCP-2 in adipose tissues and resistance to diet-induced obesity in A/J mice. Supporting this idea, peroxysome proliferator activating receptor gamma (PPAR-g) mRNA in BAT was induced by cafeteria-diet in A/J mice; PPARs have been proposed as an inducer of UCPs expression.

Contractile effects of vasopressin on isolated rat basilar artery

Eriko KATORI

Laboratory of Pharmacology, Department of Biomedical Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan

1. The contractile effects of arginine-vasopressin (AVP) were investigated in ring preparations isolated from the rat basilar artery.
2. AVP caused concentration-dependent contractions. In the presence of endothelium, AVP induced rhythmic oscillatory tension superimposed on a tonic contraction. In the absence of endothelium, AVP-induced contractions were accompanied with irregular transient relaxations. Removal of endothelium shifted a concentration-response curve to AVP leftward and upward.
3. In endothelium-denuded preparation, a concentration-response curve to AVP was shifted rightward and downward by a selective antagonist to V1, but not V2 receptor. A V1, but not V2 receptor agonist, caused concentration-dependent contractions with a similar potency to AVP.
4. Under Ca2+-free conditions, contractions by 0.1nM of AVP were abolished, but 10nM of AVP induced transient contractions. AVP-induced contractions were inhibited by nifedipine, SK&F96365 and niflumic acid.
5. AVP-induced irregular transient relaxations in endothelium-denuded preparation were inhibited by charybdotoxin.
6. In the presence of endothelium, AVP, V1 and V2 agonists did not produce relaxation in