
 

Instructions for use

Title A local damage model for anomalous high toughness of double-network gels

Author(s) Tanaka, Y.

Citation Europhysics Letters, 78(5), 56005
https://doi.org/10.1209/0295-5075/78/56005

Issue Date 2007

Doc URL http://hdl.handle.net/2115/28252

Type article

File Information EPL78-5.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


June 2007

EPL, 78 (2007) 56005 www.epljournal.org

doi: 10.1209/0295-5075/78/56005

A local damage model for anomalous high toughness
of double-network gels

Y. Tanaka

Creative Research Initiative Sousei, Hokkaido University - Sapporo 001-0021, Japan

received 19 January 2007; accepted in final form 25 April 2007
published online 22 May 2007

PACS 61.41.+e – Polymers, elastomers, and plastics
PACS 62.20.Mk – Fatigue, brittleness, fracture, and cracks
PACS 81.05.Qk – Reinforced polymers and polymer-based composites

Abstract – We present a phenomenological model for anomalously high fracture energy of double-
network (DN) gels, which consist of a substantially cross-linked polyelectrolyte gel (first network)
and of a quite poorly cross-linked neutral polymer (second network) penetrating into the first
network (Gong J. P., Katsuyama Y., Kurokawa T. and Osada Y., Adv. Mater., 15 (2003)
1155). The model assumes that the material locally softens around crack tip due to damage of the
first network, and then the crack extends within the softened zone. An order estimation indicates
that energy dissipation by the softening greatly exceeds the “bare fracture energy” of the softened
material, and that the effective fracture energy can reach the order of 100 J/m2. This is consistent
with the experimental value ∼ 400 J/m2.

Copyright c© EPLA, 2007

Polymer scientists had though that succulent gels are
very easy to break because of their large water contents.
This stereotype thinking has been broken by the devel-
opment of double-network (DN) gels [1], a kind of IPN
(interpenetrating polymer network) consisting of a strong
polyelectrolyte gel (first network) and of neutral long poly-
mer chains (second network). For a DN gel synthesized
at an adequate composition, the fracture energy G
reaches around 400 J/m2 [2]; this value, despite about
85wt% water content of the gel, exceeds the typical
fracture energy of rubbers (without filler) at low crack
velocities, ∼ 100 J/m2 [3]. In addition, DN gels remind
us of the high toughness of gel-like animal tissues, such
as cartilage and tendon, which are hybrids of rigid and
flexible biopolymers. DN gels have provoked a lot of
interest from fundamental and applied points of view,
and there have been several investigations on the structure
and mechanical properties of the gels [1,2,4–6]. However,
the understanding of the toughening mechanism remains
at the level of speculations at present.
The structural features of the tough DN gels are as

follows. F1) The material combination is: the first network
of poly(2-acrylamido-2-methylpropanesulfonic acid),
PAMPS, and the second network of polyacrylamide,
PAAm. The former is very rigid, and the latter flexible.
F2) PAMPS is substantially cross-linked, while PAAm
chains are strongly entangled but not (or quite poorly)

cross-linked. F3) The molar concentration of PAMPS,
approximately 0.1M, is fairly lower than that of PAAm,
approximately 2M. These features indicate that the first
and second networks have quite brittle and ductile
natures, respectively. On the other hand, mechanical
characterizations on the DN gels have revealed that F4)
despite the minority of PAMPS, the elastic modulus of
the DN gels is dominated by the first PAMPS network,
that is Young’s modulus of the DN gels is almost the
same as the corresponding bare PAMPS gels (the PAMPS
gels used as the first network). This is because the
elasticity of PAMPS gels (and DN gels) mainly comes
from the activity of dissociated counter ions. In addition,
the following experimental finding is quite crucial in
discussions on the anomalous high fracture energy G.
F5) G hardly depends on crack velocity V : for the
increase of V over four orders (from 10−6 to 10−2m/s),
G increases up to only three times [2].
We emphasise that the high mechanical strength of the

DN gel cannot be explained by the well-known mecha-
nisms to enhance the fracture energy G of the soft-polymer
systems, i.e., chain stretching [7] and sliding [8] in vicinity
of crack tip, and bulk vicoelasticity [9]. For example, if the
fracture energy is dominated by the chain stretching effect
of PAAm, G should be around 10 J/m2 for the PAAm
concentration of 2M, as estimated in [2]. This value is 1–2
orders less than the G of the tough DN gels [2]. The chain
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Fig. 1: The structure of crack assumed in the proposed model. The DN gel around the crack tip gets very soft due to the damage
of the first PAMPS network. In the softened (damaged) zone, PAMPS clusters play a role of cross-linker of PAAm chains (the
left illustration).

sliding mechanism is also inconsistent with the very weak
dependence on V , because according to the mechanism, G
should be roughly proportional to V [8]. The bulk visco-
elasticity effect cannot work well, because the bulk
rheological property of the DN gels is dominated by the
first network and shows no remarkable viscoelasticity.
A kind of yielding phenomena, which seems to be a

clue to clarify the mechanics under high strength, has
been found in DN gels made from more sparse first
networks [10]; on tensile tests, narrowing zones (“necks”)
appear in the sample and grow up with further stretching.
During the neck propagation, a plateau region appears
in the loading curve. The plateau value of the tensile
stress hardly depends on the stretching rate. After the
neck propagation, the gels become fairly soft (but not sol),
and can withstand large elongations (up to elongational
strains around 20). It is certain that the first network
breaks into small fragments during the necking deforma-
tion and the fragments play a role of cross-linker of the
second PAAm chains (see fig. 1). The necking pheno-
menon can be regarded as a damage accumulation of the
first network, and proposes a fascinating hypothesis for the
anomalous toughness of the original tough DN gels [7].
That is, if the softened zone is formed in a mesoscale
region around the crack tip (fig. 1), the crack propaga-
tion involves a large energy dissipation, resulting in the
enhancement of the effective fracture energy. The situ-
ation is similar to crazing in the crack front of glassy
polymers [11]. An advantage of the hypothesis is that it

does not conflict with F5, i.e., the dissipation due to the
yielding is expected to be insensitive to V , compared with
viscous dissipations.
In this paper, following the line of the hypothesis,

we propose a simple model to estimate the effect of the
local damage on the observed fracture energy. The model
assumes that in the strongly stretched region ahead of
the crack tip, the gel first yields to transform into a very
soft material with intrinsic fracture energy G0, and then
the crack tip passes through the softened zone. Using
the energy balance concept of fracture mechanics, we
obtain scaling level expressions of the size of the softened
zone h and of the effective fracture energy G, in terms
of the yielding stress, the “bare fracture energy” G0,
and the typical strain and elastic constant in the softened
zone. An order estimation of G using the numerical data
from the necking gel in [10] predicts that G reaches

several hundreds J/m
2
. This is consistent with the experi-

mental values of G, ∼ 400 J/m2 [2].
Figure 1 depicts the structure of the crack. The

damaged zone is created around the crack tip, and left
on the both side of the fracture surfaces. We make the
following assumptions: A1) The yielding occurs at a
critical condition characterized by a threshold stress
σc, which corresponds to the critical tensile stress for
the necking in the gels undergoing macroscopic necking.
A2) There is a sharp boundary between the damaged and
undamaged zones, and the size of the damaged zone can
be characterized by only one spatial scale h (h is the size
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Fig. 2: (a) A close-up view of the damaged zone around the
crack tip. The dashed curve shows the contour on which
the principal tensile stress is given by σc. The curve should
include the “active” part of the boundary where the yielding
occurs. (b) A virtual strip of the damaged material under pure
shear test with the remote stress σc, which has a similarity to
the situation in (a). (c) Finite-length version of the pure shear
test in (b).

in the reference (undeformed) state). A3) The damaged
zone behaves as a very soft and purely elastic material
with intrinsic fracture energy G0.
We suppose a steady and quasi-static crack propagation,
i.e., the boundary and the elastic field on both sides of
the boundary uniformly shift with the crack propagation,
and the process is not concerned with any dynamic
(i.e., inertial and/or viscous) effects. Such process can be
realized, for example, in very slow tearing tests.
Figure 2(a) is a close-up view around the crack tip.

The critical condition for yielding (softening) is just

satisfied on a part of the boundary ahead of the crack
tip, and the yielding occurs there. The dashed curve
schematically represent the contour on which the principal
tensile stress is σc. The contour should include the yielding
boundary. On the other hand, the critical condition for
the fracture is always satisfied at the crack tip. The size h
can be determined by the compatibility of the above two
critical conditions.
The situation is similar to the so-called pure shear test

shown in fig. 2(b), namely, the uniform expansion of an
infinite strip including a half-infinite crack loaded with
the remote stress σc. The critical size (width) h above
which the crack can propagate at given G0 and σc can
be determined by balancing the surface energy cost and
the elastic energy release for a crack propagation at a
unit length. The cost is G0 (we assume the material
has a unit length along the crack tip line, normal to
the plane of fig. 2). The elastic energy release g for this
simple geometry is equal to the elastic energy stored in
a uniformly stretched strip far away from the crack tip
(hatched in fig. 2(b)) that has height h and width 1 in
the reference state. We have g= h×U(σc), where U(σc)
is the elastic energy density (J/m3) for the uniform
stretching with critical stress σc, and

h=G0/U(σc). (1)

It should be noticed that eq. (1) is valid for large elastic
deformations. Furthermore, eq. (1) is valid also for finite-
length cases (fig. 2(c)) provided that the lateral size is
several times as long as h. This is because the loading
far away from the crack tip does not affect the stress field
near the crack tip and because h is the only characteristic
scale to distinguish “far away” or not.
Equation (1) holds for the situation in fig. 2(a),

provided we employ a suitable form of U reflecting the
complex boundary condition. (This is because eq. (1) is
a consequence of the energy balance concept in fracture
mechanics.) For the present purpose of order estimation,
however, we can use the form of U for the uniaxial
stretching, because fig. 2(a) is equivalent to fig. 2(c)
(and fig. 2(b)) on the scaling level. In this case, eq. (1)
should be rewritten as h∼=G0/U(σc), where the symbol
“∼=” represents that the dominant terms on both sides are
equal, except for the numerical coefficients. The meaning
of eq. (1) for our primary problem of fig. 2(a) is as follows:
since the order of stresses on the boundary (and the
corresponding elastic energy density) is limited by σc,
the damaged zone should largely grow to give enough
elastic energy release to compensate large G0.
Then, we explore the relation between h and the

effective fracture energy G, the form of U(σc) remaining
unfixed. G should be defined as the total dissipated energy
to create a unit area of the fracture surface (we assume
the material has a unit length along the crack tip line,
normal to the plane of fig. 1). The dissipated energy
consists of i) the base term G0 and of ii) an added term
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Fig. 3: Assumed stress-strain (S-S) relations for the undamaged
and damaged zones. The state point irreversibly jumps from
A to C, corresponding to the damage. The S-S relation for
the damaged material (OBC) is characterized by initial low
modulus and stiffened modulus.

of irreversible work to cause the damaging (softening) in
the strip h× 1 (hatched in fig. 1). To estimate the order
of the latter term, we ignore all complexities coming
from the tensor nature of the problem, and consider
a simplified problem of uniaxial stretching. Figure 3
shows the idealized loading curves. The stress-strain
(S-S) relation of the undamaged sample follows the line
OA with a high elastic modulus Eh. At critical stress σc,
the state of the system jumps to C, i.e., the softening
occurs. After that, the S-S relation of the damaged
material follows the curve OBC. The point B stands for
the crossover region between the small deformation regime
with low elastic modulus Es and the large deformation
regime with stiffened modulus Est. The area of the closed
curve OACB is the irreversible work for the unit volume
of the material, approximating to σc× εc, where εc is
the strain at the point C. For the strip on the fracture
surface, the irreversible work is σcεch. Thus, we obtain
an expression for the effective fracture energy G:

G=G0+ σc εc h=G0×
(
1+

σc εc

U(σc)

)
. (2)

It should be noticed that G is given by a product of the
bare fracture energy G0 and a dimensionless enhancement
factor.
To evaluate the size of the damaged zone h and the effec-

tive fracture energy G, we need to know adequate values
of G0, σc, εc, and U(σc) for the tough DN gels. The bare
fracture energy G0 is estimated at around 10 J/m

2 [2]
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Fig. 4: Schematic representation of mechanical behavior of
actual necking gels drawn based on the loading curves in
figs. 1–3 in [10], and approximate values of the relevant quanti-
ties. The bold curve OACD represents the loading behavior of
the virgin sample. Even above the point C (i.e., after the neck-
ing propagation) the damage accumulation gradually proceeds.
The dotted curve OC (OD) shows the elastic stress-strain
relation for the sample retracted from the point C (D).

on the basis that we can regard the softened zone
as a permanent network of PAAm chains and can
apply the Lake-Thomas mechanism [7]. (This value is
reasonable, because it is a tenth of the typical value of
fracture energy for rubbers, corresponding to the ratio
of polymer contents of rubber, 100%, and of DN gels,
15%.) For σc, εc and U(σc), there is no numerical data;
thus we estimate the orders of the quantities with the
experimental loading curve of a gel undergoing global
(unlocalized) necking [10]. Based on figs. 1–3 in [10],
fig. 4 schematically represents the loading behavior
of the necking gel, and summarizes the approximate
values of relevant quantities (σc etc.). The curve OACD
corresponds to the tensile loading for the virgin sample,
and the plateau AC to the coexistence region of the
necked and unnecked gels; σc ≈ 0.2MPa and εc ≈ 7
as given in fig. 4. Accordingly we employ the order
relations of σc ∼ 105 Pa and εc ∼ 10. (Hereafter, the
symbol “∼” represents results of the order estimations
based on the data from the necking gel.) When the stret-
ched sample is retracted from the termination point of
the coexistence region C, it obeys the elastic S-S relation
of OBC. The S-S curve contains a stiffened region below
C (see fig. 2 in [10] for the actual shape of the curve), and
thus a reasonable choice for U(σc) is U(σc)∼= σ2c/Est with
Est ≈ 0.1MPa.
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From eqs. (1), (2) and the order relations G0 ∼ 10 J/m2,
σc ∼Est ∼ 105 Pa and εc ∼ 10, we have

h∼= EstG0
σ2c

∼ 100µm, (3)

G∼=G0×
(
1+
Est

σc
εc

)
∼=G0× Est

σc
εc ∼ 100 J/m2. (4)

That is, the effective fracture energy G could reach the
order of several hundreds J/m2. This is consistent with
the measured value of G of the DN gel.

Discussion. – We first clarify the physical meaning
of the enhancement factor, G/G0 ∼= (Est/σc)εc in eq. (4).
i) The inverse proportionality to σc is a consequence of
two opposite effects of σc on G; one is enhancing the
irreversible work σc× εc, the other reducing h∼=G0Est/σ2c .
The latter is stronger, resulting in the negative dependence
of G on σc. ii) εc comes from the irreversible work for the
damaging. The proportionality to εc is reasonable from
the molecular point of view: the origin of the irreversible
work is the breakage of chemical bonds of the first network
during the softening deformation; large εc corresponds to
persistent and multiple bond cuttings. iii) E st comes from
h; if E st is large, the elastic energy density is small at given
G0 and σc, leading to large h and to large G.
Before concluding, it should be pointed out that for

the necking gel in [10], the damage accumulation contin-
ues even after the neck propagation (above C), and that
the assumption A3 of the present model can be incor-
rect for the tough DN gels. As represented in fig. 4 (and
as is clear in figs. 2 and 3 in [10]), i) the slope Ed of
the loading curve after the neck propagation is fairly
smaller than E st; and ii) when the stretched sample is
retracted from a point D in the post-necking stage, it
shows an elastic S-S relation OD with a stiffened modu-
lus E′st >Ed. These behaviors indicate that the S-S rela-
tion of the softened gel shifts depending on the maximum
stretching suffered before, and that when the stretching of
a gel exceeds the “personal highest” value, the slope of the
S-S curve discontinuously decreases. Because of the addi-
tional damage accumulation following the drastic necking,
the true irreversible work should be larger than σc× εc1.

1In the third paragraph in the page 4643 of [10], we made a
misleading description about the (time independent) hysteresis loop
in the loading curves of the necking DN gel, ignoring the additional
damage.

We believe, nevertheless, that the assumption A3 is useful
as the first approximation and that eq. (4) is appropri-
ate for the purpose of the order estimation of the effective
fracture energy of the DN gels.
In conclusion, we proposed a simple phenomenological

model that can qualitatively explain the anomalous high
toughness of DN gels. The central idea is that the DN gel
locally yields to become a softer material, and the energy
dissipation by the yielding enhances the effective frac-
ture energy. Microscopically, the yielding is supposed to
be caused by damage accumulation and fragmentation
of the brittle first network and inter-connection of the
fragments by the second polymer chains.
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