<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Immunohistochemical demonstration of chromogranin A in endocrine organs of the rat and horse by use of region-specific antibodies</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>HASHIMOTO, Yoshiharu; OHKI, Hiroyuki; SATO, Fumio; YANAIHARA, Noboru; IWANAGA, Toshihiko</td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>Japanese Journal of Veterinary Research, 49(1): 3-17</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-05-31</td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/jjvr.49.1.3</td>
<td></td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/2862</td>
<td>Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
<td></td>
</tr>
<tr>
<td>File Information</td>
<td>KJ00002400324.pdf</td>
<td></td>
</tr>
</tbody>
</table>
Immunohistochemical demonstration of chromogranin A in endocrine organs of the rat and horse by use of region-specific antibodies

Yoshiharu Hashimoto, Hiroyuki Ohki, Fumio Sato, Noboru Yanaihara and Toshihiko Iwanaga

(Accepted for publication: May 5, 2001)

Abstract

Chromogranin A (CgA) is an acidic glycoprotein that is co-stored with hormones or neurotransmitters in granular components of endocrine cells and neurons, and released together with them in response to adequate stimulation. In addition to acting as a packaging protein, CgA functions as a precursor molecule that yields several bioactive peptides by proteolytic cleavage. The purpose of this study is to elucidate how different the processing of CgA is among endocrine tissues by immunostaining using multiple region-specific antisera, and to evaluate the availability of region-specific antisera. When various endocrine organs of rats were immunostained with four region-specific antisera against rat CgA (CgA 1-28, 94-130, 296-314, and 359-389), all amine/peptide-secreting endocrine tissues except the pineal body were stained positively. The adrenal medulla and gastric endocrine cells were equally intensely immunoreactive to all four antisera, while the other endocrine tissues, represented by pancreatic islets, showed different staining patterns depending on the antiserum. These results suggest that the processing of CgA differs from tissue to tissue. An antiserum against horse CgA 335-365, corresponding to rat CgA 359-389 which shows the highest concentration in the plasma and urine of the rat, again stained all endocrine tissues of the horse except the pineal body. Therefore, the anti-horse CgA 335-365 serum is useful for immunohistochemical survey of horse CgA, and may make possible the establishment of a CgA assay system for the measurement of CgA in the plasma, urine and saliva.

1Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818
2Laboratory of Molecular and Cellular Biology, Equine Research Institute, Japan Racing Association, Utsunomiya 320-0856
3Yanaihara Institute, Fujinomiya 418-0011, Japan
*Corresponding author
Fax : +81-11-706-5189
E-mail : tiwanaga@vetmed.hokudai.ac.jp
Key words: chromogranin A, immunohistochemistry, rat, region-specific antisera

Introduction
Chromogranin A (CgA) is a 48-kDa acidic and hydrophilic protein that was originally isolated from chromaffin granules of the bovine adrenal medulla. Subsequent immunohistochemical studies revealed its ubiquitous distribution in amine/peptide-secreting endocrine cells, including the adenohypophysis, thyroid calcitonin cells, parathyroid gland, gastro-entero-pancreatic endocrine cells, pulmonary and cutaneous paraneurons, and atrial myoendocrine cells. Thus, CgA is generally recognized as a useful marker of these endocrine cells in histological analysis. Functionally it has often been thought that CgA might act as a packaging protein within the core of secretory granules. Neurons in the central and peripheral nervous systems also contain CgA molecules, possibly in large-cored vesicles. Although early studies insisted on the selective localization of CgA in sympathetic nerves, a broader distribution in the nervous systems has also been proposed. Interestingly, recent radioimmunoassay (RIA) studies have revealed the existence of CgA-like substances in saliva. Immunohistochemically, the CgA-like immunoreactivity of the salivary glands is localized mainly in the ducts of the submandibular gland. Its concentration in the saliva as well as blood is sharply elevated in stress conditions, due to stimulated sympathetic activity, suggesting that CgA in the saliva becomes a reliable marker of stress conditions.

The cloning and sequencing of CgA cDNA from bovine, porcine, human, mouse, rat and equine libraries provided complete deduced amino acid sequences. CgA consists of 448 amino acid residues in the rat, with 8-10 sites of pairs of basic amino acids (Lys or Arg) that may act as proteolytic processing sites. Thus, there is a possibility that CgA is processed within cells to yield several bioactive peptides such as vasostatins, chromostatin, pancreastatin, and parastatin. However, the modes and mechanisms of the CgA processing in cells remain unclear and complicated.

The present immunohistochemical study using four region-specific antisera against rat CgA demonstrates different staining patterns for CgA in various endocrine organs. Moreover, an antiserum against horse CgA was examined with regard to usefulness for immunostaining and establishment of a highly sensitive immunoassay system in the horse. Immunohistochemical data on the rat were partially described in our previous report.

Fig. 1 A diagram showing sequences used for production of antisera
Four antisera for rat CgA and one antiserum for horse CgA were raised against shadow regions in the columns.
Materials and Methods

Animals

Twelve male Wistar rats, weighing about 200g, and seven female thoroughbred horses, weighing 400-550kg, were used in this study. Rats and horses were anesthetized by intravenous injection of pentobarbital and pentobarbital/thiopental sodium, respectively, and were sacrificed by bloodletting from the cervical artery. The adrenal gland, pituitary gland, pineal body, thyroid gland, parathyroid gland, pancreas, gastric body, ileum and colon were removed and immersed in Bouin’s fluid for 12 hr. All experiments were performed under protocols following the Guidelines for Animal Experimentation, Graduate School of Veterinary Medicine, Hokkaido University.

Immunohistochemistry

The Bouin-fixed tissues were embedded in paraffin according to a conventional method, and cut serially at 4 μm in thickness. Immunostaining of CgA was carried out according to the avidin-biotin complex (ABC) method. Four antisera raised against different regions of rat CgA and one antiserum against horse CgA 335-365 were used (Table 1) (Fig. 1). Since previous studies showed that, in the rat and human, rat CgA 359-389 (homologous to the human CgA 344-374) is highly stable in the plasma and urine34,35,36, horse CgA 335-365 corresponding to these regions of rat and human CgA was selected for production of antisera against the horse CgA. All antisera were supplied by the Yanaihara Institute (Fujinomiya, Japan).

After treatment with a blocking serum for 30 min, dewaxed sections were incubated with one of the rabbit polyclonal antisera against rat and horse CgA, listed in Table 1, overnight at room temperature. The sections were then incubated with biotinylated goat anti-rabbit immunoglobulins and avidin-biotin-peroxidase complex (Histofine kit; Nichirei, Tokyo, Japan). The antigen-antibody reactions were visualized by incubation in 0.05M Tris-HCl buffer (pH 7.6) containing 0.01% 3,3'-diaminobenzidine and 0.002% H₂O₂. The specificity of the immunoreactions was checked by preincubation of the antiserum with the corresponding antigen (10μg/ml diluted antisera).

Results

Rat

When the adrenal glands of rats were immunostained using rat CgA 1-28, 94-130, 296-316 and 359-389 antisera, the medullary chromaffin cells were intensely immunolabeled with all four antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2). Similarly, the four antisera intensely stained endocrine cells, predominantly enterochromaffin-like (ECL) cells, dispersed in the mucosa of the gastric body (Fig. 3 a). A major population of endocrine cells in the adenohypophysis (anterior pituitary) had positive reactions with all antisera, showing the same intensity of reaction (Fig. 2).

<table>
<thead>
<tr>
<th>Table 1. List of antisera used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiserum</td>
</tr>
<tr>
<td>Rat CgA 1-28</td>
</tr>
<tr>
<td>Rat CgA 94-130</td>
</tr>
<tr>
<td>Rat CgA 296-316</td>
</tr>
<tr>
<td>Rat CgA 359-389</td>
</tr>
<tr>
<td>Horse CgA 335-365</td>
</tr>
</tbody>
</table>
the ileum (Fig. 3 c) and colon (Fig. 3 d) were flask-shaped cells and extended a slender process to the lumen.

In the pancreas, islets of Langerhans were selectively stained, but the staining pattern quite differed depending upon the antiserum used (Fig. 4). The most intense staining was obtained with the antiserum against CgA 296-314; essentially all islet cells were evenly immunolabeled (Fig. 4 c). Less intense staining occurred with the CgA 94-130 antiserum (Fig. 4 b), weak immunoreactivity with the CgA 1-28 antiserum (Fig. 4 a), and faint reactivity with the CgA 359-389 antiserum (Fig. 4 d). The immunoreactive islet cells, even among the same cell type, showed various intensities of immunoreaction for CgA and intermingled with immunonegative cells, as clearly shown in insulin cells occupying the central parts of islets.

In the thyroid gland, parafollicular cells (C cells), which secrete calcitonin, were stained positively, being distributed around follicles (Fig. 3 e). Immunoreactivity with CgA 296-314 antiserum was most intense, followed by that with CgA 94-130 antiserum, and then with CgA 1-28 antiserum. Antiserum against CgA 359-389 failed to stain any C cells.

In the parathyroid gland, all principal cells were immunoreactive, with the same inten-
Fig. 3 Immunostaining of the gastric corpus (a), adenohypophysis (b), ileum (c), colon (d), thyroid gland (e), and parathyroid gland (f) by use of anti-rat CgA 296-314 serum in rats

In the adenohypophysis (b), immunoreactive cells showing different intensities intermingle. All endocrine cells in the parathyroid gland (f) are immunoreactive, but less intensely, possibly due to the small number of secretory granules. Scale bar = 20μm
Fig. 4 CgA immunoreactivities with four region-specific antisera in the rat pancreas (four serial sections)

The antiserum against CgA 296-314 evenly stain all islet cells, but immunoreactivities with other three antisera are heterogeneous and less intense. Scale bar=50μm

Results were obtained in other endocrine cells of the horse (gastric endocrine cells, pancreatic islets, etc) except the pineal body.
The antiserum against horse CgA 335-365 detected the adrenal medulla, adenohypophysis, thyroid parafollicular cells, parathyroid gland, pancreatic islets, and endocrine cells of the gastric body and intestine (Fig. 5). In the pancreatic islets, their central region occupied by glucagon cells was stained more intensely than the peripheral region, which is dominated by insulin cells7 (Fig. 5 d). In the thyroid gland, parafollicular cells were stained selectively, but the population of the
Fig. 5 Immunostaining of the adrenal gland (a), adenohypophysis (b), thyroid gland (c), pancreas (d), gastric body (e) and ileum (f) by use of anti-horse CgA 335-365 serum in horses. In the adrenal gland (a), all medullary chromaffin cells are immunoreactive. The adenohypophysis (b) contains endocrine cells showing different intensities. CgA-immunoreactive cells in the pancreas gather in the central region of islets (d). Scale bar = 20μm
positive cells was smaller than in rats. Characteristic ring structures consisting of CgA-immunoreactive cells were formed around follicles throughout the thyroid gland (Fig. 5c).

Immunoreaction in the parathyroid gland was weak, but significantly positive. The pineal body did not contain any cells immunoreactive with the horse CgA 335-365 antiserum.

Table 2. Immunoreactivities of various endocrine cells to four region-specific antisera

<table>
<thead>
<tr>
<th>Rat tissue</th>
<th>CgA 1-28</th>
<th>CgA94-130</th>
<th>CgA296-316</th>
<th>CgA359-389</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal medulla</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Gastric endocrine</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenohypophysis</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Intestinal</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>endocrine cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic islets</td>
<td>++/+++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Thyroid C cells</td>
<td>++/+++</td>
<td>++</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>Parathyroid</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Pineal body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+++ : intense, ++ : mediate, + : weak, - : negative

Discussion

The existence of many pairs of basic amino acids in the CgA molecule indicates that CgA is cleaved into biologically active peptides (Fig. 1). The N-terminal domain of CgA, called vasostatin (human CgA 1-76) or β-granin (rat CgA 1-130), has suppressive effects on vascular contractility and inhibits parathyroid hormone secretion. The middle part of CgA yields pancreastatin (porcine CgA 240-288, bovine CgA 248-294) and catestatin (porcine CgA 343-363, bovine CgA 344-364) or chromostatin (bovine CgA 124-143), which have paracrine- or autocrine-inhibiting effects on the secretion of insulin and adrenal catecholamines, while another product, chromacin (bovine CgA 173-194), possesses antibacterial effects. The more C-terminally-derived peptide, termed parastatin (porcine CgA 347-419), inhibits parathormone secretion. The mode of the cleavage and end product are considerably different according to the tissue, as indicated by gel permeation chromatography of CgA-like immunoreactants. It is reasonable that this different post-translational processing affects the immunohistochemical staining with antisera against intact CgA or its fragments.

Curry et al. reported inconsistent immunoreactivities in rat endocrine tissues using nine different antisera against rat CgA, supporting histochemically tissue- and cell-specific processing of CgA. The antigen peptides used for production of these nine antisera conspicuously differed in the length of sequences, from 6 to 128 in amino acid residues, and some of them overlapped. In contrast, we used four region-specific antisera raised against non-overlapping amino acid residues with a considerably consistent length of sequences, from 19-40 (Fig. 1); the N-terminal region of CgA (CgA 1-28), CgA 94-130 which is the C-terminal region of β-granin, CgA 296-314 which corresponds to the C-terminal region of pancreastatin, and the C-terminal re-
region of CgA (CgA 359-389). The present study confirmed the previous finding that the staining patterns with region-specific antisera differ from tissue to tissue\(^9\). However, there are some discrepancies between our data and the study by Curry et al\(^9\). In their study, for example, the nine antisera for CgA showed various intensities of immunoreaction in the adrenal medulla and gastric body, whereas we obtained consistent intensity of immunoreaction with all four antisera in these two tissues. Gel permeation patterns of CgA immunoreactivity\(^{3,5,34}\) demonstrated that the adrenal gland and gastric body, especially the former, are rich in intact CgA and large CgA-derived fragments, due to low proteolytic cleavage. This finding suggests the consistent immunoreactivities of these tissues to various region-specific antisera, in agreement with our immunohistochemical results.

In contrast to the adrenal medulla and gastric endocrine cells, other endocrine tissues, particularly pancreatic islets, showed different staining patterns to the antisera used. This was related to the fact that in the pancreas, proteolytic cleavage is the most extensive, as shown by gel permeation chromatography\(^5,31,33\). The thyroid C cells and parathyroid chief cells showed unique staining patterns for the CgA antisera: they were negative only for CgA 359-389 and CgA 1-28 antisera. Significant, possibly unique, proteolytic processing of CgA is known to occur in the thyroid gland\(^7\). Although no data on molecular forms of CgA in the parathyroid gland are available, production of some bioactive fragments is recognizable in parathyroid cells\(^3,6\). The weak or no immunoreaction in immunostaining seems to result either because a region recognized by the antiserum is lost by proteolytic cleavage or the antigenetic determinant (epitopes of antigen) is masked by extension of amino acid sequences or by binding of co-existing peptide hormones\(^{15}\). In any case, the different staining patterns in each tissue indicated that the processing of CgA and following production of bioactive peptides were not identical in the tissues.

The present study further revealed that the antiserum against CgA 296-314, corresponding to the C-terminal of pancreastatin, was best for immunohistochemical investigation of rat endocrine tissues. It is worth noting that the CgA 296-314 antiserum displayed a large discrepancy between immunohistochemistry and RIA in the rat. According to RIA\(^3,14,60\), immunoreactive CgA levels detectable with this antiserum were extremely low in all endocrine tissues examined, as well as in plasma and urine, in contrast to high immunoreactivities with the other three antisera, indicating low production of pancreastatin in the endocrine tissues. However, Schmidt et al.\(^{42}\), Watkinson et al.\(^{33}\) and Bretherton-Watt et al.\(^7\) could detect abundant pancreastatin-like immunoreactivity in the pancreas as well as the adrenal gland and pituitary in pigs and cattle. Furthermore, molecular characterization of pancreastatin-like immunoreactants showed predominant occurrence of the immunoreactants that coelute with native pancreastatin in the porcine pancreas and pituitary, bovine pancreas and pyloric antrum. Our immunohistochemical data showing abundant pancreastatin in essentially all islet cells are supported by several immunohistochemical studies that used anti-pancreastatin sera\(^{4,27,38,42,45}\).

CgA is stored in secretory granules and synaptic vesicles with hormones/neurotransmitters\(^{12,56}\), and released with them to the circulation\(^5\). Stridsberg et al.\(^{48}\) reported that CgA circulates at a detectable level in the sheep, goat, horse and pig, by use of RIA for bovine CgA17-39. The concentration of circulating CgA appears to be influenced predomi-
nantly by secretion of CgA from the adrenal medulla, since secretagogue stimulation of normal human endocrine tissues other than the adrenal medulla does not perturb the plasma CgA concentration\(^{50,51}\). This observation is consistent with the greater abundance of CgA in the adrenal gland than in other neuroendocrine tissues. Since plasma CgA is correlated with adrenal catecholamine release, plasma CgA is a valid marker of sympathochromaffin activity in humans\(^6\). In utilization of CgA as a marker for activated adrenergic activity, the peptide fragments used as antigens need to be stable in the blood and as detectable as possible by immunochemical methods. RIA studies with the same four antisera as those we used revealed that the anti-rat CgA 359-389 serum detect a great amount of the fragment in the plasma and urine of the rat\(^4\). The same experiment in humans revealed that the corresponding fragment of human CgA (human CgA 344-374) is also detectable in the plasma, urine and saliva\(^{25,30}\). Therefore, for investigation of horse CgA, we first tried to produce an antiserum against the corresponding sequence of the horse molecule (horse CgA 335-365). The present study with the antiserum (RY472) stained all endocrine tissues of the horse except the pineal body, indicating that this antiserum is useful in immunohistochemistry of horse CgA, and that measurement of the CgA fragments using the antiserum may be possible in the horse. Now we are developing an assay system to measure the CgA fragments in the plasma, urine and saliva in the horse using this antiserum.

Comparison of CgA sequences among various mammals shows that the structures of N- and C-terminal regions of CgA are considerably conserved\(^{22,41}\), while the middle region possesses a lower degree of homology among species. When we immunostained the horse adrenal gland with the four antisera against rat CgA, positive reactions were observed only with the antiserum against the N-terminal region of CgA. Positive immunoreactivity with the anti-rat CgA 1-28 serum was also observed in the adrenal medulla of the mouse, sheep and cattle (our unpublished data). These results prove, at the immunohistochemical level, that the amino acids of the N-terminal region detected by the anti-rat CgA 1-28 serum are highly conserved among mammals, in contrast to other regions of CgA.

In conclusion, the different immunostaining patterns depending upon the four antisera indicate tissue-specific processing of CgA. Immunostaining with region-specific antisera against CgA, as in this study, is important to survey CgA in various endocrine tissues, and is available to elucidate the manner of processing of CgA.

References

4. Bretherton-Watt, D., Ghafei, M. A.,

18. Hutton, J. C., Hansen, F. and Pesahvaria, M. 1985. β-granins : 21kDa cosecreted peptides of the insulin gran-

32. Nakane, H., Asami, O., Yamada, Y., Ha-

