Title

Analysis of magnetic anisotropy for Co_{2}Cr_{0.6}Fe_{0.4}Al thin films epitaxially grown on GaAs

Author(s)

Uemura, Tetsuya; Yano, Toshifumi; Matsuda, Ken-ichi; Yamamoto, Masafumi

Citation

Journal of Magnetism and Magnetic Materials, 310(2(3)): e696-e698

Issue Date

2007-03

Doc URL

http://hdl.handle.net/2115/29695

Type

article (author version)

File Information

JMMM310-2-3.pdf
Analysis of magnetic anisotropy for Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al thin films epitaxially grown on GaAs

Tetsuya Uemura *, Toshifumi Yano, Ken-ichi Matsuda, Masafumi Yamamoto

Div. Electronics for Informatics, Hokkaido University, N14, W9, Kita-ku, Sapporo 060-0814, Japan
available online 20 November 2006

Abstract

The structural and magnetic properties of Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) thin films epitaxially grown on GaAs substrates by sputtering were investigated. The CCFA film directly grown on GaAs showed a cube-on-cube crystallographic relation, while it was rotated by 45° in the (001) plane when a thin MgO layer was inserted between the CCFA and GaAs. Both samples showed strong magnetic anisotropy, in which a uniaxial anisotropy with an easy axis of [110]$_{\text{GaAs}}$ or [1-10]$_{\text{GaAs}}$ dominated with a slight cubic anisotropy having easy axes of (110)$_{\text{CCFA}}$ superimposed. The uniaxial anisotropy constants for both samples were approximately 1.6 times as large as the cubic anisotropy constants for both samples.

© 2006 Elsevier B.V. All rights reserved.

PACS: 75.30.Gw; 75.50.Cc; 75.70.-i

Keywords: Heusler alloy; CCFA; magnetic anisotropy; GaAs

Co-based full-Heusler alloy thin films are promising ferromagnetic electrode materials for spintronic devices because of their intrinsically high spin polarization at room temperature (RT). Relatively high tunnel magneto-resistance (TMR) ratios were recently observed in magnetic tunnel junctions (MTJs) using Co$_2$MnSi (67% at RT and 570% at 2 K)[1] or Co$_2$(Cr, Fe)Al (CCFA) (90% at RT and 240% at 4.2 K)[2]. In experiments on spin injection from Heusler materials into semiconductors, however, relatively low spin injection efficiency was achieved [3], [4]. The possible reasons for the low efficiency are the formation of a magnetically-dead layer and/or the loss of half-metallicity at Heusler-material/semiconductor interfaces. Insertion of a thin MgO layer between the Heusler material and the semiconductor is expected to be a useful approach for achieving a high spin injection efficiency. In this paper, we report on the structural and magnetic properties of CCFA thin films epitaxially grown on GaAs substrates by magnetron sputtering with and without a MgO interlayer, and analyze their magnetic anisotropy.

Layer structures consisting of a 400-nm-thick undoped GaAs and a 50-nm-thick n-GaAs were grown by molecular beam epitaxy (MBE) at 580°C on GaAs(001) substrate. Then the sample was capped with an arsenic protective layer and transported in air to an ultrahigh vacuum chamber equipped with magnetron sputtering cathodes and an electron beam (EB) evaporator. Prior to the growth of the CCFA film, the arsenic cap was removed by heating the sample to 400°C. We prepared two kinds of CCFA thin films on GaAs. In the first kind (sample A), a 50-nm-thick CCFA film was directly grown on GaAs by RF-magnetron sputtering at 400°C. In the second kind (sample B), a 50-nm-thick CCFA film was prepared by sputtering on a 1.5-nm-thick MgO layer grown by EB evaporation on GaAs.

Figures 1(a) and 1(b) show x-ray pole figures of CCFA 022 diffractions for both samples. Here, we set the GaAs[110] direction to the origin of Φ. We confirmed epitaxial growth of both samples. The crystallographic relationship with respect to the GaAs was CCFA(001)[110]∥GaAs(001)[110], i.e., a cube-on-cube relationship for the sample A (without the MgO layer), while it was CCFA(001)[110]∥GaAs(001)[100] (45° rotated) for the sample B (with the MgO layer).

Figures 2(a) and 2(b) show the magnetic hysteresis curves measured at RT. The magnetic field was applied along the GaAs [110] and [1-10] axes. The shape of the hysteresis curves observed in the sample A, which was almost similar to those observed in MBE-grown CCFA [5] or other Heusler materials [6], [7] on GaAs, was different from that

* Corresponding author.

Email address: uemura@ist.hokudai.ac.jp (Tetsuya Uemura).

URL: http://med.ist.hokudai.ac.jp (Tetsuya Uemura).

© 2006 Elsevier B.V. All rights reserved.
observed in the sample B.

To understand the magnetic anisotropy, we simulated the hysteresis curves using the Stoner-Wohlfarth formulation for coherent rotation reversal. The free energy density with combined cubic anisotropy and uniaxial anisotropy can be modeled as

\[E = \frac{K_1}{4} \sin^2 2(\varphi - \alpha) + K_u \sin^2 (\varphi - \beta) - MH \cos (\varphi - \theta) \]

where \(K_1 \) and \(K_u \) are cubic and uniaxial anisotropy constants, \(\alpha \) and \(\beta \) are the easy axis directions for cubic and uniaxial anisotropy with respect to the [110]GaAs direction, \(M \) is the magnetization, \(H \) is the magnetic field, and \(\varphi \) and \(\theta \) are the directions of \(M \) and \(H \).

The anisotropy constants and easy axis directions were deduced by fitting the experimental data for the hard axis directions ([1-10]GaAs for the sample A and [110]GaAs for the sample B), since the coherent rotation reversal is dominant only when the magnetic field is applied along the hard axis direction, while domain-wall motion occurs for other directions.

The simulated results (solid lines) are also shown in Fig. 2. The close agreement between the experimental results and the simulation indicates that the assumed magnetocrystalline anisotropy model is valid. Table I summarizes the deduced easy axis directions and anisotropy constants for both samples. The value of \(\alpha \) in the sample A differed by 45° compared to that in the sample B, while the value of \(\beta \) differed by 90°. These results suggest that the direction of cubic anisotropy is related to the crystal orientation of the CCFA film, while that of the uniaxial anisotropy is related to the crystal orientation of the GaAs.

The origin of the cubic anisotropy is explained by the crystal symmetry of the CCFA. The origin of the uniaxial anisotropy, on the other hand, remains an open question, although many theoretical models, such as a reconstruction of the semiconductor substrates, formation of an interface alloy, or anisotropic interfacial bonds, have been proposed [7]. We found that the GaAs influenced the uniaxial anisotropy of the CCFA even in the presence of the thin MgO interlayer. The uniaxial anisotropy constants were approximately 1.6-1.7 times as large as the cubic anisotropy constants for both samples, indicating that the uniaxial anisotropy was dominant compared to the cubic anisotropy.

In summary, we have successfully grown epitaxial CCFA films on GaAs substrate with and without a MgO interlayer. The CCFA film directly grown on GaAs showed a cube-on-cube crystallographic relation, while it was rotated by 45° in (001) plane when a thin MgO layer was inserted. Both samples showed strong magnetic anisotropy originated from the GaAs substrate symmetry.

<table>
<thead>
<tr>
<th>sample A</th>
<th>sample B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) [deg.]</td>
<td>0° ([110]GaAs), 45° ([100]GaAs)</td>
</tr>
<tr>
<td>(\beta) [deg.]</td>
<td>0° ([110]GaAs), 90° ([1-10]GaAs)</td>
</tr>
<tr>
<td>(K_1) [erg/cm²]</td>
<td>2.2 \times 10^4</td>
</tr>
<tr>
<td>(K_u) [erg/cm²]</td>
<td>3.7 \times 10^4</td>
</tr>
</tbody>
</table>

Table 1

Easy axis directions and anisotropy constants for CCFA on GaAs without and with MgO.

References