

Title	北太平洋中央部におけるAlaskan Streamの海洋構造と変動に関する研究
Author(s)	大西, 広二
Citation	北海道大学. 博士(水産科学) 乙第5835号
Issue Date	2001-06-29
DOI	10.14943/doctoral.r5835
Doc URL	http://hdl.handle.net/2115/30173
Туре	theses (doctoral)
File Information	thesis.PDF

博士論文題名

北太平洋中央部における Alaskan Stream の 海洋構造と変動に関する研究

Hydrographic Structure and Variation of the Alaskan Stream

in the Central North Pacific

Hiroji Onishi

目次

1 - 1 0

1-1.	北太平洋亜寒帯海域の地形と海流系	1
1-2.	北太平洋亜寒帯海域における海流系と水塊変質	4
1-3.	Alaskan Stream に関する既往研究の知見	7
1-4.	本研究の目的と構成	9
第2章	資料	11-16
2-1.	CTD による断面観測データ	11
2-2.	係留系による直接測流データ	14
第3章	結果	17-70
3-1.	北太平洋中央部における水塊構造とフロントの変動	17
3 - 2	1-1. 1997 年を例とした断面水塊構造	17
3 - 1	1-2. フロントと境界位置の経年変動	20
3-2.	Ridge Domain の断面構造と流量変動	23
3 - 2	2-1. 平均海洋構造	23
3 - 2	2-2. 地衡流速断面の経年変化	26
3 - 2	2-3. 地衡流量の経年変動	30
3 - 2	2-4. 層別流量と熱・塩分輸送量	33
3 - 2	2-5. 断面構造の時空間変動解析	42
3-3.	Alaskan Stream の直接測流による流れの特性と変動	48
3 - 3	3-1. 観測期間平均と変動	48
3 - 3	3-2. 季節変動	53
3 - 3	3-3. 運動エネルギーの季節変動	60
3 - 3	3-4. スペクトル解析	65

第1章 序論

第4章 議論と考察

頁

4-1.	Alaskan Stream 流速成分の変化	71
4-2.	Alaskan Stream の安定性	78
4-3.	Alaskan Stream 流量の連続性	81
4-4.	Alaskan Stream の季節変化と経年変化	86
4-5.	EOF 解析結果と流量の経年変化	91
4-6.	研究のまとめと課題	103

第5章 謝辞 10) 6
-----------	-----

第6章	引用文献	107-112
わり キ		

Appendix

第1章 序論

1-1. 北太平洋亜寒帯海域の地形と海流系

北太平洋亜寒帯海域は、縁海であるベーリング海とはアリューシャン列島、 オホーツク海とはクリル列島を挟んで接しており、全体としては北縁から西縁にかけ てをシベリア大陸、北縁から東縁にかけてを北アメリカ大陸に囲まれている (Fig.1-1-1)。一方南縁は北太平洋亜熱帯海域に大きく開いており、地形的な境界は見 当たらない。海底地形においては太平洋の北縁から、西縁にかけてをアリューシャン 海溝・クリルカムチャッカ海溝・日本海溝が取りまいている。西太平洋では東経 170 度線に沿うように天皇海山列が南北に走り、東太平洋ではアラスカ湾に海山が点在す る。またアラスカ湾の北辺からアラスカ半島及びアリューシャン列島の南に数百キロ に渡る大陸棚が存在するが、大陸棚は西に向うにつれて幅を狭めており、太平洋の中 央部では存在しない。アリューシャン海溝の南側では太平洋プレートよりも隆起した アリューシャン海膨(Aleutian Rise)が太平洋の中央部から西方にかけて伸びており天 皇海山列の北端に繋がっている。

北太平洋亜寒帯海域に含まれる海流系は大別して 5 つに分けられる。日本に 接する西岸域には西岸境界流としてのカムチャッカ海流と親潮に代表されるオホーツ ク - 千島海流系、その海流系の東端から発して太平洋を東向きに横断し、アラスカ湾 に向う亜寒帯海流系、アメリカ大陸西岸沖に見られるカリフォルニア海流系、アラス カ湾に始まりアリューシャン列島弧に沿って西進するアラスカ海流系、及びベーリン グ海を左旋するベーリング海流系である。海流系の一部は Munk (1950)の風成循環モ デルの中でも再現されたが、後に希少な海洋観測データを統合し Dodimead et al. (1963), Favorite et al. (1976)によって包括的にまとめられた。これらの資料を基に近 年の新しい知見を加えた表層循環の概要図を Fig.1-1-2 に示す。海流系は相互に影響し あい、各種の気候条件、地形の影響による水塊変質を受けた 4 つの左旋副循環系(西 部亜寒帯循環流、アラスカ環流、ベーリング海環流、オホーツク海環流)からなる左 回りの北太平洋亜寒帯循環を形成している。

この北太平洋亜寒帯循環の中で、Alaskan Stream は北端の境界流として位置 づけられる。そして北太平洋中央部ではアラスカ環流、西部北太平洋循環流、ベーリ ング海環流を結び付ける役割を果たしている。また北太平洋内の亜寒帯循環流として は西向きの輸送を担っている唯一の海流であり、亜寒帯循環全体の規模を見積もる上

で重要な位置を占めている。更に亜寒帯循環は地球規模でのHeat Sink としても注目 され、熱輸送量に関する見積もりも関心事となっている。また北太平洋亜寒帯循環は 全海洋への淡水供給源(Woods, 1985; 永田ら,1992)として認識されている事から、塩 分輸送量に関しても注目され、アラスカ湾において低塩化された Alaskan Stream の 塩分輸送量についての見積もりは重要な意味を持っている。Alaskan Stream は南に 存在する東向きの亜寒帯流に比べて流域幅が狭く、流れの境界指標がはっきりしてい る事から、循環の規模を見積もる上で好都合といえる。しかし海象・気象条件の厳し さ、観測海域に至るまでの距離の遠さ、鉛直密度勾配が亜熱帯域に比べて小さくより 深い観測が必要である事などの条件が Alaskan Stream に関する有用な観測データの 数を少なくしており、解明が急がれているのが現状である。

Fig.1-1-1. Bathymetry map of the northern North Pacific from NOAA Ocean Atlas.

Fig.1-1-2. Schematic diagram of the surface circulation in the northern North Pacific after Dodimead et al. (1963) and Favorite et al. (1976) revised partially.

1-2. 北太平洋亜寒帯海域における海流系と水塊変質

北太平洋亜寒帯海域の南縁は亜熱帯海域に大きく開いており、先に述べたよ うに地形的な境界は見当たらない。物理的な水塊特性からの境界に関しても、海域の 東西により種々の定義があり(Reed and Laird, 1977; Roden et al., 1982)、全域に渡る 明瞭な指標は存在しない。これは三宅(1989)が指摘するように本州東方で黒潮と親潮 が直接対峙する海域から、東方に流下し混合過程が進んだ北太平洋中央部、更に東部 の海域では明らかにフロント構造に違いが生まれるからである。この混合過程により、 亜熱帯海域から亜寒帯海域へ熱が運ばれ、逆に亜寒帯海域から亜熱帯海域へと低塩分 水が供給されている。この相互供給で生まれる海洋構造が北太平洋の塩分極小層水(北 太平洋中層水: North Pacific Intermediate Water: NPIW)である。北太平洋中層水は 生成機構、分布、経年変化などの面から注目され、近年になって多くの研究が行われ ている(永田,1993; Talley et al., 1995; Yasuda et al., 1996; Watanabe and Wakatsuchi, 1998; etc.)。

西部亜寒帯領域の水塊は、上層低塩分層の下に存在する中冷水構造に特徴付 けられる(Dodimead et al., 1963)。表層塩分は東部亜寒帯海域に比べて高塩であるが、 下層の高塩分水との間には顕著な永久塩分躍層を有しているのが一般的な特性である。 この領域の西岸を流れるカムチャッカ海流と親潮は、ベーリング海環流から派生し、 千島列島沿いを南下して、日本の東岸に至り、東偏して亜寒帯海流となる(Fig.1-1-2)。 この間に千島列島を隔てたオホーツク海系水との混合、日本沿岸での黒潮系水との混 合によって、多様な水塊変質を受ける。西部亜寒帯循環内の複雑な水系・水塊・水質 の定義に関しては、大谷(1991)や河野(1991)によってまとめられている。

一方、東部のアラスカ湾に関しては、他水系との混合が無いために、水塊分けに関する細かな定義は見られない。Fig.1-1-2 に示すように亜寒帯海流から分岐北上したアラスカ海流(Alaska Current)はアラスカ湾内で希釈され、湾の陸棚斜面に沿って西偏し、Alaskan Stream と名前を変えてアリューシャン列島沿いに西進する。アラスカ海流とAlaskan Stream を分ける明確な定義は存在しないが、西経 150 度付近で呼称を使い分けている(Musgrave et al. 1992)。更に沿岸にはアラスカ沿岸流(Alaska Coastal Current)が存在し、陸水の影響を強く受け、より低塩分で流域幅は狭く、陸棚上を流れる構造の浅い海流である。アラスカ沿岸流の変動は供給される淡水の季節変化に対応しており、その一部はKodiak 島で分岐し Alaskan Stream に取り込まれる(Royer et al., 1979; Schumacher et al., 1989; Stabeno et al., 1995)。

本論文の研究海域である、北太平洋中央部において Alaskan Stream は高温 低塩の表層水を持って特徴づけられる。Alaskan Stream の北端はアリューシャン列 島の存在によって明瞭であるが、南端の亜寒帯海流との境界に付いては幾つかの定義 が存在する。 Dodimead et al., (1963)は 34.0psu の等塩分面での 3.75 の水温をも

って境界とし、大谷(1965)、Ohtani(1970)は水系の中冷水の位置する深度で4.0 ま たは3.75 の等温線が鉛直であるところとしている。しかしこれらの指標は表層に位 置する事から冬期の冷却度合いやアラスカ湾内での加熱・希釈の度合いによって年変 動が大きいと考えられ、年によっては指標が存在しない事が後の観測データから指摘 されている。

従って Favorite et al., (1976)は、深層域までも含めた Alaskan Stream の南 の境界として、Ridge Domain の存在を挙げている。この領域は表層では規定しがた いが、中層から深層にかけての断面構造に認められ、南極海域から北上する深層循環 の流れが、アリューシャン列島弧の壁にあたり、低温・高塩・富栄養・貧酸素の深層 水としてドーム状の隆起となったものである。この隆起の稜線を頂点としたドーム構 造(Uda, 1963)の南北で亜寒帯循環は西向きと東向きの循環流を作っている事から、頂 点の北側でアリューシャン列島に至るまでの海域を Alaskan Stream の領域とした。 一方頂点の南側には強い東向流が観測され、Warren and Owens (1985,1988)によって Eastward Jet と名付けられている。この Eastward Jet を含む亜寒帯海流の南限は極 前線(Polar Front)で定義され、前線以北には表層(200~300m)に 2~3 の中冷水が存 在する(Dodimead et al., 1963; Favorite et al., 1976)。この境界は安間ら(1990)の亜寒 帯フロント(Roden et al. (1982)の指摘する Subarctic Front とは異なる)に相当し、水 深 100m 以深にある 4 の等温線が鉛直的に描かれる部分となる。極前線以南、亜寒 帯境界(Subarctic Boundary)以北の海域は亜寒帯水と亜熱帯水の両方の特徴を併せ持 った混合水域と見る事ができ (Hasunuma, 1978)、移行領域 (Transitional Domain) と定義される(Favorite et al., 1976)。 亜寒帯境界は Roden et al. (1982)の定義による Subarctic Front と黒潮フロントの中間位置にあたり、塩分値 34.0psu の等塩分線が表 面付近から 400m 深付近まで鉛直的に描かれる。この境界以南では塩分極小層水が明 瞭に見られる。

以上に述べた北太平洋亜寒帯海域における各海流系の相互影響と水塊変質は、 前述の大谷(1991)によって概念的にまとめられている(Fig.1-2-1)。しかし既存の研究 では、定性的な議論が多く、海流系の流量や熱・塩分輸送量の変動と水塊変質が、ど のように関わっているのかの定量的な議論は数少ない。特に北太平洋中央部という観 測データの希少な海域では、定量的な議論は皆無である。

Fig.1-2-1. Conceptional diagram of the subarctic circulation and the local changes of water qualities in the northern North Pacific Ocean after Ohtani (1991) revised partially.

1-3. Alaskan Stream に関する既往研究の知見

Alaskan Stream の名称は北上するアラスカ海流が収斂し、流域幅は狭いも のの強い流れとして認知された事から、Bennett (1959)によって名付けられた。その 後、収集された観測データを総合して、Favorite (1967)によって Alaskan Stream に 関する最初の統合的な記述が行なわれた。引き続いて、海洋観測データを基にした流 量を見積もる努力が多くの研究者によって為されている(Ohtani, 1970; Favorite, 1974; Reed, 1984; Royer and Emery, 1987; etc)。また研究当初から Alaskan Stream は深層にまで及ぶ傾圧構造を持っている事が示唆されており(Ingraham and Favorite, 1968)、過去の調査データの深さではAlaskan Streamの流量評価として十 分でない事も実証された(Ohtani et al., 1997)。近年では北太平洋の中央部においても、 観測技術の向上に伴った深層に及ぶ観測がわずかながら行われている。Warren and Owens (1988)が流速計の値を基準深度に代入する形で 28Sv(1Sv=10⁶m³s⁻¹)を得て おり、Roden(1995)は Amchitka Pass 南の観測ラインにおいて 6000dbar 基準で 38Sv(1500dbar 以深では 9Sv)という結果を得ている。

Alaskan Streamの直接測流に関して、長期にわたる観測例はわずかである。 Niebauer et al. (1981)はアラスカ湾の陸棚斜面上において 11 ヶ月に渡る流速計の係 留観測を行っており、時期を合わせた断面観測から、Alaskan Stream は等深度線と 平行な南西向きの安定した流れであり、密度分布の変化に伴った季節変化を持ってい る事が報告された。Reed et al. (1981)は Kodiak 島沖の Alaskan Stream 強流部にお いて 6 ヶ月間に渡る係留観測を行った。その結果 Alaskan Stream は平均運動エネル ギーに比べ渦運動エネルギーが極めて小さく、黒潮や湾流に見られるような変動が少 なく安定した流れである事が示された。Reed and Schumacher (1984)は同じく Kodiak 島沖で多層の係留観測と断面観測を合わせて行い、地衡流速と実測流速との比 較を行った。彼らによると実測流速は深度と共に減少し、地衡流速とも良く対応した ことから、Alaskan Stream は厚い傾圧構造を持ち、地衡流バランスの成立した変動 の少ない安定した流れであると報告している。

北太平洋中央部で行なわれた係留観測の結果としては、先にあげた Warren and Owens (1985,1988)の1例しか存在しない。西経 175度に沿った海底にまで達す る CTD 観測とアリューシャン海溝とアリューシャン海膨(Aleutian Rise)上に設置し た係留系の結果を用いて、西向きの Alaskan Stream は海溝内の 3000m 深においても 安定した流れを持っており、南側のアリューシャン海膨(Aleutian Rise)上には東向き の強く安定した流れの Eastward Jet が存在する事を指摘した。

しかし上記の既往研究例は、いずれも単発的であり、ある年ある時期の特徴 を捉えるには十分であるが、経年変動を捉えるような調査研究は行なわれていない。 係留観測においても1年未満のデータ解析が殆どであり、実測データから季節変化と

経年変化を同時に言及した論文は無い。また西部と東部循環を結ぶ中央部海域において、西方輸送の Alaskan Stream と東方輸送の亜寒帯海流の流量バランスや連続性、 海水交換に関する知見も示されてはいない。

1-4. 本研究の目的と構成

本研究の目的は、前節までに述べた既往研究の問題点を踏まえ、9年間に渡る 同時期の断面観測結果と3年間に渡る係留系による直接測流結果を基に、北太平洋 中央部における Alaskan Stream の特徴を水温・塩分・密度・流速構造から捕らえ る事にある。更に Alaskan Stream の南に位置する亜寒帯海流との流量バランス、 流速構造と熱・物質輸送量の関わりを調べ、輸送量の季節変動・経年変動がどれほ どの規模で起こり、変動の成因となる海洋構造がどのように変化しているのかを明 らかにする事を目的とする。

解析に用いた資料は、北太平洋中央部の経度 180 度に設置された CTD による観測線データと同観測線上の Alaskan Stream 内に係留した直接測流データである。

結果の第1節ではCTDによる断面観測データから、1997年を例にあげて断 面構造と水塊分布に関する解析の章とする。観測線は亜熱帯域から移行領域、亜寒 帯海流域、Alaskan Streamの領域にまたがっている。これらの領域を分ける指標と なる水温・塩分・流向に注目し、過去の研究における水塊指標の妥当性を検証する。 更に9年間にわたるフロントと境界位置の経年変動を記述し、次章において各領域 の総輸送量を算出する基準とする。

第2節では Alaskan Stream の断面構造に関わる経年変化を把握するため、 Ridge Domain に注目し、断面の地衡流速に関わる解析、流量・輸送量評価と断面に 関する EOF(Empirical Orthogonal Function,経験的直交関数)解析の章とする。初 めに9年間の平均海洋構造に触れ、各年の偏差の断面図から Alaskan Stream と亜 寒帯海流域の流速断面のパターン分類を試みる。次に流速分布パターンと流量の関 係について議論し、各領域における熱量・塩分輸送量を算出する。算出結果より、 移行領域と亜寒帯海流に担われる東方輸送量と Alaskan Stream によって担われる 西方輸送量のバランスについて触れ、既往研究における算出輸送量との比較を行う。 次に客観解析手法である EOF 解析を用いて、流速・水温・塩分・密度の断面構造の 経年変化を統計的に抽出する。抽出した空間分布パターンから、断面構造の特徴を 記述し、パターン相互の係わり合いを議論する。

第3節では係留流速計を用いた直接測流データからの解析を示す。初めに観 測期間内の各点における流速平均ベクトルと流速変動場について記述し、観測期間 における取得データの概要を示す。次に Alaskan Streamの季節変化を把握するた め、月別に観測データを集計し、流速平均ベクトルと流速変動場を算出する。更に 平均運動エネルギーと渦運動エネルギーを求め、流れの安定性についての議論を行 う。また測流データに見られた変動の周期特性を議論するために、スペクトル解析 を行い、各測流点におけるパワースペクトルを求める。更に断面観測から得られた 流速分布パターンを実測流において検証するため、上下層間・南北間のクロススペ クトル解析を行う。

考察の第1節では、地衡流速値と直接測流値の比較を通して、Alaskan Stream の順圧流成分と傾圧流成分についての議論を行う。更に観測期間内に現れた大規模 な流速構造の変化について、低気圧性渦の存在と水塊移流に関する考察を行う。

第2節では、Alaskan Stream 流速構造の安定性について、既往研究と比較し ながら議論を進める。議論の中で、流れの不安定要因として前述の第1節で議論し た低気圧性渦による擾乱に着目し、渦の発生と消滅のメカニズムがどのように流れ の安定性に関係しているかを考察する。

第3節では、Alaskan Stream 流量の連続性について、経度180度における 流量とその他の観測ラインにおける流量を比較しながら議論を行う。前述の第1・2 節で議論した低気圧性渦に伴う亜寒帯海流からの再循環流量を推算し、アラスカ湾 内での流量計算結果と合わせて Alaskan Stream 流量の不連続性を指摘する。

第4節では、Alaskan Streamの地衡流量と直接測流結果を合わせて、絶対流 量の規模と経年変化量、季節変化量を推算する。本研究で得られた絶対流量と変化 量を既存の研究結果と比較し、合致点と相違点を議論する。

第5節では、EOF解析結果と亜寒帯海流及びAlaskan Stream 流量の経年変 化を結び付け、流量の経年変化をもたらす水塊構造の変化について議論する。議論 の中で本研究海域である北太平洋中央部において、亜寒帯循環のスピンアップ・ス ピンダウンが副循環系である西部亜寒帯循環とアラスカ環流にどのように影響して いるかを考察する。更に水温と塩分断面に見られた分布パターンから、移行領域に おける南方からの水塊移流の経年変動の影響について検討する。

第6節では、前述の結果と考察をまとめて議論し、議論の中で生まれた問題 点と課題に付いて記述する。

第5章には謝辞、第6章には引用文献を記述する。Appendix には論文中に使用する地名を付した地図を掲載する。

第2章 資料

2-1. CTD による断面観測データ

CTD 観測データは北海道大学水産学部附属練習船おしょろ丸の北洋練習航海に よって取得されたものである(北海道大学水産学部 海洋調査漁業試験要報 No.34-42)。 この航海は毎年 6 月初めに函館を出港し、北米の港に寄港した後、8 月中旬に函館に 帰港する航海で、主たる解析に用いたデータは 1990 年から 1998 年の同時期(6 月中 旬~下旬)に経度 180 度線上で北緯 37 度付近の亜熱帯海域からアリューシャン列島 に接する北緯 51 度 10 分に至る海域に設けられた観測点資料である(Table 2-1-1)。ま た補足資料として同航海の、西経 171 度 40 分に設けられた Alaskan Stream の観測 ライン(1991、1993 年)、同じく西経 165 度に設けられた観測ライン(1998 年)、180 度 における 8 月の観測ライン(1998 年)、アラスカ湾内の岸に直交する観測ライン (1994,1995,1996,1997 年)や、北緯 49 度に沿った西経 174 度から経度 180 度にかけて の観測ラインのデータ等も用いた。

CTD センサーは Neil Brown Mark 3B 型(測定精度、温度:±0.005 、塩分: ±0.006psu、圧力:±3.2dbar)で、観測深度はおしょろ丸の現有機器での最大深度 3000m までを原則として行った。180 度観測ラインの測点間隔は北緯 49 度 30 分以南 が 30 マイル(約 56km)間隔、北緯 49 度 30 分以北がおよそ 20 マイル(約 37 k m) 間隔である。Fig.2-1-1 に 180 度観測ラインの位置と係留観測点付近の詳細図を示す。

Common	Pos	sition					Year				
Number	Latitude	Longitude	1000	1001	1002	1003	100/	1005	1006	1007	1008
	(°-'N)	(°-'W)	1990	1991	1992	1993	1994	1990	1990	1997	1990
1	35-00	180-00	-	-	-	-		-	-	-	-
2	35-30	180-00	-	-	-	-		-	-	-	-
3	36-00	180-00	-	-	-				-	-	-
4	36-30	180-00	-	-	-				-	-	-
5	37-00	180-00								-	
6	37-30	180-00		-					-	-	-
7	38-00	180-00									
8	38-30	180-00									-
9	39-00	180-00									
10	39-30	180-00									-
11	40-00	180-00									
12	40-30	180-00					-				-
13	41-00	180-00									
14	41-30	180-00									-
15	42-00	180-00									
16	42-30	180-00									-
17	43-00	180-00								XBT	
18	43-30	180-00				-					-
19	44-00	180-00				-					
20	44-30	180-00				-					-
21	45-00	180-00									
22	45-30	180-00									-
23	46-00	180-00									
24	46-30	180-00									-
25	47-00	180-00									
26	47-30	180-00									
27	48-00	180-00									
28	48-30	180-00									
29	49-00	180-00									
30	49-30	180-00							-		
31	49-45	180-00									
32	50-05	179-55									
33	50-25	179-50									
34	50-50	179-46									
35	51-10	179-43									

Table 2-1-1. Station list of hydrographic observations along 180° from 1990 to 1998.

: 3000m depth observation, : 1500m depth observation, -: no data,

XBT: Expendable Bathythermograph (Temperature data only)

Fig.2-1-1. Observation line in the northern North Pacific. CTD stations and mooring stations map in the central North Pacific.

2-2. 係留系による直接測流データ

流速計を用いた係留観測は 1995 年 6 月から 1998 年 8 月に至る 3 年と2 ヶ月 に渡って得られた資料を解析に用いた。係留系の設置・回収は先述のおしょろ丸によ る航海において行った。3 年間に渡る流速計の設置位置と深度を Fig.2-2-1 に示す。ま た取得できたデータの詳細を Table 2-2-1 にまとめる。

1995 年 6 月から 1996 年 6 月にかけては、Alaskan Stream の中心位置に近い係留点(Moor1)に1 系 2 層 (1500m、3000m)の係留系を設置した。

1996 年 6 月から 1997 年 6 月にかけて、Moor1 は 2 層 (1500m、3000m)の 観測を継続し、Alaskan Stream 内の南部にあたるアリューシャン海溝底に Moor2 を 設置した。Moor2 は 4 層 (1500m、3000m、5000m、7000m)に流速計を設けたが、 1500m に設置した流速計は浸水のためデータが取得できず、7000m に設置した流速 計は設置時に流速を測るローターが欠落し、流向のみの結果となった。従って流向・ 流速の得られたのは Moor1 の 2 層(1500m、3000m)、Moor2 の 2 層(3000m、5000m) の計 4 層である。

1997 年から 1998 年にかけては更に 1 系を増やし、3 系 9 層の観測を行った。 Moor1 は 2 層(1500m、3000m)の観測を継続した。Moor2 の 3 層(1500m、3900m、 7000m)の内、7000mのデータは前年同様、設置時にローターが欠落したために、流 向のみの結果となった。Alaskan Stream 北部の強流部に設けた Moor3、4 層(1500m、 2000m、3000m、4000m)の内、1500m と 4000m は回収できず、2000m と 3000m の 2 層のデータが得られた。従って 1997 年から 1998 年にかけて流向・流速が得られ たのは Moor1 の 2 層(1500m、3000m)、Moor2 の 2 層(1500m、3900m)、Moor3 の 2 層(2000m、3000m)の計 6 層である。

データの取得間隔は1時間で、センサーの精度は流向:±5º、流速:約±2cms-1 である。

Fig.2-2-1. Schematic representation of the mooring systems and bottom topography along 180°. Vertical broken lines indicate CTD stations.

	initiation on earlent i	neusurenner	115		
	Location	Water	Meter	Model of	
System	Lat.	Depth	Depth	current	Dates
	Long.	(m)	(m)	meter	
Moor 1	50-38.4N	1020	1500	RCM-7	21 Jun 05 20 Jun 06
MOOI 1	179-47.3W	4960	3000	RCM-8	21 Juli.93-20 Juli.90
Moor 1	50-38.4N	1080	1500	RCM-8	21 Jun 06 20 Jun 07
	179-47.3W	4900	3000	RCM-8	21 Juli.90-20 Juli.97
Moor 1	50-38.6N	5029	1500	RCM-8	$0 \Lambda u = 07 8 \Lambda u = 08$
MOOI 1	179-47.8W	3038	3000	RCM-8	9 Aug.97-0 Aug.90
	50 17 AN	7220	3000	RU-1	
Moor 2	30-17.4IN		5000	RU-1	20 Jun.96-20 Jun.97
	179-31.0 W		7000*	SDCM	
Moor 2	50 16 1N		1500	RU-1	
	170.51.0W	7205	3900	RU-1	22 Jun.97-11 Aug.98
	179-31.0 W		7000*	SDCM	
Moor 3	50-55.5N	5286	2000	RCM-8	$0 \Lambda ug 07 6 \Lambda ug 08$
	179-44.9W	5280	3000	RCM-8	7 Aug. 77-0 Aug. 90

Table 2-2-1. Information on current measurements

RCM-7 and 8 : AANDERAA INSTRUMENTS, RU-1 and SDCM: Union Engineering

* indicates only direction record

第3章 結果

3-1. 北太平洋中央部における水塊構造とフロントの変動

3-1-1. 1997 年を例とした断面水塊構造

180 度線における断面 CTD 観測結果より、1997 年の断面図を基に構造的特 徴と水塊分布に付いて述べる。Fig.3-1-1 にポテンシャル水温(a)、塩分(b)、ポテンシ ャル密度(c)、3000m を基準層とした地衡流速断面(d)を示す。水温、塩分、密度の各 断面において北緯 50 度付近にピークをもつ Ridge Domain の構造が顕著に見られる。 このピークの位置より北側が Alaskan Stream の領域となり、地衡流速断面において も西向きの流速が全域に渡ってみられる。このピークより南側では東向き流が卓越し ているが、北緯 48 度以南の海域では 1500m 以深に 2cms⁻¹を超える流速値は存在しな い。

水温断面図の北緯 45 度から 46 度にかけて、上層 100~500m に渡って 4 の 等温線がほぼ鉛直的に描かれている。この位置が極前線にあたり、極前線より北側の 上層 200~400m 深には亜寒帯水の特徴である中冷水が存在する。この中冷水の水温、 分布範囲は年により様々であるが、極前線以南に存在する観測事例はない。また極前 線以北の表層 100m には 33.0psu より低塩な表層水が Alaskan Stream の範囲にまで 広く分布している。極前線の位置は地衡流断面から見ても比較的強い東向き流が得ら れ、流速のシアーゾーンとなっている。極前線より北側で Ridge Domain のピークよ り南側が亜寒帯海流の領域である。

極前線以南の上層における塩分構造は複雑になり、しばしば塩分値の逆転が 見られる。上層の 100~400m深において、亜寒帯境界の指標となる 34.0psu の等塩分 線の鉛直部分は 1997 年の観測例ではあまりはっきり見られないが、北緯 40 度から 41 度にかけて描かれている。これより南側では塩分の極小層(北太平洋中層水:NPIW) が明瞭となり、亜熱帯水の領域である事が分かる。この亜寒帯境界以北で、極前線以 南の海域が移行領域にあたる。

Fig.3-1-2 に同じく 1997 年の CTD 観測結果から得た T - Sダイヤグラムを示 す。図中に指し示すように、断面構造で述べた極前線・亜寒帯境界の位置は南北水塊 変化の不連続な面(空白帯)となって T - S ダイヤグラムに現れる。移行領域のごく 表層にも同じような不連続面(空白帯)が見られ、この位置は表層低塩分水の南限フ ロントにあたり、Roden et al. (1982)の亜寒帯フロント(Subarctic Front)、安間ら

(1990)の移行領域フロント(Transitional Front)に相当する。亜寒帯海流の水塊と Alaskan Stream 内の水塊は判別が困難になっているが、表層でより低塩傾向が見ら れるのが Alaskan Stream の水塊であり、 t=26.2~26.7 付近での中冷水の特徴が顕 著に見られるのが亜寒帯海流の水塊である。しかし Ridge Domain のピークにごく近 い点での両水塊の違いは殆ど無い。また最北端の観測点では Amchitka Pass における 潮汐混合の影響を受けて塩分躍層が明瞭でない水塊が存在する(Ohtani et al., 1997) 事からも、両水塊の境界位置は水質から判断するのではなく Ridge Domain のピーク の位置、及び流向から判断するのが妥当といえる。

Fig.3-1-1. Vertical sections of (a) potential temperature, (b) salinity, (c) potential density and (d) geostrophic velocity referred to 3000m (+: eastward flow, -: westward flow) along 180° in June 1997.

Fig.3-1-2. Temperature-Salinity diagram along 180° in June 1997.

3-1-2. フロントと境界位置の経年変動

前節で記した断面構造・T-Sダイヤグラムから判断したフロントと境界位置 の経年変動をFig.3-1-3 に示す。Ridge Domain のピークの位置は、本研究の測点間隔 から得られる空間解像度では 9 年間を通じて変化が無く、北緯 50 度 05 分の観測点が 境界位置にあたっていた。変化のない Ridge Domain ピークの位置に対し極前線は北 緯 45 度から 46 度の間でわずかな変動を見せ、平均位置が北緯 45.6 度、標準偏差が 0.4 度であった。亜寒帯境界は北緯 40 度から 42 度の間で変動を見せ、平均位置が北 緯 41.3 度、標準偏差が 0.7 度であり、より変動が大きい事がわかる。両者の動きに明 瞭な関係は見出せないが、極前線は北上傾向に有り移行領域の幅が広がる傾向にある。

高木・大西(1997)による同観測ラインのより長期間の調査結果も含め、1979 ~1998年の20年間の変動では、極前線の平均位置は北緯45.8度、標準偏差0.5度、 亜寒帯境界の平均位置は北緯41.0度、標準偏差0.9度である。1990年以前の観測調 査ではAlaskan Streamの南限位置の変動を見る事は出来ないが、南に位置する亜寒 帯境界の変動が最も大きく、北の極前線はより安定したフロントである事が分かる。 高木・大西(1997)によると、これらフロントと境界位置の変動は表層の有用魚種であ るサケ・マス類やイカ類の分布範囲とも密接に関わっており、生物種にとっても重要な 環境要因であるといえる。

次にフロントと境界の指標となる水温・塩分値が現れる 100m 水深と 500m 水深、更に Ridge Domain の広がりを判断するのに有効と思われる 2000m 水深にお けるポテンシャル水温・塩分の経時平面分布図を作成した。これにフロントと境界位 置の経年変化を重ねた図を Fig.3-1-4(a) ~ (c)に示す。100m 深(a)では亜寒帯境界の位 置が水温の等値線 9~10 の位置に対応し、極前線は水温 5~7 のフロント位置に対 応している。塩分値では亜寒帯境界が 34.0psu の等値線と対応しているのは当然であ るが、極前線とは明瞭な対応が見られない。

500m 深(b)の水温では亜寒帯境界が 4.5~5 に、極前線が 3.5~4 の等温線 と良い対応を見せている。塩分では極前線が 34.05psu の等値線と良い対応を見せるが、 亜寒帯境界には対応する等値線は見当たらない。Ridge Domain のピークの位置では 1990~1993 年、1997 年に 34.20psu 以上の塩分極大の位置にあたり、深層水湧昇の 影響が 500m 以浅の深度に達する年もある事が分かる。またピークより北側の Alaskan Stream 内では強い塩分フロントが見られる。

2000m 深(c)では極前線が 1.8 の等温線と対応しているが、塩分値では対応 が見られず、亜寒帯境界の位置は水温・塩分共に対応する等値線は無い。極前線・亜 寒帯境界は共に上層においてのみ認識されるフロント構造であり、深層域ではそれら を挟む水塊に違いは見られない。Ridge Domain のピーク位置には低温・高塩のコア が見られ、湧昇の中心位置である事が分かる。位置に変化はないが、水温値・塩分値 に年による変化が大きく現れ、湧昇現象に強弱の変化がある事が窺える。また塩分で

は高塩分水の南方への張り出しに大きな年変動が見られる。ピーク値が高い 1990 年 や 1993 年は高塩分水が大きく南にまで広がっているが、同じくピーク値の高い 1997 年は南方への高塩分水の張り出しは見られない。このような湧昇現象の経年変動は密 度構造にも影響を及ぼし、Ridge Domain の北側斜面に位置する Alaskan Stream の 流量変動にも影響する。また湧昇現象の経年変動は亜寒帯循環全体の変動にも繋がっ ていると推察される。

Fig.3-1-3. Year to year variations of the front and boundary geographical positions along 180° from 1990 to 1998. Figures in parenthesis indicate the averages and standard deviations.

Fig.3-1-4. Year-Latitude diagrams of potential temperature (left side) and salinity (right side) at each depth (a): 100m, (b): 500m, (c): 2000m, superimposing the variations of the front and boundary positions.

3-2. Ridge Domain の断面構造と流量変動

前節に述べた経度 180 度観測線において、Alaskan Stream と亜寒帯海流の 強流部にあたる Ridge Domain に注目し、北緯 48~51.2 度の範囲の 9 観測点を抜き 出して、水温・塩分・密度・地衡流速の断面構造と流量変動に関して詳細に解析する。

3-2-1. 平均海洋構造

Fig.3-2-1 に 1990~1998 年の 9 年間のポテンシャル水温(a)、塩分(b)、ポテ ンシャル密度(e)、地衡流速(f)の平均海洋構造を示す。水温・塩分に付いては 500m 以 浅の拡大図をそれぞれ(c)・(d)に示す。水温・塩分・密度の各断面において、Ridge Domain 北側の Alaskan Stream の範囲では南側の傾斜に比べて等値線の傾斜が強く なっているのが分かる。水温では表層 500m 以浅に南部から広がる中冷水の構造が平 均断面においても確認できる。塩分断面では Ridge Domain のピークの位置で、 34.0psu より低塩の等塩分線が下に凸の構造を持っている。この構造はピークの位置 を中心に低塩分水が蓄積されている為と思われ、 =27.0 以下の等密度線が下に凸の 構造を示し、密度構造にも低塩分水の影響が見られる。また北緯 50 度 50 分より北側 の1000m以浅では、等塩分線の傾斜がより急激となり、密度構造にも影響している。 地衡流速値では Ridge Domain のピークを境に北側で西向き流、南側で東向き流の領 域に明瞭に分割されている。Alaskan Stream内の流速分布は、南部の500m深から 北部の 100m 深へと徐々に流速値を増し、最大流速値は最も北側の観測点間の 100m 深で 38.4cms⁻¹である。また塩分・密度断面のより急激な傾斜の見られた北部の 1000m 以浅では、流速値も急激な増加が見られる。これに対し東向きの亜寒帯海流の領域で は、流速の最大値は Ridge Domain のピークに近い北部の 400m 深付近に見られ、流 速値は 9.6cms⁻¹である。流速分布は最大流速値を中心としたコアをなし、南側に向け て緩やかに減少する。

Fig.3-2-2 に各要素の標準偏差断面を示す。水温(a)では全域に渡って表層が最 も大きな値となっているが、これは観測時の日射によるヒーティング、また風浪によ る鉛直混合の影響が年により大きく異なった為と思われる。表面の値を除けば、Ridge Domain ピークの位置と最北点で同深度の他の点より高い値を示している。Ridge Domain ピークの位置では 500~1000m にかけて高い値のコアが存在し、深層にまで 影響が見られる。再北点では 200~300m に高い値のコアを持ち、同様に深層にまで 高い値の分布が見られる。この分布は塩分値(b)にも共通して見られるが、Ridge Domain ピークの位置にある最大値は 150m に有り、水温に高い値のコアが見られた 500~1000m 深には極大値は存在しない。密度(c)では当然のごとく水温・塩分の分布 を足し合わせたような分布結果となっている。地衡流速値(d)では最北点の表層で 17cms⁻¹ 以上の高い標準偏差を示し、2000m 深でも 2cms⁻¹ 以上の値がある。Ridge Domain ピークの位置では 500m 深を中心にした高い標準偏差の値が、Alaskan Stream と亜寒帯海流の両方にまたがり深層にまで広がっている。また Alaskan Stream の中央部では両端に比べて標準偏差の値は小さくなっている。

Fig.3-2-1. Vertical sections of average (a) potential temperature, (b) salinity, (c) potential temperature (0-500m), (d) salinity (0-500m), (e) potential density and (f) geostrophic velocity referred to 3000m (+: eastward flow, -: westward flow) along 180° from 1990 to 1998.

Fig.3-2-2. Vertical sections of standard deviations (a) potential temperature, (b) salinity, (c) potential density and (d) geostrophic velocity referred to 3000m along 180° from 1990 to 1998.

3-2-2. 地衡流速断面の経年変化

各年の 3000m 深基準の地衡流速断面(Fig.3-2-3)、及び前節に記した平均流速 断面からの偏差断面(Fig.3-2-4)を示し、各年の特徴を述べる。Ridge Domain のピーク より北側では全域に渡り各年ほぼ西向き流で占められている。この範囲を Alaskan Stream の流域幅とすると約 120km となる。1995、1996 年では南端の一部の層で、 東向きの地衡流速が得られており、ピークの位置が僅かに北偏していた可能性もある。 1993、1994 年では Ridge Domain ピークより南側に 5cms⁻¹を超える速い流速値は見 られず、偏差断面図では大きな負の領域となっている。

東向きの亜寒帯海流が広く発達した 1990~1992 年、1997 年では、流速値の 大きいコアが 2 個所に見られ、1 つは亜寒帯海流域北端の水深 500m 付近、2 つめは 北緯 49 度の表層 100m 付近に存在する。1991、1997 年は特にこの特長が顕著で、偏 差断面図においてもこの 2 点をコアとした正の偏差域が広がっている。また 1991 年、 1992 年、1997 年では、各年で流速値は異なるものの、Ridge Domain のピークを挟 んで対称的に亜寒帯海流域北端で東向流、Alaskan Stream 域南端で西向流が発達し ており、Ridge Domain ピークを中心とした反時計周りの渦が存在していた可能性が ある。

Alaskan Stream の流域内では流速分布を3パターンに分ける事が出来る。第 1パターンは平均流速構造に見られた分布で、南端の下層から北端の上層に向けて流 速値が増加して行くもので、1993~1996年の4年間がこれにあたる。第2パターン は南北両端の流速値が深層まで大きく、中央部が比較的流速値が小さい分布で、流速 の等値線は上に凸の形状となる。このパターンは1990年と1997年に見られる。第3 パターンは第2パターンと逆に等値線が下に凸の形状となる場合で、1991、1992、1998 年がこれにあたる。

Alaskan Stream の領域には係留観測点に対応した3つの測点間があり、後に 実測流と比較するために北側から North、Center, South と呼称を付けた(Fig.2-1-1 参照)。これら3測点間の流速プロファイルをFig.3-2-5に示す。1998年には同一観測 点において8月初旬にも観測を行っており、8月の結果も重ねて示す。Northの流速 値は通年的に大きく、9年間の最大流速値は1994年の100m深で55.1cms⁻¹であった。 流速値は中層から上層に向けて指数関数的に増加し、最大流速値は全ての年において 100~200mの亜表層に見られる。

Center の流速値は低層から上層まで、傾きは異なるもののほぼ直線的に増加 している。従ってこの測点間の最大流速値は 1996、1997 年を除けば 0m で得られ、9 年間の最大値は 1992 年の 26.5cms⁻¹である。

South では、大きな流速値が得られた 1990~1992 年、1997 年は最大流速値が 300~500m で得られている。これに対し他の年の 1993~1996 年、1998 年では流 速値が 10cms⁻¹に満たない値であり、1998 年 8月の結果では、この測点間全体として

Fig. 3-2-3. Vertical sections of geostrophic velocity referred to 3000m along 180° from 1990 to 1998

Fig. 3-2-4. Vertical sections of anomaly from average geostrophic velocity in each year along 180°.

東向きの流量を持っている。このような流速構造の経年変化は、流量としても大きな 変動が有る事が推察され、次節では Alaskan Streamの流量変動と観測線全体での流 量変動に付いて記述する。

Fig. 3-2-5. Vertical profiles of geostrophic velocity in the Alaskan Stream in each section in each year. Upper: North section, Middle: Center section, Lower: South section. Solid line: June, Broken line: August in 1998.

3-2-3. 地衡流量の経年変動

3000m 基準で求めた Alaskan Stream 流量の経年変化を Fig.3-2-6 に示す。9 年間の平均流量は 26.0Sv で標準偏差は 7.4Sv、最大流量が得られたのは 1997 年で 41.0Sv、最小値は翌 1998 年の 14.8Sv である。この 2 年間では 2.8 倍程の差が有り、 変動が極端に大きく現れている。3 測点間それぞれに付いて見ると、North は平均で 11.4Sv と最も大きく、標準偏差は 5.6Sv と平均値のほぼ半分の値である。Center は 平均が 9.6Sv で次いで大きく、標準偏差は 2.9Sv と平均値の 1/3 以下の最も小さい値 を示している。South は平均が 5.0Sv で標準偏差が 3.9Sv と、平均流量の割には標準 偏差が大きくなっている。

Alaskan Stream 全体の流量に対する各測点間の流量では、前節で述べた 3 つの流速分布パターンに対応した流量割合が得られている(Fig.3-2-7)。1993~1996 年 では North の流量が 50%近くから 70%以上にまで達し、South は 20%以下と極端に 割合に開きがある。1990 年と 1997 年は同じような割合を示し、North からほぼ 4:3:3 の割合で流量が得られている。1991、1992、1998 年は North よりも Center の占め る割合が大きくなり、1992 年では 50%以上を Center が占めている。1998 年 8 月の 結果を加えると、東向き流量が得られた South を除き、North と Center の合計で 10.3Sv と最小値となり、割合的には North の占める割合が 60%と高くなる。

経度180度の観測断面全体における各領域の正味の流量をTable3-2-1に示す。 移行領域では正味の流量として東向き輸送が全年で得られているが、0.4~18.3Sv と 大きな変動を伴っている。また亜寒帯境界以南の亜熱帯域でも変動は大きいが、これ は観測線の南限位置が不定である為、一概に評価できない。

亜寒帯海流域における正味の東向き流量の変動、更に移行領域の流量を加え た亜寒帯域全体とした正味の東向き流量の経年変動を Fig.3-2-8 に示す。亜寒帯海流の 9 年間の平均流量は 22.9Sv(±8.2Sv)と Alaskan Stream の 26.0Sv(±7.4Sv)よりも 1 割ほど小さくなっている。しかし 1991 年、1992 年は亜寒帯海流が上回っており、1993 年以降の変化傾向は Alaskan Stream の変化傾向と良く一致している。移行領域も含 めた場合の平均流量は 30.8Sv(±6.2Sv)となり、Alaskan Stream を上回っている。 1990、1996、1997 年はほぼ同等の値が得られており 1994 年以降は変化傾向も類似し ている。

Fig.3-2-6. Year to year variation of the total and each section volume transport (0-3000m/3000m) in the Alaskan Stream along 180° from 1990 to 1998.

Fig.3-2-7. Year to year variation of the each section volume transport ratio to the total volume transport in the Alaskan Stream along 180° from 1990 to 1998.

Waters \ Year	Alaskan Stream	Subarctic Current	Transitional Domain	Subarctic Current and Transitional Domain	Subtropical Region
1990	-33.1	30.4	2.6	33.0	8.7
1991	-24.2	32.8	0.4	33.2	6.4
1992	-23.9	29.2	7.9	37.1	5.8
1993	-26.5	15.1	18.3	33.4	10.1
1994	-26.8	19.2	11.2	30.4	-1.5
1995	-21.7	17.5	10.1	27.6	17.0
1996	-22.4	15.1	5.6	20.7	10.9
1997	-41.0	34.4	7.1	41.5	0.6
1998	-14.8	12.3	7.9	20.3	1.3

Table 3-2-1. Net volume transport (Sv, 0-3000m/3000m) in each water region along 180° from 1990 to 1998.

(+): Eastward transport, (-): Westward transport

Fig.3-2-8. Year to year variation of the net volume transport (0-3000m/3000m) in each water region along 180° from 1990 to 1998.
3-2-4. 層別流量と熱・塩分輸送量

前節においては 0~3000m の水柱全体とした流量を評価したが、本節では各 層別の流量に付いて述べる。0~3000m の水柱を季節躍層より上層の 0~100m、100m より深く冬期鉛直混合の影響が及ぶ 100~250m、また 250m より深く亜寒帯域におい て中冷水の構造が見られる範囲の 250~500m、それらより下層の 500~3000m の 4 層に分けて流量の集計を行った。各海域の流量を Table 3-2-2 に示し、水柱全体に対す る各層の割合を Table 3-2-3 に示す。

亜熱帯海域の 500~3000m ではしばしば西向きの輸送量が得られている。また 1991 年の移行領域でも 500~3000m に西向き流量が観測され、水柱全体では上層の東向き流量と相殺される形となる。亜寒帯海流域、Alaskan Stream の領域では上下層で輸送流量が反転する年は見られない。また両領域では下層流量の全体に占める割合が高くなり、各層の輸送量の割合も上層から 10%、14%、20%、56%とほぼ等しい割合で輸送量が得られている。亜寒帯海流域に移行領域を加えると上層の占める割合が高くなり、500~3000m が約 50%となる。

Fig.3-2-9 に Alaskan Stream の各層別流量の割合を示す。最下段には流量の 経年変動を示す。極端に流量の増加した 1997 年は 250m より上層の占める割合が小 さくなっており、1991 年にも同様の傾向が見られる。逆に South の測点間で殆ど流 量が得られなかった 1996 年は上層での流量割合が高くなっている。しかし割合の差 はごく僅かで、流量の大きな変動は特定の層だけで起こるものではなく、全層でほぼ 均一に起こっている現象である事が分かる。

次に Fig.3-2-10 に示すように測点間の平均熱量・平均塩分量に地衡流速値を 掛ける事により、熱輸送量・塩分輸送量を求めた。各領域全体の輸送量、及び 1Sv あ たりの輸送量を求めた結果を Table 3-2-4 にまとめる。Alaskan Stream の領域に付い ては全体と各測点間毎にも集計を行った。1Sv あたりの熱輸送量としては当然のごと く 亜熱帯域が 最も多く 31.8TW (Tera Watt=10¹² Watt)、 ついで 移行領域で 27.1TW、 亜 寒帯海流域と Alaskan Stream はほぼ等しく 13.7、13.1TW となっている。Alaskan Stream内ではNorthが最も多く14.2TW、次いでCenter、Southの順となっている。 塩分値では逆に North が最も少なく、次いで Center、South の順となっている。しか し塩分値では各領域に大きな差は見られず、35kt s⁻¹(kilo ton s⁻¹=10⁶kg s⁻¹)前後の値が 得られている。亜寒帯域は表層の低塩分層のため、輸送量も少なくなると予想された が、上記のように流量としては深層域が割合的に大きく、Ridge Domain のより高塩 分な深層水を多く輸送するため、亜熱帯域と差の見られない輸送量となっている。亜 熱帯海域と移行領域の熱輸送量の場合を除けば、1Sv の輸送量の標準偏差はごく小さ な値となっている。これは流量の経年変動に比べて、各海域における水温値、塩分値 の変化がごく小さいことに起因している。従って Fig.3-2-11、Fig.3-2-12 に示すよう に、流量と各輸送量の相関関係はほぼ相関係数 R=1 となっている。従って、図中に記

Water	Layer					Year				
Region	(m)	1990	1991	1992	1993	1994	1995	1996	1997	1998
Subtropical	0-100	2.53	2.18	1.47	2.90	1.62	3.68	2.15	0.43	1.04
Region	100-250	2.96	2.64	1.98	3.52	1.49	4.40	2.67	0.46	1.04
	250-500	3.21	2.58	2.18	3.95	1.17	5.14	3.03	0.42	1.14
	500-3000	-0.03	-0.98	0.14	-0.28	-5.75	3.77	3.06	-0.68	-2.12
	0-3000	8.67	6.42	5.76	10.09	-1.47	16.99	10.92	0.62	1.31
Transitional	0-100	0.58	0.45	1.24	2.34	1.59	1.53	1.40	1.24	1.38
Domain	100-250	0.92	0.75	1.71	3.35	2.25	2.15	1.83	1.83	1.53
	250-500	1.05	0.93	1.97	4.12	2.73	2.46	1.80	1.92	2.02
	500-3000	0.08	-1.74	3.02	8.54	4.60	3.98	0.58	2.12	2.65
	0-3000	2.63	0.40	7.93	18.35	11.17	10.12	5.61	7.11	7.95
Subarctic	0-100	2.92	3.02	2.71	1.70	2.50	1.93	1.39	2.46	1.28
Current	100-250	4.18	4.54	4.14	2.29	3.37	2.77	2.12	4.02	1.52
	250-500	5.57	6.36	5.98	2.91	3.99	3.50	2.89	6.49	2.46
	500-3000	17.74	18.90	16.33	8.24	9.33	9.28	8.70	21.39	6.69
	0-3000	30.40	32.82	29.15	15.14	19.20	17.48	15.10	34.36	12.35
Transitional	0-100	3.50	3.47	3.95	4.04	4.09	3.46	2.79	3.70	2.67
Domain	100-250	5.09	5.30	5.84	5.64	5.63	4.92	3.95	5.84	3.05
and	250-500	6.62	7.29	7.95	7.03	6.72	5.96	4.69	8.41	4.48
Subarctic	500-3000	17.82	17.16	19.34	16.77	13.93	13.26	9.28	23.51	9.35
Current	0-3000	33.03	33.22	37.08	33.49	30.36	27.61	20.71	41.47	20.30
Alaskan	0-100	-3.06	-1.66	-2.13	-2.84	- 3.01	-2.10	-2.63	-2.75	-1.55
Stream	100-250	-4.65	-3.09	-3.42	-3.87	-4.23	-2.97	-3.90	-4.60	-1.97
	250-500	-6.34	-4.73	-5.01	-4.90	-5.26	-3.95	-4.72	-7.30	-3.12
	500-3000	-19.07	-14.68	-13.35	-14.90	-14.35	-12.63	-11.15	-26.33	-7.61
	0-3000	-33.11	-24.16	-23.91	-26.51	-26.85	-21.65	-22.40	-40.98	-14.79

Table 3-2-2. Net volume transport (Sv) referred to 3000m in each layer and each water region along 180° from 1990 to 1998.

(+): Eastward transport, (-): Westward transport

Table 3-2-3. Net volume transport ratio (%) to 0-3000m/3000m in each layer and each water region along 180° from 1990 to 1998.

Water	Layer					Year				
Region	(m)	1990	1991	1992	1993	1994	1995	1996	1997	1998
Subtropical	0-100	29.16	34.03	25.49	28.77	-109.97	21.67	19.68	68.95	79.85
Region	100-250	34.12	41.16	34.35	34.90	-101.29	25.91	24.48	73.43	79.21
•	250-500	37.02	40.13	37.80	39.13	-79.81	30.22	27.78	67.16	87.57
	500-3000	-0.31	-15.32	2.35	-2.79	391.06	22.20	28.06	-109.54	-162.16
	0-3000	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Transitional	0-100	22.15	112.94	15.58	12.74	14.20	15.09	24.88	17.48	17.37
Domain	100-250	34.83	188.32	21.52	18.25	20.19	21.27	32.63	25.68	19.24
	250-500	39.87	233.73	24.84	22.48	24.41	24.34	32.11	27.01	25.41
	500-3000	3.15	-435.00	38.06	46.53	41.20	39.31	10.38	29.83	33.34
	0-3000	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Subarctic	0-100	9.59	9.20	9.31	11.26	13.04	11.04	9.22	7.15	10.40
Current	100-250	13.74	13.84	14.19	15.14	17.56	15.85	14.06	11.69	12.34
	250-500	18.33	19.37	20.50	19.21	20.80	20.01	19.12	18.90	19.93
	500-3000	58.35	57.59	56.00	54.39	48.60	53.10	57.60	62.27	54.21
	0-3000	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Transitional	0-100	10.59	10.45	10.65	12.07	13.47	12.52	13.46	8.92	13.13
Domain	100-250	15.42	15.94	15.76	16.85	18.53	17.84	19.09	14.09	15.04
and	250-500	20.04	21.95	21.43	21.00	22.13	21.60	22.64	20.29	22.08
Subarctic	500-3000	53.95	51.66	52.17	50.09	45.88	48.04	44.81	56.70	46.04
Current	0-3000	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Alaskan	0-100	9.23	6.88	8.91	10.70	11.20	9.69	11.73	6.71	10.51
Stream	100-250	14.03	12.80	14.30	14.60	15.74	13.72	17.42	11.21	13.30
	250-500	19.16	19.56	20.94	18.50	19.61	18.24	21.06	17.82	21.08
	500-3000	57.58	60.75	55.85	56.20	53.46	58.35	49.79	64.25	51.46
	0-3000	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Fig.3-2-9. Variation of the volume transport ratio to 0-3000m/3000m in each layer in the Alaskan Stream along 180° from 1990 to 1998. (a): 0-100m, (b): 100-250m, (c): 250-500m, (d): 500-3000m and (e): Variation of the total volume transport (0-3000m/3000m) in the Alaskan Stream.

Fig.3-2-10. Formulas and Schema of the volume, heat and salt transport calculation from the geostrophic velocity and observation data.

Table 3-2-4. Volume, heat and salt transports in each water region and each section in the Alaskan Stream along 180° from 1990 to 1998.

		Subtropica	al Region					Transition	al Domain		
Year	Vol.(Sv)	Heat(TW)	(TW Sv ⁻¹)	Salt(kt s ⁻¹)	(kt s ⁻¹ Sv ⁻¹)	Year	Vol.(Sv)	Heat(TW)	(TW Sv ⁻¹)	Salt(kt s ⁻¹)	(kt s ⁻¹ Sv ⁻¹)
1990	8.67	345.51	39.84	302.37	34.87	1990	2.63	81.13	30.82	91.04	34.58
1991	6.42	250.13	38.97	220.38	34.34	1991	0.40	33.42	83.59	15.87	39.69
1992	5.76	228.83	39.69	201.21	34.90	1992	7.93	177.19	22.35	276.57	34.89
1993	10.09	448.74	44.49	352.20	34.92	1993	18.28	352.13	19.27	638.58	34.94
1994	-1.47	115.58	-78.55	-53.58	36.42	1994	11.17	253.64	22.71	390.03	34.92
1995	16.99	668.19	39.32	596.17	35.08	1995	10.12	212.89	21.03	353.22	34.90
1996	10.92	344.21	31.52	382.52	35.02	1996	-1.26	0.85	-0.68	-45.13	35.83
1997	0.62	36.97	59.20	21.24	34.02	1997	7.11	176.66	24.84	247.86	34.85
1998	1.31	93.30	71.39	44.03	33.69	1998	7.95	156.79	19.72	276.29	34.76
Ave.	6.59	281.27	31.76	229.61	34.81	Ave.	7.15	160.52	27.07	249.37	35.48
STD	5.84	197.49	43.15	205.25	0.78	STD	6.39	109.91	22.85	209.12	1.61
								-			
(<u></u>		Subarctic	Current R	egion			Subarctic	Current ar	d Transitio	onal Doman	
Year	Vol.(Sv)	Heat(TW)	(TW Sv ⁻¹)	Salt(kt s ⁻¹)	(kt s ⁻ 'Sv ⁻¹)	Year	Vol.(Sv)	Heat(TW)	(TW Sv ⁻¹)	Salt(kt s ⁻¹)	(kt s 'Sv')
1990	30.40	397.54	13.08	1064.59	35.02	1990	33.03	478.67	14.49	1155.63	34.99
1991	32.82	457.48	13.94	1147.99	34.98	1991	33.22	490.90	14.78	1163.86	35.04
1992	29.15	396.80	13.61	1020.27	35.00	1992	37.08	573.99	15.48	1296.84	34.98
1993	15.13	197.83	13.08	529.16	34.98	1993	33.40	549.97	16.46	1167.74	34.96
1994	19.20	278.63	14.51	669.72	34.89	1994	30.36	532.27	17.53	1059.75	34.90
1995	17.48	241.08	13.79	610.09	34.90	1995	27.61	453.97	16.44	963.31	34.90
1996	21.97	336.45	15.31	/6/./1	34.94	1996	20.71	337.30	16.28	722.58	34.89
1997	34.36	452.30	13.16	1203.94	35.04	1997	41.47	628.96	15.17	1451.80	35.01
1998	12.35	161.17	13.05	431.48	34.94	1998	20.30	317.95	15.66	/07.76	34.87
Ave.	23.65	324.37	13.73	827.22	34.97	Ave.	30.80	484.89	15.81	1076.59	34.95
51D	7.48	109.83	0.78	287.09	0.05	51D	6.20	103.59	0.96	246.46	0.06
		Alaskan S	tream Regi	ion				Alaskan S	tream Nor	th Section	
Vear	Vol (Sv)	Alaskan S	tream Regi	ion Salt(kt s ⁻¹)	(kt s ⁻¹ Sy ⁻¹)	Voor	Val (Sv)	Alaskan S	tream Nor	th Section	$(kt e^{-1}Sv^{-1})$
Year	Vol.(Sv)	Alaskan S Heat(TW) 430.72	tream Regi (TW Sv ⁻¹) 13.01	ion Salt(kt s ⁻¹) 1159.06	<u>(kt s⁻¹Sv⁻¹)</u> 35.01	Year	Vol.(Sv)	Alaskan S Heat(TW) 203.40	tream Nor (TW Sv ⁻¹) 1353	th Section Salt(kt s ⁻¹)	(kt s ⁻¹ Sv ⁻¹) 34 93
Year 1990	Vol.(Sv) 33.11 24.16	Alaskan S Heat(TW) 430.72 293.87	<u>tream Regi</u> (TW Sv ⁻¹) 13.01 12.16	ion <u>Salt(kt s⁻¹)</u> 1159.06 847 31	<u>(kt s⁻¹Sv⁻¹)</u> 35.01 35.07	Year 1990	Vol.(Sv) 15.03 5.18	Alaskan S Heat(TW) 203.40 65.87	<u>tream Nor</u> (TW Sv ⁻¹) 13.53 12.71	th Section Salt(kt s ⁻¹) 525.19 181.41	<u>(kt s⁻¹Sv⁻¹)</u> 34.93 35.00
Year 1990 1991 1992	Vol.(Sv) 33.11 24.16 23.91	Alaskan S Heat(TW) 430.72 293.87 307.33	<u>tream Regi (TW Sv⁻¹)</u> 13.01 12.16 12.86	ion <u>Salt(kt s⁻¹)</u> 1159.06 847.31 836.78	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00	Year 1990 1991 1992	Vol.(Sv) 15.03 5.18 3.08	Alaskan S Heat(TW) 203.40 65.87 50.27	<u>tream Nor</u> (TW Sv ⁻¹) 13.53 12.71 16.34	<u>th Section</u> Salt(kt s ⁻¹) 525.19 181.41 106.09	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48
Year 1990 1991 1992 1993	Vol.(Sv) 33.11 24.16 23.91 26.51	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91	<u>tream Regi</u> (TW Sv ⁻¹) 13.01 12.16 12.86 13.24	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95	<u>(kt s⁻¹Sv⁻¹)</u> 35.01 35.07 35.00 34.97	Year 1990 1991 1992 1993	Vol.(Sv) 15.03 5.18 3.08 12.87	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23	<u>th Section</u> Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37	<u>(kt s⁻¹Sv⁻¹)</u> 34.93 35.00 34.48 34.83
Year 1990 1991 1992 1993 1994	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00	<u>(kt s⁻¹Sv⁻¹)</u> 35.01 35.07 35.00 34.97 34.90	Year 1990 1991 1992 1993 1994	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18	<u>th Section</u> Salt(<u>kt s⁻¹)</u> 525.19 181.41 106.09 448.37 552.71	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.83
Year 1990 1991 1992 1993 1994 1995	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82	ion <u>Salt(kt s⁻¹)</u> 1159.06 847.31 836.78 926.95 937.00 756.73	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95	Year 1990 1991 1992 1993 1994 1995	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91
Year 1990 1991 1992 1993 1994 1995 1996	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23	ion <u>Salt(kt s⁻¹)</u> 1159.06 847.31 836.78 926.95 937.00 756.73 780.73	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85	Year 1990 1991 1992 1993 1994 1995 1996	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71
Year 1990 1991 1992 1993 1994 1995 1996 1997	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04	Year 1990 1991 1992 1993 1994 1995 1996 1997	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 21.65 22.40 40.98 14.79	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04 34.91	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave.	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 21.65 22.40 40.98 14.79 26.04	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 35.04 34.85 35.04 34.91	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave.	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.81
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.02 13.22 13.13 0.57	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 35.04 34.85 35.04 34.91 34.97 0.07	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.81 0.16
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 21.65 22.40 40.98 14.79 26.04 7.43	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 35.04 34.91 34.97 0.07	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.81 0.16
Year 1990 1991 1992 1993 1994 1995 1995 1995 1997 1998 Ave. STD	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 21.65 22.40 40.98 14.79 26.04 7.43	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04 34.91 34.97 0.07	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.81 0.16
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv)	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW)	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹)	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹)	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹)	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW)	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹)	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹)	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.93 34.71 0.16 (kt s ⁻¹ Sv ⁻¹)
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04 <u>34.91</u> <u>34.97</u> 0.07 (kt s ⁻¹ Sv ⁻¹) <u>35.02</u>	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.93 34.71 (kt s ⁻¹ Sv ⁻¹) 35.12
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1991	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 10.55	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 201.62	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04 <u>34.91</u> <u>34.97</u> 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 0.62	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 25.52	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.91 34.71 34.93 34.71 34.93 34.71 34.93 (kt s ⁻¹ Sv ⁻¹) 35.12 35.06 55.62
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.23 12.52	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 240.27	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 34.97 34.99 34.95 34.85 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 2.77	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.81 0.16 (kt s ⁻¹ Sv ⁻¹) 35.12 35.06 35.18
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1004	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.52 9.87 9.44	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.02	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 12.44 12.70	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 205.64	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 35.04 34.85 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.08 25.02	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.52	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 22.27	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.81 0.16 (kt s ⁻¹ Sv ⁻¹) 35.12 35.06 35.18 35.13 24.00
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.52 9.87 8.44 4.42	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.93	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 12.44 12.79	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 295.64 42.20	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.08 35.02 35.02 35.12 35.01	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.53 0.92	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 32.17	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95 12.70	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31 88.66 20.22	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.93 34.71 34.93 35.12 35.06 35.12 35.06 35.18 35.13 34.99 25.40
Year 1990 1991 1992 1993 1994 1995 1996 Aye. STD Year 1990 1991 1992 1993 1994 1995	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.52 9.87 8.44 4.10 11.24	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.93 47.67	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.02 13.02 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 12.44 12.79 11.62	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 295.64 143.96 205.90	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.08 35.02 35.	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.53 0.86 0.22	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 32.17 10.36 2.07	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95 12.70 12.06	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31 88.66 30.22 7.04	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.93 34.71 34.93 35.12 35.16 35.12 35.16 35.18 35.13 34.99 35.19
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.52 9.87 8.44 4.10 11.34 12.62	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.93 47.67 151.34	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 12.44 12.79 11.62 13.34	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 295.64 143.96 396.80 324.00	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 35.00 34.97 34.90 34.95 34.85 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.08 35.02 35.09 34.98	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.53 0.86 0.23 0.86 0.23 11.40	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 32.17 10.36	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95 12.70 12.06 13.05	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31 88.66 30.22 7.94 404.02	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.83 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.93 34.71 34.93 35.12 35.16 35.12 35.16 35.18 35.13 34.99 35.19 35.19 35.19
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996 1997	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.23 12.23 12.23 12.23 12.52 9.87 8.44 4.10 11.34 12.00 6.42	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.93 47.67 151.34 153.02	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 11.62 13.34 12.75	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 295.64 143.96 396.80 421.09	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 34.97 34.90 34.95 34.85 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.08 35.02 35.09 34.98 35.09 34.98 35.08	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996 1997	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.53 0.86 0.23 11.40 0.23 11.40	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 32.17 10.36 2.97 132.10 26.05	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.23 14.23 14.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95 12.70 12.06 13.05 11.58	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31 88.66 30.22 7.94 401.02 26.60	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.81 34.71 34.93 34.71 34.93 34.71 34.81 0.16 (kt s ⁻¹ Sv ⁻¹) 35.12 35.06 35.18 35.13 34.99 35.19 34.95 35.19 34.95 35.10
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996 1997 1998	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.24 1.252 9.87 8.44 4.10 11.34 12.00 6.43 0.454 0.454 0.454 0.454 0.552 0.	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.93 47.67 151.34 153.02 82.18	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.22 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 11.73 12.90 12.44 12.79 11.62 13.34 12.75 12.77	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 295.64 143.96 396.80 421.09 225.12 226.67	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 34.97 34.97 34.95 34.85 35.04 34.95 35.04 34.91 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.08 35.02 35.09 34.98 35.08 35.08 35.08	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996 1997 1998	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.53 0.86 0.23 11.40 3.04 5.55	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 32.17 10.36 2.97 132.10 36.98	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.23 14.23 14.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95 12.70 12.06 13.05 11.58 12.16	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31 88.66 30.22 7.94 401.02 7.94	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.81 0.16 (kt s ⁻¹ Sv ⁻¹) 35.12 35.06 35.18 35.13 34.99 35.19 34.95 35.16 35.06
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD	Vol.(Sv) 33.11 24.16 23.91 26.51 26.85 21.65 22.40 40.98 14.79 26.04 7.43 Vol.(Sv) 9.52 12.23 12.52 9.87 8.44 4.10 11.34 12.00 6.43 9.61 9.87	Alaskan S Heat(TW) 430.72 293.87 307.33 350.91 365.17 277.53 318.73 533.73 195.64 341.51 96.75 Alaskan S Heat(TW) 123.69 143.53 161.46 122.77 107.93 47.67 151.34 153.02 82.18 121.51	tream Regi (TW Sv ⁻¹) 13.01 12.16 12.86 13.24 13.60 12.82 14.23 13.02 13.22 13.13 0.57 tream Cen (TW Sv ⁻¹) 13.00 11.73 12.90 11.73 12.90 12.44 12.79 11.62 13.34 12.75 12.77 12.59	ion Salt(kt s ⁻¹) 1159.06 847.31 836.78 926.95 937.00 756.73 780.73 1435.90 516.47 910.77 260.76 ter Section Salt(kt s ⁻¹) 333.30 429.50 438.40 346.27 295.64 143.96 396.80 421.09 225.12 336.67 100.67	(kt s ⁻¹ Sv ⁻¹) 35.01 35.07 34.97 34.97 34.95 34.85 35.04 34.95 34.85 35.04 34.97 0.07 (kt s ⁻¹ Sv ⁻¹) 35.02 35.12 35.01 35.02 35.02 35.02 35.02 35.02 35.02 35.09 34.98 35.08 34.98 35.08 34.99 35.04	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. STD 1990 1991 1992 1993 1994 1995 1996 1997 1998 Ave. CTD	Vol.(Sv) 15.03 5.18 3.08 12.87 15.87 16.69 10.83 17.57 5.32 11.38 5.55 Vol.(Sv) 8.56 6.74 8.31 3.77 2.53 0.86 0.23 11.40 3.04 5.05	Alaskan S Heat(TW) 203.40 65.87 50.27 183.12 225.06 219.50 164.42 248.61 76.48 159.64 75.78 Alaskan S Heat(TW) 103.63 84.47 95.59 45.02 32.17 10.36 2.97 132.10 36.98 60.37	tream Nor (TW Sv ⁻¹) 13.53 12.71 16.34 14.23 14.18 13.15 15.18 14.15 14.37 14.20 1.08 tream Sou (TW Sv ⁻¹) 12.11 12.53 11.51 11.95 12.70 12.06 13.05 11.58 12.16 12.18	th Section Salt(kt s ⁻¹) 525.19 181.41 106.09 448.37 552.71 582.56 375.99 613.80 184.70 396.76 194.09 th Section Salt(kt s ⁻¹) 300.57 236.40 292.29 132.31 88.66 30.22 7.94 401.02 106.66 177.34 405.65 195.65 195.65 195.75 19	(kt s ⁻¹ Sv ⁻¹) 34.93 35.00 34.48 34.82 34.91 34.71 34.93 34.71 34.93 34.71 34.81 0.16 (kt s ⁻¹ Sv ⁻¹) 35.12 35.06 35.18 35.13 34.99 35.19 34.95 35.16 35.09 35.09 0.000

Fig.3-2-11. Correlation between the heat transport (left side), salt transport (right side) and volume transport in each water region, upper: Subarctic Current, middle: Subarctic Current and Transitional Domain, lower: Alaskan Stream.

Fig.3-2-12. Same as Fig.3-2-11 except for each section in the Alaskan Stream, upper: North section, middle: Center section, lower: South section.

した相関関係式を用いれば流量から容易に熱・塩分の輸送量を推定することが可能で ある。

熱輸送量・塩分輸送量の把握は、地球規模での海洋大循環を考える上で重要 な評価値となりうる。特に北太平洋の亜寒帯循環については、実測データの不足から 推定規模さえも未確定な部分が多い。深澤ら(1993)は Levitus 気候値データから、太 平洋全域に Inverse Method を適用し、流量と熱輸送量を見積もった。彼らによると 北緯 40~50 度の範囲で西経 170 度線上を東進する全層の熱輸送量は 346.62TW(地 衡流量 2.65Sv) 西経 170 度~アメリカ西海岸に至る範囲で、北緯 50 度線上を北上す る熱輸送量は 140.92TW(地衡流量 6.80Sv)と求めた。海域のずれと季節変化も考え れば一概に比較する事は出来ないが、東進熱量は本研究での移行領域と亜寒帯海流域 の熱輸送量、北上熱量はアラスカ循環を経て Alaskan Stream に集約されると考えれ ば比較が可能である(Fig.3-2-13)。本研究の結果において Alaskan Stream は 9 年間の 平均で 341.5TW の熱量を西方へ輸送しており、移行領域と亜寒帯海流の合計の熱輸送 量は平均で 484.9TW である(Table 3-2-4)。本研究の値はいずれも深澤ら(1993)の結果 より大きな値となっているが、標準偏差がいずれの場合も 100TW 程の大きさを持っ ており、偏差を考慮に入れれば十分比較しうる値となる。しかし地衡流量の値は大き く異なっており、1Sv 当りの輸送量には大きな開きが存在する。

北太平洋亜熱帯海域では、Bryden et al. (1991)が北緯 24 度線上を北上する熱 輸送量として 0.76PW(Peta Watt=10¹⁵Watt)、東シナ海の黒潮域で 2.14PW の輸送量 を算出している。WOCE(World Ocean Circulation Experiment)観測では、深澤ら (1995)が北緯 30 度線上を北上する熱輸送量として 1500db 基準で 1~1.5PW、塩分輸 送量として約 100kt s⁻¹を算出している。また GOOS(Global Ocean Observation System)では、Ichikawa et al. (1999)が四国足摺岬沖の ASUKA ラインで実測流も踏 まえた黒潮の絶対地衡流量として 63Sv(±13Sv)、熱輸送量として 3.50PW(±0.79PW) の黒潮熱輸送量を得ている。熱輸送量に関しては、本研究の亜寒帯域に比べて 1 桁近 い開きを持って亜熱帯域が大きくなっているが、逆に塩分輸送に関しては深層高塩分 水の輸送が大きく寄与し本研究の結果が 1 桁近く上回っている。流量では黒潮の絶対 流量に対して Alaskan Stream は平均で約 4 割に相当する地衡流量を有していること が明らかとなった。

Fig.3-2-13. Comparison of heat and volume transport in the east-northern North Pacific with Fukasawa et al. (1993)

3-2-5. 断面構造の時空間変動解析

断面構造の時空間変動を客観的に調べるため、EOF(Empirical Orthogonal Function,経験的直交関数)解析を行った。解析は北緯 48 度以北の 9CTD 観測点(8 観測点間)における 11 層(0,100,200,300,500,700,1000,1500,2000,2500,3000m)、99 個(88 個)の空間変数に対して、時間変化は9年分のデータである。解析は地衡流速、 ポテンシャル水温、塩分、ポテンシャル密度の4項目に付いて、平均からの偏差を標 準偏差によって正規化し、相関法(Correlation Matrix Method)によって行った。各項 目における第4モードまでの空間分布と時間スコアをFig.3-2-14からFig.3-2-17に示 す。99 個(88 個)の空間変動と9 個の時間変動において、Overland and Preisendorfer (1982)による、各モードの95%信頼限界は、第1モードが12.9%(13.5%)、第2モード が12.4%(12.6%)、第3モードが11.7%(11.8%)、第4モードが10.9%(11.0%)となって いる。

地衡流速断面の結果(Fig.3-2-14)では、第1モードとして Ridge Domain のピ ークの位置で正負が反転し、北緯 48.5 度以南でも負の領域となる空間分布が得られた。 この変動は全変動の 37.8%を占めた。この空間分布から分かることは、東向きを正、 西向きを負として流速値を取っているため、Ridge Domain のピークを中心とした、 東向きの亜寒帯海流、西向きの Alaskan Stream が同時に流速を強弱変化させている 事である。また北緯 49 度から 50 度にかけての亜寒帯海流が強まると、49 度以南の海 域では逆に東向き流速が弱まる傾向に有ることを示している。

時間スコアでは 1990 年から 1992 年が正の変動で、1993 年から 1996 年が負 の変動、1997 年は突出した正のピークとなり、1998 年はまた負に転じている。第 2 モードも同じく Ridge Domain のピークの位置に正負の境界を持ち、変動への寄与率 は 17.9%である。Ridge Domain のピーク以南が正で、北緯 48.5 度以南はより高い値 となっている。ピーク以北の領域は South、North の測点間が負で、Center は正とな って、同じ Alaskan Stream の領域内で逆の空間分布を持っている。時間スコアでは 経過と共に偏差が増大する傾向が見られ、1997 年、1998 年は大きな正の偏差となっ ている。第 3、第 4 モードはそれぞれ 15.6%、13.6%の寄与率であり、空間分布では緯 度ごとの帯状に正負が反転する特徴を持っている。

水温断面の結果(Fig.3-2-15)では、第1モードとして 500m 以深の下層で正、 亜寒帯海域の特長である中冷水が存在する上層 200~500m に負のピークを持つ空間 分布となっており、寄与率は 38.3%であった。時間スコアでは経過と共に偏差が増大 する傾向を持ち、1995年に正に転じ、1998年は特に大きな正の偏差を持っている。 第2モードは Ridge Domain ピークの下層に負の分布の中心が有り、Alaskan Stream 及び亜寒帯海流強流部の 1000m 以深の下層に負の分布が広がっている。それら負の分 布域の上層と北緯 49度以南では正の分布域となっている。時間スコアでは 1991年と 1997年に正のピークを迎え、1994年は負のピークで6年周期の変動が読み取れる。

第3モードの寄与率は16.4%で、95%の信頼限界を満たしているが、第4モードは8.1% で満たしていない。両者の空間変動、時間変動共に解釈は困難であった。

塩分断面の結果(Fig.3-2-16)では、第1モードでは全域の 500m 以深に正の偏 差、500m 以浅で負の偏差となる空間分布が得られ、寄与率は 35.8%である。正領域 の最大値は Ridge Domain ピークの 2000 ~ 2500m に見られ、ピークの緯度を中心に 緩やかなドーム構造に正の領域が広がっている。時間スコアでは 1990 年が最大で、 1997 年にも正のピークを持つ。1992 年、1994 年は負のピークで、1991 年から 1996 年にかけては変化が大きい。第2 モードは寄与率 26.8% で、時間スコアでは 1993 年 に大きな正のピークを示し、それを除けば目立った偏差は存在しない。空間分布にお いて、正偏差の中心は亜寒帯海流域の上層に有り、Alaskan Stream の領域にまで広 がっている。第3 モードの寄与率は 14.8%で、95%の信頼限界を満たしているが、第 4 モードは 7.8%で満たしていない。両者の空間変動、時間変動共に解釈は困難であっ た。

密度断面の結果(Fig.3-2-17)では、第1モードの寄与率が33.0%で、水温第2 モードと塩分第1モードの双方の影響が現れている。空間分布ではRidge Domain ピ ークの下層に正の分布の中心が有り、Alaskan Stream 及び亜寒帯海流域の深層域に 正の分布がドーム状に広がっている、この分布パターンは水温第2モードの負の分布 域に塩分第1モードの正の分布域を重ねたような分布で、時間スコアについても両モ ードの重ねあわせになっている。第2モードは寄与率27.6%で、100m 以浅のごく表 層に負の領域が有り、100m 以深はほぼ正の領域となる空間分布を示す。時間スコア では1993年が正のピークとなっており、一部変動が合わない年も有るが塩分の第2 モードと同様の変動を示している。空間分布における正のコアとなっている部分も塩 分の第2モードと似ており、この塩分分布が密度に現れたものと思われる。また第3 モード(寄与率17.0%)と第4モード(寄与率8.5%)も塩分の第3モードと第4モードに 時空間分布とも酷似した対応を示している。

以上に記述した結果について、有意となった高次のモードにおける相互の関係と 流量の変動に関する議論を 4-5 節で行う。

Fig.3-2-14. Spatial distributions (left side) and time amplitudes (right side) of the geostrophic velocity EOF analysis, (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode.

Fig.3-2-15. Same as Fig.3-2-14 except for potential temperature.

Fig.3-2-16. Same as Fig.3-2-14 except for salinity.

Fig.3-2-17. Same as Fig.3-2-14 except for potential density.

3-3. Alaskan Stream の直接測流データ解析

3-3-1. 観測期間平均と変動

直接測流から得られた1時間ごとの流速計データは24時間で平均し、日平均のデータセットを作成した。Table 3-3-1にデータ取得期間ごとの東向き流速成分(u)、 北向き流速成分(v)の平均値と標準偏差、ベクトル平均(\overline{V})、流速変動場の主軸成分(F_{Ma})、従軸成分(F_{Mi})、及び流速変動場の主軸方向(\mathbf{q}_{Ma})を示す。ここで流速変動場(F_{u}, F_{v})は流速成分(u, v)の平均値からの偏差(u', v')を用いて、

$$\begin{pmatrix} F_{u} \\ F_{v} \end{pmatrix} = \begin{pmatrix} \cos \boldsymbol{q}_{Ma} & \sin \boldsymbol{q}_{Ma} \\ -\sin \boldsymbol{q}_{Ma} & \cos \boldsymbol{q}_{Ma} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}$$
(3.3.1a)

$$F_{u} = u'\cos\boldsymbol{q}_{Ma} + v'\sin\boldsymbol{q}_{Ma}$$

$$F_{v} = -u'\sin\boldsymbol{q}_{Ma} + v'\cos\boldsymbol{q}_{Ma}$$
(3.3.1b)

と表わされ、流速変動場(F_u , F_v)の内、絶対値の大きい方が流速変動場の主軸成分(F_{Ma})、 小さい方が従軸成分(F_{Mi})となる。また、流速変動場の主軸方向(\boldsymbol{q}_{Ma})は、偏差の2乗 平均($\overline{u'^2}$, $\overline{v'^2}$)と偏差の積の平均($\overline{u'v'}$)を用いて、

$$\boldsymbol{q}_{Ma} = \frac{1}{2} \tan^{-1} \left(\frac{2 \cdot \overline{u'v'}}{\overline{u'^2 - v'^2}} \right)$$
(3.3.2)

と求める事ができる。ベクトル平均(\overline{V})、流速変動場の結果を Fig.3-3-1 に示す。1997 ~1998年の結果(Fig.3-3-1(c))では、前2年に比べて変動場の楕円が大きく、特に Moor2 の 1500m ではベクトル平均を上回っている。変動場の主軸は、東西方向に延びている 場合が多く見られるが、楕円が極端に偏平するデータは見られない。ベクトル平均で は西向きが卓越している。特に北部、中央部の上層では 10cms⁻¹ に近い、強く安定し た西向流となっている。しかし南部の Moor2 では変動が大きく、下層ではベクトル平 均で東向流となっている。

次に日平均データのスティックダイヤグラムを Fig.3-3-2 に示す。全体を通し て東西流が卓越しているため、西向きを上に表記した。7000m のデータに付いては、 資料でも述べた通り流速値が得られていないので 2cms⁻¹の値を充てて流向を示した。

1995~1996年の結果(Fig.3-3-2(a))では、1500m、3000mの両層とも安定した 西向き成分の強い流れが得られている。3000m深のデータは1500m深のデータより 幾分南よりに偏向している傾向がある。1年間の平均値で比べると1500mが9.5cms-1、

270°、3000m が 3.2cms⁻¹、250° と流速値はほぼ 3 分の 1、流向は 20° 南に偏向している。

1996~1997 年の結果(Fig.3-3-2(b))では、Moor1 は前年同様西向きの安定し た流れとなっている。流速値は 1996 年冬期から徐々に増加傾向を示しており、年平 均で見ると 1500m で 11.7cms⁻¹、259°、3000m で 3.7cms⁻¹、240° と両層で前年に比べ て流速値を増している。また両層で南向きに 10° 程偏向している。1996~1997 年の Moor2 では Moor1 と同深度の 3000m で流速値は比較的小さく、しばしば東向き成分 を持つ期間が見られる。5000m 並びに 7000m では 1 年間を通じて東向き流が卓越し ており、5000m の年平均では 1.1cms⁻¹、97° とほぼ真東を向いた流れとなっている。 また Moor2 の 3 層は同様の変動が見られ、3000m で西向きが弱まり東向き成分が見 られた期間(1996 年 9~12 月等)は 5000m、7000m では安定した東向き流となって いる。また 3000m で西向きが強くなった 1997 年 4~5 月では 5000m の東向き成分は 弱まり、西向き成分が見られる。同時に 7000m でも西向きの流れが記録されている。

1997~1998年の結果(Fig.3-3-2(c))では、Moor1においては過去2年間同様、 西向き流が1年を通じて観測されている。しかし過去2年間に比べ、流向は安定性を 欠き、南北方向への振れ回りや東向き成分も時として見られる。また 1500m の流速値 は大きく変化し1997年冬期にかけて大きくなった流速値は、1998年2月に極端に減 少し、その後振れ回りも大きくなっている。3000m では 1500m 程極端ではないが、 1998年2月から3月にかけて流速値が減少し、7月には東向き流も多く観測されてい る。年平均値としては 1500m で 9.5cms⁻¹、270°、3000m で 3.5cms⁻¹、269°と 1995 ~1996年の結果とほぼ同じ値を示しているが、東西方向、南北方向共に標準偏差が大 きくなっており、変動の大きさを示している。Moor3 では Moor1 に類似した変動を示 している。秋期から冬期に掛けて増加した西向き流は、11 月下旬から 12 月に掛けて ピークを迎え、20cms⁻¹を越える流速値も多く見られる。安定して強い西向流が観測さ れた 1・2 月の後、3 月中旬にベクトルが低気圧回転をする期間が見られ、その後は変 動も大きくなり西向流は低下する。年平均値としては 2000m で 10.4cms^{_1}、268º、 3000m で 4.9cms⁻¹、281^oと中央部の Moor1 に比べ 1.5 倍程の高い値が得られている。 Moor2 の 1500m ではより極端な変化が見られる。1年間を通じては西向き流が卓越 しているが、南北の振れ回りが大きく、流速値は観測前半の期間と後半の期間では大 きく変化している。日平均流の最大値としては 11 月 27 日に記録した 26.6cms-1(208) で、前半では 20cms⁻¹を超える流速値が多く見られる。対して後半では、10cms⁻¹を超 える流速値は殆ど観測されず、4~5cms⁻¹の流速値が大半を占めている。3900mの観 測データでは東向き流が卓越し、1500m で流速値の大きかった前半では西向きの期間 も見られるが、流速の落ちた後半では東向きで安定している。7000m では、後半の流 向は 3900m の流向と合わない期間も有るが、前半では良く追従した対応を示している。

Table 3-3-1. Information on current measurements, where \overline{V} indicates the vector mean velocity, u and v-components are for the east and north axes, respectively. S_u and S_v are the standard deviation of u and v. F_{Ma} and F_{Mi} indicate the fluctuating width of major and minor axes. q_{Ma} indicates the direction of fluctuating major axis.

System	Meter Depth (m)	$\overline{u} \pm \mathbf{S}_{u}$ (cm s ⁻¹)	$\bar{v} \pm \mathbf{S}_{v}$ (cm s ⁻¹)	\overline{V} (cm s ⁻¹)/(°T)	$F_{Ma}, F_{Mi} / \boldsymbol{q}_{Ma}$ (cm s ⁻¹)/(°T)	Dates
Moor 1	1500 3000	-9.5 ± 2.2 -3.0 ± 1.5	-0.1 ± 2.6 -1.1 ± 1.1	9.5 / 270 3.2 / 250	2.5, 2.4 / 19.7 1.4, 1.3 / 76.7	21 Jun.95-20 Jun.96
Moor 1	1500 3000	-11.5 ± 2.0 -3.2 ± 1.3	-2.2 ± 2.1 -1.9 ± 1.0	11.7 / 259 3.7 / 240	2.2, 1.9 / 39.2 1.4, 1.2 / 120.7	21 Jun.96-20 Jun.97
Moor 1	1500 3000	-9.5 ± 6.2 -3.5 ± 3.7	0.0 ± 4.9 -0.1 ± 3.9	9.5 / 270 3.5 / 269	4.6, 3.0 / 91.0 2.1, 1.9 / 115.1	9 Aug.97-8 Aug.98
Moor 2	3000 5000 7000	-0.9 ± 1.4 1.1 ± 1.3 *	-1.2 ± 0.8 -0.1 ± 0.8 *	1.5 / 216 1.1 / 97 *	1.7, 0.9 / 95.0 1.6, 0.9 / 94.5 *	20 Jun.96-20 Jun.97
Moor 2	1500 3900 7000	-8.4 ± 8.3 0.8 ± 2.8 *	-1.6 ± 9.7 -0.7 ± 2.2 *	8.5 / 259 1.1 / 129 *	8.8, 7.6 / 169.2 1.2, 1.0 / 83.5 *	22 Jun.97-11 Aug.98
Moor 3	2000 3000	-10.4 ± 5.0 -4.8 ± 3.1	-0.4 ± 3.3 0.9 ± 1.8	10.4/268 4.9/281	5.0, 3.4 / 88.9 2.7, 2.1 / 103.9	9 Aug.97-6 Aug.98

* indicates only direction record

Fig.3-3-1. Vector mean velocity and fluctuating width for each observation period. (a): 1995-1996, (b): 1996-1997, (c): 1997-1998.

Fig.3-3-2. Vector stick diagrams of daily average data from current meters at Moor1, Moor2 and Moor3. West is up on these plots. (a): 1995-1996, (b): 1996-1997, (c): 1997-1998.

3-3-2. 季節変動

流速値の季節変動を捕らえるため、観測期間の各月ごとにベクトル平均(V)、 流速変動場の主軸成分(F_{Ma})、従軸成分(F_{Mi})、及び流速変動場の主軸方向(q_{Ma})を求め た。Moor1 での 2 層の結果を Table 3-3-2 と Fig.3-3-3 に、Moor2 及び Moor3 での結 果を Table 3-3-3 と Fig.3-3-4 にまとめる。Moor1 では約 3 年間、同一層において観測 が継続されたため、観測年を越えて各月ごとに集計した結果も合わせて示す。

Moor1の上層 1500m では 1995~1996 年の期間、8·9 月、12·1 月、5·6 月 に 10cms⁻¹を越える平均流が得られている。1996~1997 年の期間では、7 月を除く全 ての月で平均流が 10cms⁻¹を越え、変動を示しながらも値は大きくなる傾向を見せて いる。1997~1998年の期間では、9·10月にデータの欠測がおこり平均流も8cms-1台 に落ち込むが、9-10 月を除けば増加傾向は持続し、1 月に最大の 16.4cms⁻¹を記録す る。2 月に急激に減少し、その後も緩やかに減少し、観測最終月の 8 月では最低の 4.5cms⁻¹まで低下する。流向は西向き(270°)を中心に約 10° 前後の振れまわりが有り、 変動場の大きくなった月か翌月に平均流の流向は大きく南向きに振れる傾向がある。 変動場の変化傾向は読み取り辛いが、1995~1997年の期間は小さく、1997~1998年 の期間では大きくなっている。Moor1 下層の 3000m では、平均流は 2~5cms⁻¹の間 で変動し、1996年の冬期からは高い値が持続する。1997年夏期から秋期には3cms-1 台に下がるが、12 月には最大値の 5.4cms⁻¹を記録する。春季から夏期には減少し 1cms⁻¹台に至る。流向は上層に比べ南に偏向し、260°付近で振れまわる。また上層同 様に、北側に大きく振れることはなく、変動場の大きくなった月か翌月に平均流の流 向は大きく南側に振れる傾向がある。3年間の月別集計では、両層とも冬期間に平均 流は強まり、春期から夏期に弱まる傾向が明らかである。7 月の平均流が特に小さい 値であることが目立つが、この原因は1年を通じて流速値の大きかった 1997 年のデ ータが、7月に系の取り替えによって得られなかった為である。

1996~1997年の期間、Moor2の3000mにおいて、平均流は1~3cms⁻¹で変動し、流向は南南西(203°)を中心に 50°以上の振れ幅を持っている。5000m では東向き(90°)を中心として比較的安定しているが、1 月だけは僅かながら西向きに転じている。変動場には両層とも目立った変化は見られない。1997~1998年の期間、Moor2の1500mにおいて、平均流速は大きな変化を見せている。観測開始の6·7月は20cms⁻¹を越える流速が得られ、秋期・冬期に掛けて徐々に減少する。1 月には 2.4cms⁻¹と極端に減少し、その後は低レベルで推移する。低レベルで推移する間、11 月と1 月には変動場の主軸成分が 10cms⁻¹を越える大きな南北方向の変動が記録されている。 3900mでの平均流は 2cms⁻¹以下で、安定した流向は得られない。また上層 1500mで記録されたような大きな変動も見られない。

1997~1998 年の Moor3、2000m では秋期・冬期に 10cms⁻¹を越える大きな

						8 9			
Month	Moo	r 1 1500m 95-96		Moo	r 1 1500m 96-97		Moor	: 1 1500m 97-98	
Month	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν
Jun.	6.8/280	3.6,0.9/4	10	12.0/264	1.0,0.9/69	9			
Jul.	9.1/280	5.4,2.7/6	31	9.2/261	1.3,1.2/64	31			
Aug.	10.2/255	2.1,1.3/99	31	10.5/261	1.4,1.3/63	31	12.3/271	1.3,1.2/25	23
Sep.	10.2/275	1.6,1.6/113	30	11.1/252	1.7,1.6/20	30	8.8/268	2.3,1.0/83	13
Oct.	8.3/283	1.1,1.0/89	31	13.1/248	3.0,1.2/1	31	8.4/283	3.3,0.8/84	2
Nov.	8.4/273	1.0,0.9/75	30	10.4/255	1.5,1.0/48	30	13.4/269	3.2,1.7/132	28
Dec.	11.2/272	1.2,0.9/85	31	10.2/265	1.0,0.8/107	31	14.1/265	2.8,1.7/171	31
Jan.	12.5/269	1.6,1.0/94	31	12.7/265	0.9,0.9/115	31	16.4/271	2.4,1.9/153	29
Feb.	9.3/269	1.7,1.4/14	29	13.0/263	1.2,1.2/69	28	9.2/279	3.6,3.6/113	23
Mar.	8.2/271	2.9,2.2/5	31	12.0/259	1.0,0.9/67	31	8.4/275	2.1,1.6/93	31
Apr.	7.6/259	1.4,1.3/108	30	13.9/258	2.8,1.8/38	30	6.0/277	2.7,2.2/98	30
May	10.6/259	2.1,1.3/42	31	13.4/259	2.9,1.3/4	20	5.6/282	2.6,1.8/145	20
Jun.	11.0/266	1.0,0.6/0	20	13.7/267	1.3,0.6/47	20	5.6/276	5.7,2.6/9	30
Jul.							5.2/255	2.2,1.6/166	31
Aug.							4.5/241	0.9,0.6/84	7

Table 33-2. Information on current measurements in every month at Moor1, where \overline{V} (cm s⁻¹/^oT) indicates the vector mean velocity. F_{Ma} and F_{Mi} (cm s⁻¹) indicate the fluctuating width of major and minor axes. \boldsymbol{q}_{Ma} (^oT) indicates the direction of fluctuating major axis.

M. (1 -	Moo	or 1 3000m 95-96		Moo	r 1 3000m 96-97		Moo	r 1 3000m 97-98	
Month	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν
Jun.	3.2/255	0.7,0.6/10	10	2.8/240	0.8,0.6/105	9			
Jul.	3.3/245	1.7,1.0/171	31	2.7/239	1.1,1.0/69	31			
Aug.	3.9/228	1.2,0.8/174	31	3.2/236	1.3,1.0/105	31	3.7/273	1.1,0.7/88	23
Sep.	3.8/258	1.0,0.9/111	30	4.4/239	1.2,0.7/128	30	3.5/264	1.3,1.2/108	30
Oct.	3.0/258	0.8,0.8/123	31	4.7/222	1.9,1.6/154	31	3.8/250	2.4,1.4/142	31
Nov.	2.0/258	1.1,1.0/118	30	4.2/241	1.2,1.0/82	30	4.2/272	1.6,1.4/94	30
Dec.	4.8/258	1.6,0.8/86	31	4.1/252	1.4,0.7/82	31	5.4/266	1.9,1.5/145	31
Jan.	3.6/246	2.1,1.3/78	31	5.0/249	1.2,0.8/101	31	5.3/283	1.5,1.3/12	31
Feb.	3.8/255	1.6,1.4/71	29	5.0/250	0.8,0.7/125	28	5.2/282	1.8,1.0/131	28
Mar.	2.8/250	1.2,1.1/26	31	4.0/235	0.9,0.7/104	31	3.7/263	1.7,1.2/50	31
Apr.	3.3/245	1.2,1.1/115	30	4.0/227	1.7,0.7/131	30	2.6/281	1.5,1.3/79	30
May	4.6/247	1.1,1.1/23	31	4.3/234	1.2,0.8/135	31	1.8/256	1.6,1.4/124	31
Jun.	4.4/252	1.2,0.5/52	20	4.8/251	0.9,0.7/102	20	2.5/276	1.3,1.2/103	30
Jul.							1.3/180	2.8,1.8/121	31
Aug.							1.6/186	1.3,0.9/85	7

	Moor	r 1 1500m 95-98		Moo	r 1 3000m 95-98	
Month	\overline{V}	$F_{Ma}, F_{Mi}/{{oldsymbol{q}}_{Ma}}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{{oldsymbol{q}}_{Ma}}$	Ν
Jan.	13.8/269	2.3,1.8/120	91	4.4/261	1.9,1.7/121	93
Feb.	10.5/269	2.8,2.6/72	80	4.5/263	1.7,1.4/141	85
Mar.	9.5/267	2.9,1.9/47	93	3.4/249	1.4,1.3/28	93
Apr.	9.1/262	3.5,3.2/65	90	3.1/247	1.6,1.6/159	90
May	9.2/264	3.7,2.7/58	82	3.5/243	1.7,1.4/49	93
Jun.	9.4/269	4.2,3.1/41	89	3.5/257	1.5,1.1/56	89
Jul.	7.7/267	3.8,2.7/177	93	2.2/232	1.9,1.9/112	93
Aug.	10.3/261	2.5,1.9/105	92	3.2/241	1.6,1.3/139	92
Sep.	10.1/264	2.5,2.0/14	73	3.8/253	1.3,1.1/148	90
Oct.	10.1/262	3.6,3.0/26	64	3.7/241	1.8,1.8/158	93
Nov.	10.6/266	2.6,2.3/106	88	3.4/257	1.6,1.5/95	90
Dec.	11.8/267	2.1,2.0/74	93	4.7/259	1.6,1.3/105	93

Aug.

Sep.

Oct.

Nov.

Dec.

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul.

Aug.

2.1/108

1.4/96

2.8/101

2.1/101

0.4/273

2.2/87

1.5/104

1.4/66

0.7/119

2.3/71

1.2,0.5/94

1.5,0.5/94

1.1,0.6/101

1.4,0.6/94

1.2,0.6/100

1.6,0.6/96

1.8,0.7/86

1.6,1.3/108

1.4,0.8/86

1.9,1.1/102

30

29

30

31

31

28

30

30

29

20

1.3/172

1.8/173

1.6/99

2.0/150

0.5/166

0.5/18

0.6/101

1.0/88

0.9/115

1.0/87

1.6/134

1.6/120

30

31

30

31

31

28

31

30

31

30

31

11

1.4,0.7/79

0.9,0.5/88

1.5,1.3/123

1.4,0.8/100

1.5,1.4/24

0.9,0.7/108

0.9,0.4/83

0.8,0.6/99

0.5,0.4/121

0.4,0.3/40

0.4,0.4/154

0.5,0.2/94

3.4/265

5.3/280

7.7/287

8.0/278

5.7/281

5.5/286

2.3/274

4.9/276

4.3/280

5.4/284

4.4/272

3.3/279

2.4,2.3/112

3.3,1.6/87

2.3,1.9/43

3.7,1.8/91

1.7,1.3/121

3.0,2.2/102

2.5,2.1/119

1.8,1.1/9

2.3,1.5/37

1.7,1.5/76

2.1,1.2/128

1.4,1.2/117

30

31

30

31

31

28

31

30

31

30

31

6

Month -	Moo	or 2 3000m 96-97		Moo	r 2 1500m 97-98		Moor	r 3 2000m 97-98	
Month -	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/{oldsymbol{q}}_{Ma}$	Ν
Jun.	2.0/190	1.0,0.8/168	10	22.1/253	2.2,2.0/21	9			
Jul.	3.0/238	0.8,0.8/122	31	20.3/287	6.2,3.5/13	31			
Aug.	1.9/218	0.9,0.8/75	31	19.4/292	2.6,1.6/9	31	7.8/263	2.1,1.6/146	23
Sep.	1.6/179	1.3,0.9/84	30	16.3/246	3.8,2.7/118	30	10.1/252	4.5,2.8/125	30
Oct.	2.0/163	1.2,0.7/85	31	16.6/223	3.5,2.3/56	31	10.3/265	3.4,2.6/76	31
Nov.	1.8/153	0.7,0.5/135	30	14.1/280	13.5,7.3/1	30	15.3/271	3.9,2.8/81	30
Dec.	1.4/137	1.1,0.6/100	31	15.7/208	4.5,3.3/103	31	17.4/265	3.3,2.6/124	31
Jan.	2.4/261	0.5,0.3/96	31	2.4/218	16.4,5.8/8	31	13.1/272	2.0,1.5/144	31
Feb.	1.7/248	0.9,0.8/111	28	4.8/325	3.4,1.9/141	28	14.8/274	2.6,2.1/14	28
Mar.	1.8/230	1.0,0.6/103	30	4.0/293	1.3,0.9/76	31	5.1/276	6.1,4.2/87	31
Apr.	2.3/209	2.2,0.8/86	30	4.1/271	1.4,1.3/109	30	7.9/261	4.5,2.6/7	30
May	3.3/223	0.8,0.6/102	31	3.9/284	1.8,1.8/113	31	6.1/271	4.5,3.1/32	31
Jun.	2.9/258	1.1,1.0/19	20	2.6/276	2.5,2.0/117	30	8.7/277	4.0,2.9/49	30
Jul.				6.4/189	4.5,1.7/139	31	8.9/264	2.5,1.6/125	31
Aug.				3.1/192	0.8,0.4/52	11	8.7/260	2.0,0.5/91	6
				-					
Month -	Moo	or 2 5000m 96-97		Moo	r 2 3900m 97-98		Moor	r 3 3000m 97-98	
wionul	\overline{V}	$F_{Ma}, F_{Mi}/\boldsymbol{q}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/\boldsymbol{q}_{Ma}$	Ν	\overline{V}	$F_{Ma}, F_{Mi}/\boldsymbol{q}_{Ma}$	N
Jun.	1.8/122	2.4,2.2/21	10	0.7/164	1.0,0.9/64	9			
Jul.	1.1/134	0.9,0.7/109	31	1.3/239	0.9,0.8/113	31			
Aug.	1.8/101	1.0,0.6/101	31	0.7/74	0.9,0.8/91	31	2.9/276	1.4,1.3/157	23

Table 3-3-3. Same as Table 3-3-2 except for at Moor2 and Moor3.

Fig.3-3-3. Plots of the mean velocity vector for each month at Moor1. Ellipses show fluctuating widths of major and minor axes. West is up on these plots. (a): 1995-1996 1500m, (b): 1996-1997 1500m, (c): 1997-1998 1500m, (d): 1995-1996 3000m, (e): 1996-1997 3000m, (f): 1997-1998 3000m, (g): 1995-1997 1500m, (h): 1995-1997 3000m. Refer to the statistics listed in Table 3-3-2.

Fig.3-3-4. Same as Fig.3-3-3 except for at Moor2 and Moor3. (a): 1996-1997 3000m, (b): 1996-1997 5000m, (c): 1997-1998 1500m, (d): 1997-1998 3900m, (e): 1997-1998 2000m, (f): 1997-1998 3000m. Refer to the statistics listed in Table 3-3-3.

平均流が得られ、最大は 12 月の 15.3cms⁻¹である。3 月に変動場が大きくなり、平均 流も 5.1cms⁻¹と大きく減少し、低レベルで推移する。低レベルで推移する間、流向に は大きな変化がなく西向きで安定している。3000m でも変動幅は小さいものの、同様 の変化が認められる。平均流の最大値は 12 月で 8.0cms⁻¹、3 月には大きく減少し 2.3cms⁻¹となっているが、流向は安定している。1997~1998年の上層で見られた平均 流の極端な変化は、3 係留点で共通して見られている。また極端な変化の期間には擾 乱の通過が共通しており、Moor2 では 1 月、Moor1 では 2 月、Moor3 では 3 月と 1 ヶ月遅れで、擾乱が南から北へ伝わって行くのが見て取れる。

季節変動をより明瞭に捕らえるため、卓越した流向を持つ東西成分に付いて 日平均データより各月ごとの平均値と標準偏差の時系列変化を求めた。グラフ上では 東向流を正にとっているが、本文の記述では西向流の大小で論述する。Fig.3-3-5(a) ~(c)に Moor1 での 2 層の結果をまとめる。1500m 深では 1995~1996 年の期間、4 ~5ヶ月の周期的変動が見られるが、1996~1997 年では変動が小さくなり、時間経過 に伴う増加傾向が見られる。1997~1998 年では流速計の設置が出来なかった 6 月、7 月、また計測期間中に計器の不良でデータの殆どが得られなかった 9 月、10 月を除く と、前期間に見られた増加傾向は1998年の1月まで続いている。2月に流速値は一気 に半分近くまで減少し、その後も計測が終了する 8 月まで減少傾向は持続している。 1996年の1月にも流速値はピークを迎えているが一旦減少した流速値は3月よりまた 増加し始め、1998年の傾向とは異なっている。3000mでは流速の絶対値が 1500m に 比べ小さいため、大きな変動は見られないが、変動傾向は1500mと同様である。1995 ~1996 年では 1500m の変動に対応するような 4~5 ヶ月の周期的変動が僅かに見え る。1996~1997 年は短周期の変動が少ないため、増加傾向がより明瞭に見られる。 1997 年の 12 月に最大値を迎えた流速値は、その後緩やかに減少し 1998 年 7 月、8 月では 0cms⁻¹に近い僅かなものとなった。

Moor2 で得られた結果を Fig.3-3-5(d)(e)に示す。1996~1997 年の結果では、 3000m、5000m の両層に呼応するような細かな変動が読み取れる。3000m の西向き 流速値が増加すれば 5000m の東向き流速値は減少し、逆に 3000m の西向き流速値が 減少すれば 5000m の東向き流速値は増加している。1997~1998 年の 1500m では、 計測を開始した 6 月に最大値を記録し 21cms⁻¹以上の平均値を示した。その後、流速 値は減少傾向を示すと共に標準偏差も大きくなり 1 月では 2cms⁻¹以下となっている。 前記のスティックダイヤグラム(Fig.3-3-2)で見るとこの時期は、流速値は大きいもの の南北成分が卓越した時期といえる。4 月には流速値が 4cms⁻¹ほどまで回復するが 7 月、8 月は 1cms⁻¹に近い小さな流速値で、この期間は南向き成分が卓越している。 3900m では 1997 年の 7 月に西向き流を記録しているが、7 月以外は全て東向き成分 で、1998 年の 4 月以降は安定した東向き成分が得られている。

Moor3 で得られた結果を Fig.3-3-5(f)に示す。2000m と 3000m の変動傾向は 類似している。秋期から冬期に掛けて徐々に増加した流速値は、12 月が最大となり、

2000m で 17.4cms⁻¹、3000m で 7.9cms⁻¹となる。1・2 月は 12 月に比べて減少するが、 3 月に極端な減少を示す。その後はやや回復し、安定した流速値を記録している。3 系に共通して、極端な落ち込みを示す月には標準偏差が大きくなっており、前述の擾 乱の通過がこの記録からも読み取れる。

Fig.3-3-5. Monthly average eastward component of current velocity and standard deviation. (a): Moor1 1995-1996, (b): Moor1 1996-1997, (c): Moor1 1997-1998, (d): Moor2 1996-1997, (e): Moor2 1997-1998, (f): Moor3 1997-1998.

3-3-3. 運動エネルギーの季節変動

日平均の流速値データより単位質量あたりの平均運動エネルギー(\overline{KE})、渦運 動エネルギー(KE)を月別に求め、また両者の比率(KE'/\overline{KE})を求める事により Alaskan Streamの流れの特性を調べた。計算は下記の(3.3.3)、(3.3.4)式で求められ、 \overline{u} は東向き流速成分の平均値、 \overline{v} は北向き流速成分の平均値、 s_u , s_v は各方向の流速値 の標準偏差である。Moor1での2層の結果をTable 3-3-4 に、Moor2及び Moor3 での 結果をTable 33-5 にまとめる。Moor1では約3年間、同一層において観測が継続さ れたため、観測年を越えて各月ごとに集計した結果も合わせて示す。

$$\overline{KE} = 0.5(\bar{u}^2 + \bar{v}^2)$$
(3.3.3)

$$KE' = 0.5(\mathbf{s}_{u}^{2} + \mathbf{s}_{v}^{2}) \tag{3.3.4}$$

Moor1 での比率は観測 3 期間の通年では両層において 1.0 を下回り、安定し た流れであることが分かる(Fig.3-3-6(a))。1996~1997 年では特に両層で比率が低く、 1500m では通年 0.1 以下となっている。1998 年の 1 月には 1500m で平均運動エネル ギーが 134.8cm²s⁻²と最大の値を示したが、その後急激に減少し、渦運動エネルギーは 大きく 6 月では比率が 1.0 を上回った。3000m においても 1998 年の 5 月、7 月、8 月で比率が 1.0 を上回り、流れが不安定になりつつある傾向を示している。3 年間の 月別変化では、1500m で 1 月に平均運動エネルギーが突出したピークとなるが、3000m では冬期間高い値が維持される。春期から夏期は両層で渦運動エネルギーが高くなる 傾向にある。また両層の 7 月は平均運動エネルギーが落ち込み、3000m では比率が唯 - 1.0 を越える月となるが、これは 1997 年 7 月の欠測が原因と考えられる。

Moor2 においては、両年、両層において観測期間を通しての比率は 1.0 を上 回っている。1996~1997 年の 3000m では同年同層の Moor1 の値に比べて、渦運動 エネルギーに大きな差は見られないが、平均運動エネルギーが小さいために通年の値 としては 1.0 を超える比率となっている。しかし各月別に見てみると、比率が 1.0 を 超えるのは 1997 年 4 月の 1.05 のみであり、月単位では安定した流れであったといえ る。通年で 1.0 を超えたのは安定した東向きと西向きの期間(Fig.3-3-2(b))が相殺され て、平均運動エネルギーが小さくなったためである。1997~1998 年の 1500m では 1 月に平均運動エネルギー2.8cm²s⁻² に対して、渦運動エネルギー157.1 cm²s⁻²、比率 56.60 という極端に大きな乱れが観測されている(Fig.3-3-6(b))。また、11 月にも渦運 動エネルギーは高く、3900m にも共通して見られている。先述のスティックダイヤグ ラム(Fig.3-3-2(c))でもこの時期は大きな流速値が南向きから北向きへと方向を変えて おり、大きな乱れがこの期間に起こっているのが分かる。1 月以前は 100 cm²s⁻²を超 える平均運動エネルギーがしばしば観測されたが、1 月以降は約 1/10 以下の小さな値

に留まっている。1997年と1998年の夏期では平均運動エネルギーに大きな開きが存 在する。

比率を月別に見ると 1.0 を超えるのは先述の 1 月と 6 月、1997 年の 11 月の 3 ヶ月であり、1 年の大半は乱れの少ない流れであったといえる。3900m では 1500m で大きな乱れのあった 1 月と翌 2 月に比率が 10.0 を超えている。4 月以降の比率は 1.0 を下回り安定した東向き流であったことが分かる。1996~1997 年の 5000m では、流 速値が小さく流速計の測定精度を考えても評価は難しい。

Moor3 においては、両層で 12 月に平均運動エネルギーのピークを迎える (Fig.3-3-6(c))。冬期間は高いエネルギーレベルで維持されるが、3 月には極端に平均 運動エネルギーが落ち込み、比率は両層とも 2.0 を越える値となる。3 月以降、春期 から夏期において平均運動エネルギーは低レベルであるが、比率が 1.0 を越える月は 見られず、安定した流れであることが窺える。また同年の Moor1 の結果と比較した場 合、同深度の 3000m においては殆どの月で平均運動エネルギーは高く、通年では 2 倍以上の差がある。上層 2000m と 1500m の比較においても、Moor3 の 2000m の方 でエネルギーレベルが高く、通年の値で約 1.3 倍の高さを有している。しかし同様に 渦運動エネルギーも Moor3 が両層で通年的に高く、比率において両係留点の差は顕著 ではない。

Manth	Moor	r 1 1500m	95-96	Moc	or 1 1500m	96-97	Moor	r 1 1500m	97-98
Month	\overline{KE}	KE'	KE'/\overline{KE}	\overline{KE}	KE'	KE '/ KE	\overline{KE}	KE'	KE '/ KE
June	23.2	7.8	0.34	72.5	0.9	0.01			
July	41.7	19.0	0.46	42.2	1.6	0.04			
August	52.1	3.4	0.07	54.2	1.8	0.03	75.2	1.3	0.02
September	51.9	2.8	0.05	61.8	3.0	0.05	38.5	3.4	0.09
October	34.5	1.1	0.03	85.2	5.5	0.06	35.4	11.8	0.33
November	35.2	0.9	0.03	53.9	1.6	0.03	90.5	6.6	0.07
December	62.3	1.2	0.02	50.2	0.9	0.02	100.2	5.3	0.05
January	78.5	1.8	0.02	80.3	0.7	0.01	134.8	4.9	0.04
February	43.0	2.6	0.06	83.6	1.3	0.02	42.6	13.6	0.32
March	34.0	6.9	0.20	70.7	1.0	0.01	35.6	3.5	0.10
April	29.2	2.0	0.06	96.9	5.8	0.06	18.0	6.2	0.35
May	56.1	3.1	0.06	89.1	5.3	0.06	15.6	5.0	0.32
June	60.0	0.7	0.01	95.4	1.0	0.01	15.5	19.9	1.28
July							13.3	3.8	0.29
August							9.9	0.7	0.07
Entire series	45.3	5.9	0.13	68.7	4.1	0.06	43.1	14.9	0.35
	45.3 5.9 0.13								
Month	Moor	r 1 3000m	95-96	Moc	or 1 3000m	96-97	Moor	r 1 3000m	97-98
Month	$\frac{Moon}{\overline{KE}}$	r 1 3000m KE'	95-96 KE '/ KE	\overline{KE}	or 1 3000m KE'	96-97 KE'/KE	\overline{KE}	r 1 3000m KE'	97-98 KE / KE
Month -	$\frac{Moon}{\overline{KE}}$ 4.2	r 1 3000m KE' 0.4	95-96 <i>KE '\/KE</i> 0.10	$\frac{Moo}{\overline{KE}}$ 3.1	or 1 3000m KE' 0.5	96-97 <i>KE '/KE 0.17</i>	$\frac{Moon}{\overline{KE}}$	r 1 3000m KE'	97-98 KE / KE
Month - June July	Moon <u>KE</u> 4.2 4.4	r 1 3000m KE' 0.4 1.6	95-96 <u>KE'/KE</u> 0.10 0.36	Moc <u>KE</u> 3.1 3.0	or 1 3000m KE' 0.5 0.8	96-97 <u>KE / KE</u> 0.17 0.25	$\frac{Moon}{\overline{KE}}$	r 1 3000m KE'	97-98 KE / KE
Month - June July August	Moon <u>KE</u> 4.2 4.4 5.9	r 1 3000m KE' 0.4 1.6 0.9	95-96 <u>KE / KE</u> 0.10 0.36 0.15	Mod <u>KE</u> 3.1 3.0 4.1	or 1 3000m <u>KE'</u> 0.5 0.8 0.8	96-97 <u>KE / KE</u> 0.17 0.25 0.21	<u>Moon</u> <u><i>KE</i></u> 6.8	r 1 3000m KE' 0.8	97-98 <u>KE</u> / <u>KE</u> 0.12
Month June July August September	Moon <u>KE</u> 4.2 4.4 5.9 5.7	xE' 0.4 1.6 0.9 0.8	95-96 <u>KE / KE</u> 0.10 0.36 0.15 0.13	Mod <u>KE</u> 3.1 3.0 4.1 8.0	or 1 3000m <u>KE'</u> 0.5 0.8 0.8 0.8 0.8	96-97 <u>KE / KE</u> 0.17 0.25 0.21 0.10	6.8 6.2	<u>x 1 3000m</u> KE' 0.8 1.6	97-98 <u>KE / KE</u> 0.12 0.26
Month June July August September October	Moon <u>KE</u> 4.2 4.4 5.9 5.7 3.6	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5	$ \begin{array}{r} 95-96 \\ \hline $	Moo <u>KE</u> 3.1 3.0 4.1 8.0 8.7	r 1 3000m KE' 0.5 0.8 0.8 0.8 0.8 2.6	96-97 <u>KE / KE</u> 0.17 0.25 0.21 0.10 0.30	6.8 6.2 7.1	1 3000m <u>KE'</u> 0.8 1.6 3.7	97-98 <u>KE / KE</u> 0.12 0.26 0.53
Month - June July August September October November	Moon <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7	95-96 <u>KE'/KE</u> 0.10 0.36 0.15 0.13 0.15 0.55	Moc <u>KE</u> 3.1 3.0 4.1 8.0 8.7 6.6	r 1 3000m KE' 0.5 0.8 0.8 0.8 0.8 2.6 1.0	96-97 <u>KE / KE</u> 0.17 0.25 0.21 0.10 0.30 0.16	<u>Moon</u> <u><i>KE</i></u> 6.8 6.2 7.1 9.0	<u>c 1 3000m</u> <u>KE'</u> 0.8 1.6 3.7 2.4	97-98 <u>KE / KE</u> 0.12 0.26 0.53 0.27
Month June July August September October November December	Moor <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6	95-96 <u>KE'/KE</u> 0.10 0.36 0.15 0.13 0.15 0.55 0.16	Moc <u>KE</u> 3.1 3.0 4.1 8.0 8.7 6.6 6.9	xE' 0.5 0.8 0.8 0.8 2.6 1.0 1.0	96-97 <u>KE'/KE</u> 0.17 0.25 0.21 0.10 0.30 0.16 0.15	Moor <u>KE</u> 6.8 6.2 7.1 9.0 14.4	c 1 3000m KE' 0.8 1.6 3.7 2.4 2.8	97-98 <u>KE /KE</u> 0.12 0.26 0.53 0.27 0.19
Month June July August September October November December January	Moor <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1	$ \begin{array}{r} 95-96 \\ \hline KE'/\overline{KE} \\ 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ \end{array} $	Moc <u>KE</u> 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0	xE' 0.5 0.8 0.8 0.8 2.6 1.0 1.0 0.9	$ \begin{array}{r} 96-97 \\ \hline KE / \overline{KE} \\ 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ \end{array} $	Moon <u>KE</u> 6.8 6.2 7.1 9.0 14.4 14.1	c 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0	97-98 <u>KE /KE</u> 0.12 0.26 0.53 0.27 0.19 0.14
Month June July August September October November December January February	Moor <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2	$ \begin{array}{r} 95-96 \\ \hline KE'/\overline{KE} \\ 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ 0.36 \\ \end{array} $	Moc <u>KE</u> 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3	xE' 0.5 0.8 0.8 0.8 0.8 2.6 1.0 1.0 0.9 0.5	96-97 <u>KE / KE</u> 0.17 0.25 0.21 0.10 0.30 0.16 0.15 0.09 0.05	Moor 6.8 6.2 7.1 9.0 14.4 14.1 13.6	c 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0 2.2	97-98 <u>KE /KE</u> 0.12 0.26 0.53 0.27 0.19 0.14 0.16
Month June July August September October November December January February March	Moor <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2 3.0	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2 1.2	$ \begin{array}{r} 95-96 \\ \hline $	Moc <u>KE</u> 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3 6.6	xE' 0.5 0.8 0.8 0.8 0.8 2.6 1.0 1.0 0.9 0.5 0.6	$\begin{array}{r} 96-97 \\ \hline KE \ / \overline{KE} \\ \hline 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ 0.05 \\ 0.09 \\ \end{array}$	Moor <i>KE</i> 6.8 6.2 7.1 9.0 14.4 14.1 13.6 6.8	x 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0 2.2 2.2	97-98 <u>KE /KE</u> 0.12 0.26 0.53 0.27 0.19 0.14 0.16 0.32
Month June July August September October November December January February March April	Moon <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2 3.0 4.3	KE 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2 1.2 1.3	$\begin{array}{c} 95-96 \\ \hline \hline KE \ / \hline KE \\ \hline 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ 0.36 \\ 0.40 \\ 0.30 \\ \end{array}$	Moc KE 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3 6.6 6.0	xE' 0.5 0.8 0.8 0.8 0.8 2.6 1.0 1.0 0.9 0.5 0.6 1.3	$\begin{array}{r} 96-97 \\ \hline KE \ / \overline{KE} \\ \hline 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ 0.05 \\ 0.09 \\ 0.22 \\ \end{array}$	Moor <u>KE</u> 6.8 6.2 7.1 9.0 14.4 14.1 13.6 6.8 3.4	x 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0 2.2 2.0	97-98 <u>KE / KE</u> 0.12 0.26 0.53 0.27 0.19 0.14 0.16 0.32 0.58
Month June July August September October November December January February March April May	Moor <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2 3.0 4.3 8.9	KE 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2 1.2 1.3 1.1	$\begin{array}{c} 95-96 \\ \hline \hline KE \ / \hline KE \\ \hline 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ 0.36 \\ 0.40 \\ 0.30 \\ 0.13 \\ \end{array}$	Moc KE 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3 6.6 6.0 7.5	xE' 0.5 0.8 0.8 0.8 0.8 0.8 2.6 1.0 1.0 0.9 0.5 0.6 1.3 0.9	$\begin{array}{c} 96-97 \\ \hline KE \ / \ \overline{KE} \\ \hline 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ 0.05 \\ 0.09 \\ 0.22 \\ 0.11 \\ \end{array}$	Moor <u>KE</u> 6.8 6.2 7.1 9.0 14.4 14.1 13.6 6.8 3.4 1.7	KE 0.8 1.6 3.7 2.4 2.8 2.0 2.2 2.0 2.3	$\begin{array}{r} 97-98 \\ \hline KE \ / \hline KE \\ 0.12 \\ 0.26 \\ 0.53 \\ 0.27 \\ 0.19 \\ 0.14 \\ 0.16 \\ 0.32 \\ 0.58 \\ 1.39 \\ \end{array}$
Month June July August September October November December January February March April May June	Moor <i>KE</i> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2 3.0 4.3 8.9 8.1	x 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2 1.3 1.1 0.9	$\begin{array}{c} 95-96 \\ \hline \hline KE \sqrt{\overline{KE}} \\ \hline 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ 0.36 \\ 0.40 \\ 0.30 \\ 0.13 \\ 0.11 \\ \end{array}$	Moc KE 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3 6.6 6.0 7.5 10.1	xE' 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	$\begin{array}{c} 96-97 \\ \hline KE \ / \ \overline{KE} \\ \hline 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ 0.05 \\ 0.09 \\ 0.22 \\ 0.11 \\ 0.07 \\ \end{array}$	<u>Moon</u> <u><i>KE</i></u> 6.8 6.2 7.1 9.0 14.4 14.1 13.6 6.8 3.4 1.7 3.3	x 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0 2.2 2.0 2.3 1.7	$\begin{array}{r} 97-98 \\ \hline KE \ / \hline KE \\ 0.12 \\ 0.26 \\ 0.53 \\ 0.27 \\ 0.19 \\ 0.14 \\ 0.16 \\ 0.32 \\ 0.58 \\ 1.39 \\ 0.52 \\ \end{array}$
Month June July August September October November December January February March April May June July	Moor <u>KE</u> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2 3.0 4.3 8.9 8.1	x 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2 1.3 1.1 0.9	$\begin{array}{c} 95-96 \\ \hline \hline KE \sqrt{\overline{KE}} \\ \hline 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ 0.36 \\ 0.40 \\ 0.30 \\ 0.13 \\ 0.11 \\ \end{array}$	Moc <i>KE</i> 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3 6.6 6.0 7.5 10.1	xE' 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	$\begin{array}{r} 96-97 \\ \hline KE \ / \ \overline{KE} \\ \hline 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ 0.05 \\ 0.09 \\ 0.22 \\ 0.11 \\ 0.07 \\ \end{array}$	Moor <u>KE</u> 6.8 6.2 7.1 9.0 14.4 14.1 13.6 6.8 3.4 1.7 3.3 0.8	x 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0 2.2 2.0 2.3 1.7 5.7	$\begin{array}{r} 97-98 \\ \hline KE \ / \hline KE \\ 0.12 \\ 0.26 \\ 0.53 \\ 0.27 \\ 0.19 \\ 0.14 \\ 0.16 \\ 0.32 \\ 0.58 \\ 1.39 \\ 0.52 \\ 6.97 \\ \end{array}$
Month June July August September October November December January February March April May June July August	Moor <i>KE</i> 4.2 4.4 5.9 5.7 3.6 1.3 9.9 5.4 6.2 3.0 4.3 8.9 8.1	r 1 3000m KE' 0.4 1.6 0.9 0.8 0.5 0.7 1.6 3.1 2.2 1.3 1.1 0.9	$\begin{array}{r} 95-96 \\ \hline \hline KE \sqrt{\overline{KE}} \\ \hline 0.10 \\ 0.36 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.55 \\ 0.16 \\ 0.58 \\ 0.36 \\ 0.40 \\ 0.30 \\ 0.13 \\ 0.11 \\ \end{array}$	Moc <i>KE</i> 3.1 3.0 4.1 8.0 8.7 6.6 6.9 10.0 10.3 6.6 6.0 7.5 10.1	xE' 0.5 0.8 0.8 0.8 0.8 0.8 2.6 1.0 1.0 0.9 0.5 0.6 1.3 0.9 0.7	$\begin{array}{r} 96-97 \\ \hline KE \ / \ \overline{KE} \\ \hline 0.17 \\ 0.25 \\ 0.21 \\ 0.10 \\ 0.30 \\ 0.16 \\ 0.15 \\ 0.09 \\ 0.05 \\ 0.09 \\ 0.22 \\ 0.11 \\ 0.07 \\ \end{array}$	Moor <i>KE</i> 6.8 6.2 7.1 9.0 14.4 14.1 13.6 6.8 3.4 1.7 3.3 0.8 1.0	x 1 3000m KE' 0.8 1.6 3.7 2.4 2.8 2.0 2.2 2.0 2.3 1.7 5.7 1.3	$\begin{array}{r} 97-98 \\ \hline KE \ / \hline KE \\ 0.12 \\ 0.26 \\ 0.53 \\ 0.27 \\ 0.19 \\ 0.14 \\ 0.16 \\ 0.32 \\ 0.58 \\ 1.39 \\ 0.52 \\ 6.97 \\ 1.22 \\ \end{array}$

Table 3-3-4. Energy statistics of monthly mean flows at Moor1. \overline{KE} (cm²s⁻²) is the kinetic energy of the mean flow per unit mass, and KE' (cm²s⁻²) is the eddy energy per unit mass.

Manth	Moor	r 1 1500m	95-98	Moc	or 1 3000m	95-98
Month	\overline{KE}	KE'	KE '/ KE	\overline{KE}	KE'	KE / KE
January	95.5	4.2	0.04	9.7	3.3	0.34
February	55.2	7.5	0.14	10.2	2.6	0.25
March	45.0	5.9	0.13	5.9	1.8	0.31
April	41.4	11.2	0.27	4.7	2.6	0.55
May	42.7	10.4	0.24	6.3	2.4	0.39
June	43.8	13.9	0.32	6.1	1.7	0.28
July	29.7	10.9	0.37	2.5	3.7	1.48
August	52.9	4.8	0.09	5.1	2.1	0.40
September	51.4	5.1	0.10	7.4	1.5	0.20
October	51.5	11.3	0.22	6.8	3.3	0.50
November	56.2	6.1	0.11	5.7	2.4	0.43
December	69.7	4.2	0.06	11.1	2.1	0.19
Entire series	51.8	9.1	0.18	6.4	2.8	0.44

11.9

6.5

0.55

63

Mandla	Moo	or 2 3000r	n 96-97	Moc	or 2 1500m	97-98	Moo	r 3 2000n	1 97-98
Month	\overline{KE}	KE'	KE '/ KE	\overline{KE}	KE'	KE '/ KE	\overline{KE}	KE'	KE '
June	1.7	0.7	0.43	243.1	4.9	0.02			
July	3.7	0.5	0.13	207.0	25.8	0.12			
August	1.5	0.5	0.33	188.8	4.8	0.03	30.6	3.4	0.11
September	1.0	0.8	0.79	133.6	11.3	0.08	50.8	14.5	0.29
October	1.6	0.7	0.44	139.7	8.6	0.06	54.1	9.4	0.17
November	1.0	0.2	0.23	98.6	121.9	1.24	117.8	11.7	0.10
December	0.5	0.5	0.99	123.7	16.0	0.13	151.9	9.3	0.06
January	1.8	0.2	0.10	2.8	157.1	56.60	86.0	3.5	0.04
February	1.0	0.5	0.47	12.4	7.7	0.62	108.8	5.7	0.05
March	1.2	0.4	0.31	9.1	1.2	0.13	13.2	28.1	2.12
April	2.2	2.3	1.05	9.1	1.9	0.21	31.1	14.0	0.45
May	4.4	0.4	0.08	8.4	3.5	0.41	19.0	15.2	0.80
June	3.8	0.9	0.23	3.7	5.5	1.48	38.1	12.5	0.33
July				20.9	11.7	0.56	40.3	4.5	0.11
August				6.1	0.4	0.07	39.7	2.4	0.06
Entire series	1.2	1.3	1.13	34.8	68.4	1.97	54.3	18.2	0.34
Month	Moo	or 2 5000r	n 96-97	Mod	or 2 3900m	97-98	Moo	r 3 3000n	n 97-98
Month	$\frac{Mo}{\overline{KE}}$	or 2 5000r KE'	n 96-97 KE '/KE	\overline{KE}	or 2 3900m KE'	97-98 KE '/ KE	$\frac{Moo}{\overline{KE}}$	r 3 3000m KE'	1 97-98 KE '/KE
Month June	Mod <u> <u> </u> </u>	or 2 5000r KE' 4.4	n 96-97 <i>KE '\KE</i> 5.57	$\frac{Moo}{\overline{KE}}$ 0.3	or 2 3900m <i>KE</i> ' 1.1	97-98 <u>KE / KE</u> 3.45	$\frac{Moo}{\overline{KE}}$	r 3 3000m KE'	n 97-98 KE '/ KE
Month June July	<u>Moo</u> <u><i>KE</i></u> 0.8 0.3	or 2 5000r <u>KE'</u> 4.4 0.4	n 96-97 <i>KE \[/]KE</i> 5.57 1.34	Mod <u>KE</u> 0.3 1.2	or 2 3900m <i>KE</i> ' 1.1 1.1	97-98 <u>KE / KE</u> 3.45 0.92	$\frac{Moo}{\overline{KE}}$	r 3 3000m KE'	1 97-98 KE \ <mark>/</mark> KE
Month June July August	Mod <u>KE</u> 0.8 0.3 0.6	or 2 5000r <u>KE'</u> 4.4 0.4 0.4	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62	Mod <u><i>KE</i></u> 0.3 1.2 0.4	or 2 3900m <u>KE'</u> 1.1 1.1 1.0	97-98 <u>KE / KE</u> 3.45 0.92 2.62		r 3 3000m KE' 1.9	<u>1 97-98</u> <u>КЕ / КЕ</u> 0.42
Month June July August September	Moo <u>KE</u> 0.8 0.3 0.6 1.1	or 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37	Mod <u>KE</u> 0.3 1.2 0.4 1.1	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7	97-98 <u>KE / KE</u> 3.45 0.92 2.62 1.50	<u>Moo</u> <u>KE</u> 4.4 5.8	r 3 3000m KE' 1.9 5.6	197-98 <u>KE / KE</u> 0.42 0.96
Month June July August September October	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.8	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37 2.86	Moc <u><i>KE</i></u> 0.3 1.2 0.4 1.1 2.1	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7	97-98 <u>KE</u> / <u>KE</u> 3.45 0.92 2.62 1.50 0.32	<u>Moo</u> <u><i>KE</i></u> 4.4 5.8 14.1	r 3 3000m KE' 1.9 5.6 6.7	197-98 <u>KE</u> / <u>KE</u> 0.42 0.96 0.48
Month June July August September October November	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3 2.4	or 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.8 0.5	n 96-97 <u>KE'/KE</u> 5.57 1.34 0.62 0.37 2.86 0.21	Moc <u><i>KE</i></u> 0.3 1.2 0.4 1.1 2.1 1.5	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7 2.5	97-98 <u>KE'/KE</u> 3.45 0.92 2.62 1.50 0.32 1.65	Moo <u>KE</u> 4.4 5.8 14.1 29.1	r 3 3000m KE' 1.9 5.6 6.7 4.5	0.42 0.96 0.48 0.16
Month June July August September October November December	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3	or 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37 2.86 0.21 0.59	Moc <u><i>KE</i></u> 0.3 1.2 0.4 1.1 2.1 1.5 2.6	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7 2.5 1.7	97-98 <u>KE'/KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66	<u>Moo</u> <u><i>KE</i></u> 4.4 5.8 14.1 29.1 31.9	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5	0.42 0.96 0.48 0.16 0.27
Month June July August September October November December January	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1	Dr 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37 2.86 0.21 0.59 8.72	Moc <u><i>KE</i></u> 0.3 1.2 0.4 1.1 2.1 1.5 2.6 0.2	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7 2.5 1.7 2.4	97-98 <u>KE'/KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5 2.3	0.42 0.96 0.48 0.16 0.27 0.15
Month June July August September October November December January February	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1 1.8	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6 1.0	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37 2.86 0.21 0.59 8.72 0.59	Moc <u>KE</u> 0.3 1.2 0.4 1.1 2.1 1.5 2.6 0.2 0.1	or 2 3900m <u>KE'</u> 1.1 1.0 1.7 0.7 2.5 1.7 2.4 1.2	97-98 <u>KE / KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45 10.32	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9 14.2	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5 2.3 7.6	0.42 0.96 0.48 0.16 0.27 0.15 0.54
Month June July August September October November December January February March	Moo <u>KE</u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1 1.8 0.9	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6 1.0 1.2	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37 2.86 0.21 0.59 8.72 0.59 1.37	Moc <i>KE</i> 0.3 1.2 0.4 1.1 2.1 1.5 2.6 0.2 0.1 0.5	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7 2.5 1.7 2.4 1.2 0.6	97-98 <u>KE</u> / <u>KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45 10.32 1.13	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9 14.2 2.7	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5 2.3 7.6 5.6	$ \begin{array}{r} 1.97-98 \\ \hline $
Month June July August September October November December January February March April	Mod <u>KE</u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1 1.8 0.9 0.8	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6 1.0 1.2 1.8	n 96-97 <u>KE</u> / <u>KE</u> 5.57 1.34 0.62 0.37 2.86 0.21 0.59 8.72 0.59 1.37 2.27	Moc <i>KE</i> 0.3 1.2 0.4 1.1 2.1 1.5 2.6 0.2 0.1 0.5 1.5	or 2 3900m <u>KE'</u> 1.1 1.0 1.7 0.7 2.5 1.7 2.4 1.2 0.6 0.7	97-98 <u>KE</u> / <u>KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45 10.32 1.13 0.47	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9 14.2 2.7 12.1	r 3 3000n KE' 1.9 5.6 6.7 4.5 8.5 2.3 7.6 5.6 2.2	$ \begin{array}{r} 0.42 \\ 0.96 \\ 0.48 \\ 0.16 \\ 0.27 \\ 0.15 \\ 0.54 \\ 2.11 \\ 0.19 \\ \end{array} $
Month June July August September October November December January February March April May	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1 1.8 0.9 0.8 0.1	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6 1.0 1.2 1.8 1.0	n 96-97 <u>KE / KE</u> 5.57 1.34 0.62 0.37 2.86 0.21 0.59 8.72 0.59 1.37 2.27 7.20	Mod <i>KE</i> 0.3 1.2 0.4 1.1 2.1 5 0.6 0.2 0.1 0.5 1.5 1.3	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7 2.5 1.7 2.4 1.2 0.6 0.7 0.4	97-98 <u>KE</u> / <u>KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45 10.32 1.13 0.47 0.33	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9 14.2 2.7 12.1 9.6	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5 2.3 7.6 5.6 2.2 3.8	$ \begin{array}{r} 1.97-98 \\ \hline $
Month June July August September October November December January February March April May June	<u>Mod</u> <u><i>KE</i></u> 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1 1.8 0.9 0.8 0.1 1.6	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6 1.0 1.2 1.8 1.0 1.8	$\begin{array}{r} \underline{n \ 96-97} \\ \hline KE \ / \ \overline{KE} \\ \hline 5.57 \\ 1.34 \\ 0.62 \\ 0.37 \\ 2.86 \\ 0.21 \\ 0.59 \\ 8.72 \\ 0.59 \\ 1.37 \\ 2.27 \\ 7.20 \\ 1.16 \end{array}$	Moc KE 0.3 1.2 0.4 1.1 2.1 5 0.2 0.1 0.5 1.5 1.3 1.7	or 2 3900m <u>KE'</u> 1.1 1.1 1.0 1.7 0.7 2.5 1.7 2.4 1.2 0.6 0.7 0.4 0.3	97-98 <u>KE</u> / <u>KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45 10.32 1.13 0.47 0.33 0.16	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9 14.2 2.7 12.1 9.6 15.1	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5 2.3 7.6 5.6 2.2 3.8 2.8	$ \begin{array}{r} 1.97-98 \\ \hline KE / \overline{KE} \\ 0.42 \\ 0.96 \\ 0.48 \\ 0.16 \\ 0.27 \\ 0.15 \\ 0.54 \\ 2.11 \\ 0.19 \\ 0.39 \\ 0.18 \\ \end{array} $
Month June July August September October November December January February March April May June July	Mod KE 0.8 0.3 0.6 1.1 0.3 2.4 1.3 0.1 1.8 0.9 0.8 0.1 1.6	br 2 5000r <u>KE'</u> 4.4 0.4 0.4 0.4 0.4 0.4 0.8 0.5 0.8 0.6 1.0 1.2 1.8 1.0 1.8	$\begin{array}{r} \underline{n \ 96-97} \\ \hline KE \ / \ \overline{KE} \\ \hline 5.57 \\ 1.34 \\ 0.62 \\ 0.37 \\ 2.86 \\ 0.21 \\ 0.59 \\ 8.72 \\ 0.59 \\ 1.37 \\ 2.27 \\ 7.20 \\ 1.16 \end{array}$	Moc <i>KE</i> 0.3 1.2 0.4 1.1 2.1 1.5 2.6 0.2 0.1 0.5 1.5 1.3 1.7 2.0	xE' 1.1 1.1 1.0 1.7 0.7 2.5 1.7 2.4 1.2 0.6 0.7 0.4 0.3 0.3	97-98 <u>KE</u> / <u>KE</u> 3.45 0.92 2.62 1.50 0.32 1.65 0.66 12.45 10.32 1.13 0.47 0.33 0.16 0.14	Moo <u>KE</u> 4.4 5.8 14.1 29.1 31.9 15.9 14.2 2.7 12.1 9.6 15.1 9.9	r 3 3000m KE' 1.9 5.6 6.7 4.5 8.5 2.3 7.6 5.6 2.2 3.8 2.8 3.0	$ \begin{array}{r} 0.42 \\ 0.96 \\ 0.48 \\ 0.16 \\ 0.27 \\ 0.15 \\ 0.54 \\ 2.11 \\ 0.19 \\ 0.39 \\ 0.18 \\ 0.31 \\ \end{array} $

Table 3-3-5. Same as Table 3-3-4 except for at Moor2 and Moor3.

1.2

0.6

Entire series

1.99

0.6

1.7

2.86

Fig. 3-3-6. Kinetic energy variation of monthly mean flows at each mooring station. (a): Moor1 1995-1998, (b): Moor2 1997-1998, (c): Moor3 1997-1998.

3-3-4. スペクトル解析

流速値の周波数特性を解析するため、1 時間間隔のデータセットの東西成分に 付いて、FFT(Fast Fourier Transform)法を用いたパワースペクトルを計算した。デー 夕範囲は Moor1 の 1500m と 3000m を 1995 ~ 1997 年の 2 年間に繋げて用いた。1997 ~ 1998年はデータ取得開始時が前期間の計測終了時と間隔が開いたため約1年分のデ ータとして扱った。

Fig.3-3-7 に 1995 ~ 1997 年の Moor1、及び 1996 ~ 1997 年の Moor2 の結果 を示す。両点の 4 層の記録にはいずれも 1 日、半日周期に顕著なピークが見られ、潮 汐による振動のエネルギーが大きいことを示している。また観測点の緯度帯で 15.5 時 間となる慣性振動の周期にも顕著なピークが見られる。長周期域の拡大図(図中右列) では 95%信頼区間を満たすような顕著なピークは存在しないが、10 日前後の周期に上 下層で共通のピークを持つ周期も見られる。Fig.3-3-8 に 1997 ~ 1998 年の 3 点の結果 を示す。前期間と同様に、1 日、半日、15.5 時間周期には顕著なピークが存在すが、 長周期域には信頼区間を満たすピークは見られない。

次に同一点での上下層の関係を調べるためクロススペクトルのコヒーレンス と位相差を調べた(Fig.3-3-9)。データ期間はパワースペクトルの計算と同様の期間で、 すべて上層(X)を先行させた位相差を示す。(a)の 1995~1997年における Moor1 上下 層の結果では、長周期域にも数点の 95%信頼域を満たす周期帯がある。(b)の 1996~ 1997年における Moor2 上下層では、コヒーレンスのピークは(a)に比べて高く、5日 以上の周期では殆どが 95%信頼域を満たしている。また 10 日周辺から 10 日以上の周 期では位相が±180°に近く、およそ 1 周期のずれで伝わる振動であることが分かる。 1997~1998年の3点((c):Moor1、(d):Moor2、(e):Moor3)では、7.5日の周期に全点 で有意なピークが見られる。しかし南部の Moor2 と北部の Moor3 が共に位相差は約 +130°であるのに対し、中央部の Moor1 が - 95°と異なる位相差を示している。105 日付近の周期は(a)(b)(c)(e)で有意なピークとなっており、位相差は±150°に近い値で ある。上下層の深度差が 2400m ある Moor2(d)では 5 日を越える周期帯で、有意なピ ークは少ないが、深度差が 1000m の Moor3(e)では 20 日を越える全周期帯で、有意な コヒーレンスが見られる。

Fig.3-3-10 に観測深度が同一または 1000m 未満の深度差における他の係留点 とのクロススペクトルの結果を示す。データ期間は 1996~1997 年が Moor1、Moor2 の 3000m(g)の 1 つで、(a)~(f)は 1997~1998 年の結果である。位相差は全て北側の 係留点(X)を先行させた結果を示す。上層の結果(a)(b)(c)では 5 日以上の周期帯に有意 なピークは殆ど見られない。一方で下層の結果(d)(e)(f)では、10 日前後の周期に多く の有意なピークが見られる。北部の Moor3:3000m と南部の Moor2:3900m の結果(f) においても、10 日を越える長い周期で有意なピークが存在する。しかし 1996~1997 年の結果(g)では、中央部 Moor1 と南部 Moor2 の 3000m で、有意なピークは 1 周期 しか存在せず、1997~1998 年に見られた下層の高いコヒーレンスが常に観測される ものかどうかは疑問の余地が残る。変動の伝播方向に関しては、位相差はプラス・マ イナス両方の値が見られ、北方からの振動、南方からの振動の両方が存在することが 分かる。

上記に示したスペクトル解析の結果をまとめると、個々の単独パワースペク トルでは長周期域に有意な周期性は全点・全層において見られなかったのに対し、日 周潮・半日周潮は高いエネルギーレベルを有している。これは Amchitka 海峡におけ る潮汐混合が、Alaskan Streamの沿岸の塩分躍層を壊しているとした Ohtani et al. (1997)の推論を支持する結果となる。前節で示した平均ベクトルや運動エネルギーの 月別変化で見られた冬期に強くなるという周期性、更に大きな経年変動は、最長で2 年という連続データ取得期間の短さから抽出することが不可能であった。しかし上下 層間・南北間におけるクロススペクトルでは、数日から数十日における周期で有意な コヒーレンスが示された。この結果は 1995~1997 年における同データを用いた Onishi and Ohtani (1999)による西向流の移動平均結果においても明瞭に示されてい る。これら上下層間・南北間の繋がりは、断面構造にみられる Alaskan Stream の地 衡流速分布パターン(Fig.3-2-3)、また EOF 解析に見られた空間分布パターン (Fig.3-2-14)に影響を与えた原因であるとも考えられる。特に 3000m 以深の下層では コヒーレンスが高く、Fig.3-3-9(b)に見られる上下層間だけでなく、Fig.3-3-10(d)(e)(f) に見られる南北間でも高いコヒーレンスが示された。また Fig.3-3-2 に示した日平均の スティックダイヤグラムにおいて、2年間に渡る 7000m 深のデータが流速値は得られ なかったものの、流向の変化は上層の変化と良い追従を示している事からも、深層の コヒーレンスの高さが窺える。

Fig.3-3-7. Power spectra of the u-component data by FFT. (a): Moor1 1995-1997, (b): Moor2 1996-1997. Right side panels are expansions of left side rectangle area.

Fig.3-3-8. Same as Fig.3-3-7 except for (a): Moor1 1997-1998, (b): Moor2 1997-1998, (c): Moor3 1997-1998.

Fig.3-3-9. Coherence and phases of the cross-spectra between upper layer (X) and deep layer (Y) from *u* -component data sets. (a): Moor1 1995-1997, (b): Moor2 1996-1997, (c): Moor1 1997-1998, (d): Moor2 1997-1998, (e): Moor3 1997-1998.

Fig.3-3-10. Same as Fig.3-3-9 except for between northern station (X) and southern station (Y) from *u* -component data sets. (a): Moor1(1500m) : Moor2(1500m), (b): Moor3(2000m) : Moor1(1500m), (c): Moor3(2000m) : Moor2(1500m), (d): Moor1(3000m) : Moor2(3900m), (e): Moor3(3000m) : Moor1(3000m), (f): Moor3(3000m) : Moor2(3900m) 1997-1998, (g): Moor1(3000m) : Moor2(3000m) 1996-1997.

第4章 議論と考察

4-1. Alaskan Stream 流速成分の変化

CTD 観測結果から求めた 3000m を基準層とした地衡流速値と係留観測で流 速計によって得られた直接測流の結果をもとに、Alaskan Stream の傾圧流成分と順 圧流成分との関係について議論する。Moor1の係留点はCTD断面のNorthの測点間、 Moor2 の係留点は South の測点間、Moor3 は North の測点間にあたるため、それぞ れの測点間の地衡流速値との比較を行った。直接測流の値は結果(3-3.)で求めた日平均 データを基に、CTD 観測線に直交する成分を求め、CTD 観測日に最も近い 2 日間、 10 日間、30 日間で平均した値を用いた。

Moor1 での結果を Fig.4-1-1 に示す。実線が地衡流速値のプロファイル、点 線が 1500m の直接測流値に合わせたもの、破線が 3000m の直接測流値に合わせたも のである。1995 年と 1996 年の結果では、いずれの平均期間においても 2 線の間に 2 ~4cms⁻¹の開きが見られ、1500m で合わせたプロファイルが 3000m で合わせたプロ ファイルを上回っている。流速計の値が正しいとすれば、この結果は 1500mの直接測 流結果には非地衡流(ageostrophic flow)成分が含まれていたことが考えられる。これ に対し 1997 年の結果では、2 線の差はいずれの場合も小さく、ほぼ一致している。ま た 3000m の直接測流値は前 2 年に比べて大きく、平均の期間によって異なるが 4cms⁻¹ 前後の値となっている。

1997年は3000m以浅の地衡流量として9年間の最大値41Svを記録してお リ、下層の傾圧・順圧流成分も含めるとAlaskan Streamの流量としては更なる増大 が予想される。1998年6月の結果では2日の平均では2線に差があるものの、10日、 30日の平均では、差はごく僅かである。1997年と同様に考えれば、3000mの流速値 が小さい値であり、上層の傾圧流の弱まりと同時に1997年に比べて順圧成分も弱ま っていると考えられる。同年の8月では更に地衡流速は減少し、3000mの実測値は東 向き成分を持っている。以上のことを考え合わせると、この海域において地衡流バラ ンスがなり立つ基準深度は3000m付近にあり、基準深度は変化する事がわかる。また 傾圧流速と順圧流速は影響しあって変動しているが、1997年以外の年の順圧流速はご く小さな値である。

Moor2 での比較結果を Fig.4-1-2 に示す。Moor2 での 3000m 以浅の記録は 1997~1998 年の 1500m 深のみであるが、参考のため 3900m 深の直接測流値も合わ

せて矢印で示す。1997 年の 1500m における直接測流値は 20cms⁻¹に近い値を示して いる。これに対して地衡流速値も 9cms⁻¹と大きな値であるが、両者の差は 10cms⁻¹に 近い値である。この差を全て 3000m 以深の傾圧構造によるものと考えるのは、水深が 約 5200m であることからも無理があり、順圧流成分が含まれていると考えられる。し かし 3900m の流速値は大きな値ではなく東向きの流速値を示す期間も見られる。従っ てこの構造は上層だけに限られたものであり、3-2-2.でも述べた Ridge Domain を中 心とした反時計周りの渦の存在が影響していると思われる。

Fig.3-1-1 に示した 1997 年の水温・塩分・密度・地衡流速の断面図では、いずれの断面においても Ridge Domain ピークを挟んだ対称形をなしており、渦の存在を示唆している。この断面図から判断できる渦の南北半径は約 40km であり、深さ方向には 2000m 以上に及ぶと見られる。Moor2 の設置点は South 測点間の北よりに位置しており(Fig.2-2-1) 渦の外周に近いため、測点間の平均流速として得られる地衡流速との間に差が生じた事と渦流に非地衡流成分が多分に含まれていた事が原因と考える。この渦の流量に与える影響に付いては次節で述べる。

1998 年 6 月の結果では、1997 年に比べて地衡流速値、直接測流値ともに大 きく減少し、1500m での両者の差は殆ど無い。地衡流速断面図(Fig.3-2-3)からも渦の 構造は見られず、3000m 基準での地衡流バランスが成立していると思われる。1998 年 8 月には上層で西向き、中層で東向きの地衡流速が得られており、全層の積算では 東向き流量となった。1500m の直接測流結果でも、2 日間の平均では西向き 0.4cms⁻¹、 30 日間では東向き 1.1cms⁻¹と方向が反転し、この点が東西流の狭間に位置していたこ とを窺わせる。

Moor3 での比較結果を Fig.4-1-3 に示す。流速計の設置が 1997 年 8 月である ため、1997 年 6 月の CTD 観測から得られた地衡流速値との比較は行わず、1998 年 6 月・8 月の結果のみを比較した。実線が地衡流速値のプロファイル、点線が 2000m の 直接測流値に合わせたもの、破線が 3000m の直接測流値に合わせたものである。6 月 の結果では、いずれの平均期間においても 2 線の間に 2~3 cms⁻¹ の開きが見られ、 2000m の直接測流結果には非地衡流成分が含まれていたことが考えられる。8 月では 更に 2 線の広がりは大きくなり 5 cms⁻¹前後の開きが見られる。また 3000m の流速値 は Moor1 と比較して 6・8 月共に大きく、強い深層流の存在を窺わせる。南部の Moor2、 中央部の Moor1 そして北部の Moor3 と北上するにつれ、実測流と地衡流の差は大き くなり、2 層で合わせた流速値の差も大きくなることから、Alaskan Stream 内でも非 地衡流成分は北側ほど大きく、順圧流成分もより大きくなっていると考えられる。但 し、前述の低気圧性渦が存在する場合は、南側の点で非地衡流成分が極端に増大する と考えられる。

6月と8月の水塊構造の変化を見ると(Fig.4-1-4)、北端の北緯51.2度の点では700m以浅の水温がほぼ一様に昇温しており、塩分では僅かに低塩化している。これが密度の低下に繋がり、結果としてNorthの測点間では上層の西向き流が増加して

いる。北緯 50.8、50.4、50.1 度の点では、水温において中冷水の構造が見られなくな り、塩分では躍層が上昇している。また躍層以深の塩分値は僅かに低下しており、流 速構造は Center、South の両測点間で弱くなっている。49.8、49.5 度では 8 月に観測 を行っておらず、比較できないが、1500m までの観測を行った 49 度の点では中冷水 の構造も変わらず見られ、塩分、密度の構造にも変化が無い。当海域に見られる中冷 水の構造は、オホーツク海の冬期の冷却により形成され、千島列島を通り昇温を続け ながら西部亜寒帯循環の亜寒帯海流によって東方へ運ばれたものと考えられている (Dodimead et al., 1963; 大谷, 1989; 河野, 1991)。従って、Alaskan Stream 内に見 られる中冷水の構造は南部の亜寒帯海流からの移流と考えられる。約1ヶ月半の間に 起こった Alaskan Stream の領域から Ridge Domain のピーク付近にまで見られた中 冷水の消失は、南からの移流に変わり北からの水塊移流がこの変化に結びついている と考えられる。変化の期間、Moor2の 1500m では南向き成分が卓越し(Fig.3-3-2)、ベ クトル平均においても各係留観測点で 7・8 月に南向き成分が強まっている(Table 3-3-2, 3-3-3)。これらの流向の変化は、北からの水塊移流を裏付ける結果となっている。

地衡流速値の変化では、Northの測点間で西向きが強まり、逆に Center の測 点間では西向きが弱まっている。Fig.3-3-2 に示した結果の Moor1 の 1500m でも、6 月の下旬から 8 月の上旬にかけて西向き成分は徐々に弱まり、南向き成分が強くなっ ている。3000m でも同様の結果が見られ、南向き成分はよりはっきりと現れている。 Moor3 でも同様の南偏傾向が見られるが、Moor1 に比べて僅かである。この南北の流 速シアーは正の渦度を発生し、水柱は南下してコリオリのパラメーター(f)の減少と共 にアリューシャン海溝で深度を増す。よって水柱は正の渦度を増加させるが、海底面 はアリューシャン海膨に繋がり急激に深度を減じ、水柱は逆に負の渦度を得る。この ような物理機構によって北からの水塊移流は海溝上に留まり、海溝より南の北緯 49 度には影響を及ぼさなかったものと考えられる。

Fig.4-1-1. Results of adjusting geostrophic velocity with current meter velocity at 1500m (dotted line) or 3000m (dashed line) at Moor1. Current meter velocity is averaged for 2days (top line), 10days (middle line) or 30days (bottom line) closest to CTD observation period.

5-30-25-20-15-10-50

5-30-25-20-15-10-5 0

5

5 -30-25-20 -15 -10 - 5 0

5-30-25-20-15-10 -5 0

Fig.4-1-2. Same as Fig. 4-1-1 except for at 1500m (dotted line) at Moor2.

Fig.4-1-3. Same as Fig.4-1-1 except for at 2000m (dotted line) or 3000m (dashed line) at Moor3.

Fig.4-1-4. Profiles of potential temperature, salinity, potential density at each station and geostrophic velocity referred to 3000m at each section in June and August 1998.

4-2. Alaskan Stream の安定性

既往研究における Alaskan Stream 内の直接測流結果から、平均運動エネル ギー、渦運動エネルギー、及び両者の比率を Table 42-1 にまとめる(Warren and Owens (1985)の結果は論文中に示された平均流速、標準偏差より算出)。測定深度が 500m 以深に限ってみると Table 42-1 に示す 12 例が有るのみである。これらの既往 研究において筆者達が共通して述べていることは、Alaskan Stream は黒潮やメキシ コ湾流に比べて流れの安定性が高い事である。安定した流れは 500m 以深にも見られ、 エネルギー比率は 1.0 を下回っている例が多い。また 1000m においても 1.0 を下回る 観測結果が多く報告され、深層に至る流れの安定した層流であることを強調して報告 している。3 年間に渡る本研究の測流結果(Table3-3-4,3-3-5)においても、Alaskan Stream が深層に至るまでも流れの安定した層流であることが再確認された。本研究の 観測点はこれまでの測流点のうち最も西より、つまり Alaskan Stream の下流にあた るが、その点においても深層に至るまでの安定した層流であるという特質は持続され ていた事が分かる。

しかし Alaskan Stream の北側に位置する Moor3、中心に近い Moor1、南側 に位置する Moor2 ではそれぞれの値に違いが見られた。1 年間の観測結果が得られた Moor3 では、平均運動エネルギーの卓越した前半と、平均運動エネルギーが低下した 後半では運動エネルギー比率に大きな差が見られ、前後半の変換期(2 月)には 2000・ 3000m の両層で比率が 2.0 を上回っている。Moor2 では時として大きな擾乱が通過す る事が分かり、1997 年と 1998 年の夏期では大きな年格差が存在する。また 3 年間に 渡る Moor1 の測定においても、Moor2・Moor3 より安定性が高いものの、1998 年の春 期からは比率が 1.0 を超える月も見られ、年による違いが存在する事も分かった。同 一点の 3 年間に渡るデータを利用した Reed and Stabeno (1989)の結果においても年 格差が大きい事が分かる。

既往研究において、北太平洋中央部で行なわれた唯一の観測結果と本研究の 結果を詳しく比較すると、Warren and Owens (1985)は西経 175 度のアリューシャン 海溝上 3019m の観測深度で平均運動エネルギー1.30 cm²s⁻²、渦運動エネルギー1.31 cm²s⁻²という結果を得ている。これらの値は本研究の観測で1996~1997年のMoor2、 3000m の計算結果と類似している。また彼らの CTD 観測線において、係留点よりも 北側で Alaskan Stream 地衡流量の大半が得られているとの記述も有り、係留点は Alaskan Stream の南端に位置していたと考えられる。そして Alaskan Stream 内係 留点の約 50km 南側の係留点では、流速構造の良く似た東向きの流れ(Eastward Jet) を観測している。彼らはこの流れをアリューシャン海溝の南斜面から Aleutian Rise にかけての海底隆起と緯度変化によって起こるものと考え、Stommel and Aron (1960)の深層循環モデルに海底地形の緯度方向の傾斜率を加える事によって

Eastward Jet の存在を示した。

本研究の観測断面では 1991、1992、1997 年に Alaskan Stream に接する南 側に東向きの速い地衡流速値が得られている(Fig.3-2-3)。この流れは前節でも述べた ように Alaskan Stream 内の South の測点間における西向き流と対をなしている事か ら、反時計周りの渦であると推定した。既往研究においても当海域で渦の存在を報告 した例はいくつか見られる。Thomson (1972)は経度 180 度がアリューシャン列島弧の 南端にあたるという地形的特長から、当海域において Alaskan Stream は蛇行する可 能性が有る事を理論的に示した。Overland et al. (1994)は最新の数学モデルを用いて、 Stabeno and Reed (1994)は衛星追尾型の漂流ブイによるデータで、そして Cokelet et al. (1996)は ADCP 観測記録と地衡流速結果から Near 海峡付近で大規模な蛇行と時 計周りの渦の存在を示している。また Okkonen (1992)は GEOSAT 衛星の高度計デー タから 1987~1988 年にかけて、Alaskan Stream から切離した時計周りの渦が経度 180 度線付近に見られた事を報告している。しかし以前の報告による渦は Alaskan Stream がアリューシャン列島から離岸蛇行した後、形成される時計周り(高気圧性)の 渦で、本研究で見られた構造とは異なっている。本研究で見られた渦の構造は、Ridge Domain のピーク、即ち亜寒帯循環の軸を中心とした反時計周り(低気圧性)の渦であり、 渦の消長は亜寒帯循環のスピンアップ、スピンダウンによってもたらされる局所的な ものと考える事ができる。この事は直接測流の結果からも推論する事が出来る。1995 ~1996 年秋期にかけては周期的な変動を繰り返していた Alaskan Stream は 1996 年 冬期から徐々にスピンアップが始まり、この影響は 3000m 深の測流結果にも表れてい る。1996年6月の断面観測では見られなかった低気圧性の渦が、1997年6月の断面 観測でははっきりと認められ、地衡流量も 22.4Sv から 41.0Sv と大きく増量している。 夏期以降もスピンアップは継続し、1997 年 12 月~1998 年 1 月がピークであったと測 流結果から推察できる。渦の影響が強い Alaskan Stream の南部では 1997 年秋期か ら既に擾乱が見られ、渦の消滅または移動により急激なスピンダウンが 1998 年の 1 ~3 月に起こっている。その後は夏期にかけて緩やかな流速値の減少が見られ、同時 に擾乱も多く見られる。1998 年 6 月の観測断面では渦の構造は消え、流量は 14.8Sv と大きく減少、8月では更に流量は減少し10.3Svとスピンダウンの現象は持続してい る事が分かる。この渦の存在は亜寒帯海流と Alaskan Stream が局所的に水塊を交換 している事になり、水塊交換の推定量と Alaskan Stream 流量の連続性に関して次節 で議論する。

500m depth data.							
Authors (Year)	Latitude	Longitude	Observation depth(m)	Observation period(Y/M)	\overline{KE} (cm ² s ⁻²)	<i>KE</i> ' (cm²s²²)	KE' / KE
Warren & Owens	50°59.4'N	174°51.7'W	2010	'81/6-'82/7	5.83	1.78	0.31
(1985)	50°59.4'N	174°51.7'W	3019	'81/6-'82/7	1.30	1.31	1.00
	50°59.4'N	174°51.7'W	4510	'81/6-'82/7	0.43	6.73	15.82
Reed et al. (1981)	57°00'N	152°00'W	980	'80/2-'80/8	52.00	14.00	0.30
Reed & Schumacher	56°31'N	151°40'W	520	'81/9-'82/2	182.00	79.00	0.40
(1984)	56°31'N	151°40'W	1020	'81/9-'82/7	35.00	27.00	0.80
Reed & Stabeno	55°37'N	155°19'W	500	'85/10-'86/8	58.00	24.00	0.40
(1989)	55°22'N	155°04'W	1000	'85/10-'86/8	2.00	30.00	15.00
	55°22'N	155°04'W	600	'86/10-'87/7	78.00	68.00	0.90
	55°22'N	155°04'W	1100	'86/10-'87/7	2.00	22.00	11.00
	55°21'N	155°12'W	500	'87/7-'88/5	128.00	43.00	0.30
	55°21'N	155°12'W	1000	'87/7-'88/5	23.00	18.00	0.80

Table 4-2-1. The ratio of kinetic energy observed in upstream area of the Alaskan Stream selected below

4-3. Alaskan Stream 流量の連続性

前節において Alaskan Stream の流れの特性が上流域と変わらず安定したも のである事を述べた。また亜寒帯海流との境界に形成される渦は、両海流の水塊交換 に関与している事から、本節ではAlaskan Stream 流量の連続性について議論する。 Favorite et al. (1967)は過去の観測資料を統合し、アラスカ湾における Alaskan Stream の流量は 1000db 基準で 10Sv 程度とし、その内 4Sv がアラスカ半島先端付近 で南に分岐し、亜寒帯海流に取り込まれアラスカ循環に戻り、6Sv がアリューシャン 列島に沿って西進するという概念図を作成した。Royer (1981a) はアラスカ湾内の Seward 沖から Unimak 水道に至る 6 観測断面で Alaskan Stream の流量が不連続 である事を指摘した。Reed (1984)はアラスカ湾内から、経度 180 度に至る 8 観測断 面で、Alaskan Stream は南部境界において海水交換を行っており、正味の流量とし ては下流域に向うほど流量が増加している事を報告している。同様に Royer and Emery (1987)は Alaskan Stream への南部境界からの加入流量を計算し、西経 155~ 175 度の間で 3.4Sv(1000db 基準)と求めた。同時に彼らの示した結果から、東向きの 亜寒帯海流も不連続であり、Alaskan Stream に吸収された流量の一部は南向き流量 として加入されるが、南向き流量は北向き流量に比べて少なく、亜寒帯海流はより南 部の海域からの加入によって流量を回復している。これら既往の研究を踏まえて、本 研究では経度180度の断面観測に、その他の同航海中に得られた観測断面の流量を加 えて考察する。

Table 43-1 に各年8月上旬に行われた、北緯49度線に沿った観測断面の南 北流量と 6 月に行った 180 度線に沿った観測断面の北緯 49~50.1 度までの亜寒帯海 流の東西流量を示す。南北流量は測点間の距離、基準深度が年により異なるため、一 様に比較する事は出来ないが、前述の渦構造が見られる 1991、1992、1997 年は南向 きの流量もしくは北向き流量の著しい減少が見られる。同時に北緯49~50.1度までの 東向き流量は 10Sv を越える大きなものとなっている。その他の年は北向きの流量が 大きく、逆に 1990 年を除けば北緯 49~50.1 度までの東向き流量が少なくなっている 事が分かる。渦構造の見られた 1991 年と渦の無い 1993 を比較して、輸送量を水平面 的に示した(Fig.4-3-1)。両年は Amukta 海峡南側の西経 171 度 40 分においても Alaskan Streamの断面観測を行っており、その結果も合わせて示す。 渦構造の見られ た 1991 年は 49 度以北の東向き流量が 16.1Sv であり、49 度ラインを通過する流量は 殆どない。対して 1993 年は、4.3Sv の東向き流量で、49 度ラインを通過する南から の流量が 4.5Sv ある。180 度における Alaskan Stream の流量は両年に大きな開きは ないが、1991 年は約半分の流量を南からの流量に補われている。対して 1993 年は 5.3Sv で、割合的にも東からの流量に比べて少量である。従って渦の存在は 180 度線 の Alaskan Stream の流量に大きな影響を持っている事が分かる。しかし渦が無い場

合においても亜寒帯海流域からの再循環流は認められ、流量としての Alaskan Stream は連続的なものではない。

1994~1997年においては同航海で、アラスカ湾内で海岸線にほぼ直交する観 測ラインを設け、1998 年は西経 165 度に沿った観測ラインを設けている。各年の観測 ラインでの地衡流量を Fig.4-3-2 に示す。基準深度は何れも 3000m で、3000m 以浅の 水深の場合は海底付近を基準層とした流量である。また Alaskan Stream の流量とし は、Ridge Domain のピークが顕著でないために、断面構造から流域を特定する事が 難しいため、岸を右手に見て流れる流量を沖合に向けて積算し、最大値を示す範囲の '流量とした。アラスカ湾内の循環においても、1997 年(Fig.4-3-2(d))を除いて、Alaskan Stream は連続した流量を有していない。同データを用いて西経 145 度線上に見られ る高気圧性傾圧渦に注目した Onishi et al. (2000)は、西経 145 度における北緯 57度 以北の Alaskan Stream の流量として 7.5Sv(1995)、6.3Sv(1996)、12.7Sv(1997)を得 ている。これらの流量変動は180度線上での流量変動と傾向は類似しているものの、 絶対量としては約 1/3 程度であることを指摘した。180 度線で渦構造の見られなかっ た 1998 年(Fig.4-3-2(e))においては、165 度の流量が 180 度の約半分で、残りの半分 は亜寒帯海流域からの再循環流に補われている事が分かる。これは渦の有った 1991 年の流量比率と同じであり、180 度で渦が確認されない場合においても、より東方の 海域において、再循環に影響する海水交換が行なわれている事を示している。

1994~1996年は観測ラインと海岸線に囲まれた範囲で正味の流量がプラス の値を取っている。特に1994年、1995年はプラスの量が大きく、それぞれ12.9Sv、 13.6Svとなっている。これは沿岸域の流量把握が不完全である可能性も有るが、漏れ 出る量としては大きすぎると考えられる。両年はOnishi et al. (2000)によると西経 145度線上に大規模な高気圧性渦が存在し、渦の傾圧構造は2000m以深に達し13Sv 以上の流量を有していることが指摘された。この高気圧性渦の存在は傾圧構造内部領 域の厚さを増し、3000m以深での海水の出入りが多量に存在した可能性を示している。 また沿岸域に輸送された海水は、陸棚斜面から陸棚上にかけて、密度構造に変質を受 け、非地衡流的な流れとなって流出している可能性も考えられる。しかし上記の仮定 を実証するには、多くの連続的な直接測流結果と時空間的に細密で深層に及ぶ断面観 測が必要となる。

1998 年夏期(6~8月)に行われた北太平洋亜寒帯海域の海洋観測調査を総合し、力学高低図(Fig.4-3-3)を作成することによって亜寒帯循環の視覚化を試みた。 東経144 度線は函館海洋気象台高風丸による6月の観測、東経155 度線は北海道大学 水産学部附属練習船北星丸による6月の観測、東経170度・175.5 度及び175.5 度線 から延びる斜めの観測線は同じく北星丸による8月の観測、180 度線(6月)・西経165 度線(6月)・西経145 度線(7月)はおしょろ丸による観測である。最大観測深度を統一す るため1500mを基準層とした。東経144 度では1.4~1.7x10²m²s⁻²の等値線が北緯39 度付近で混み合っており、強い東向流が予想される。この流れは東進し、東経170 度

	Across	49°N (Augu	Across 180° (June)		
Year	Section (Longitude)	Reference Level	Volume Transport (Sv)	Section (Latitude)	Volume Transport (Sv)(0-3000m)
1990	174°W-179°W	2000m	6.26	49°-50.1°N	13.14
1991	174°W-180°	2000m	-0.13	49°-50.1°N	16.08
1992	174°W-180°	2000m	-1.27	49°-50.1°N	12.75
1993	174°W-180°	2000m	4.46	49°-50.1°N	4.35
1994	174°W-180°	2000m	0.64	49°-50.1°N	3.26
1995	174°W-180°	1500m	1.65	49°-50.1°N	5.62
1996	174°W-180°	1500m	1.05	49°-50.1°N	5.63
1997	174°W-180°	700m	0.35	49°-50.1°N	21.85
1998	174°W-180°	1500m	8.21	49°-50.1°N	4.67

Table 4-3-1. Geostrophic volume transport across 49°N in August and 180° in June. Plus: Northward or Eastward, Minus: Southward or Westward. Hatched line indicates the eddy year.

Fig.4-3-1. Schematic net volume transport across the each section in 1991(a) and 1993(b)

Fig.4-3-2. Schematic net volume transport across the each section in the Gulf of Alaska from 1994 to 1997 (a-d) and in the central northern North Pacific in 1998(e).

の天皇海山列を越えたあたりから 2 分され、下流域では渦の形成が確認される。180 度線では 2 分された流れの北側が極前線、南側が亜寒帯境界の位置にほぼ相当してい る。斜めに延びる観測線の北端位置(北緯 50 度、東経 165 度)が力学高度では最も低く、 西部亜寒帯循環の中心に近いと考えられる。この点を中心に、東進した流れの一部は 方向を変え、アリューシャン列島に沿って西進する。西部亜寒帯循環の東方への張り 出しは 180 度線を越えて広がっており、180 度線における Alaskan Stream の流量は アラスカ湾から連なる西進流と、亜寒帯海流から方向を変えた再循環流でなり立って いることが分かる。

以上のように北太平洋中央部における Alaskan Stream の流量は連続性を持たず、亜寒帯海流域からの再循環流が多く含まれている事が明らかとなった。

Fig.4-3-3. Dynamic topographic map at surface referred from 1500m in summer 1998.

4-4. Alaskan Stream の季節変化と経年変化

本節では Alaskan Stream の季節変化と経年変化を、流量評価を基準として 議論する。本研究では 3 年間に渡って Alaskan Stream の直接測流を行ってきたが、 観測点数、観測層数の少なさから、測流値より直接的に全体の流量を評価する事は難 しい。特に流量の大半を占める 1500m 以浅に測流結果が無い事と、全係留点で直接測 流結果が得られた年が 1997~1998 年で、経年変化の大きい時期に当たっていた事が 理由である。そこで 3 年間に渡って流速値が得られた Moor1 の 1500m 深のデータを Alaskan Stream の代表値と考え、そこに見られる季節変化、経年変化から流量を評 価する事とした。まず 9 年間の地衡流量と各層の地衡流速の関係を図式化した (Fig.4-4-1(a)~(i))。地衡流速値は 3 測点間を平均して 1 年の代表値とし、流量は 3 測 点間の合計(Alaskan Stream 全体の流量)との関係を 9 層に付いて調べた。0(a)、100(b)、 200(c)、2000(h)、2500m(i)の上層と下層は相関が悪く、99%の信頼限界を満たしてい ない。それに対し 300(d)、500(e)、1000(f)、1500m(g)の中層は相関係数(R)が 0.98 以 上となり、99%の信頼限界を満たしている。最も相関が高かったのは 500m(e)である が、直接測流結果の得られている 1500m(g)においても十分な信頼性が得られたので、 その関係式(4.4.1)

Y = 3.33X + 9.29 (4.4.1) Y: Geostrophic Volume Transport (Sv) of the Alaskan Stream X: Average Geostrophic Velocity (cms⁻¹) at 1500m in the Alaskan Stream

を用いて以下の議論を進める。Moor1、1500m 深の日平均流向流速データから、CTD 観測断面に直交する成分を抜き出し、月別、年別、CTD 観測の行なわれた各年 6 月に 付いて、平均値と標準偏差値を求めた。また平均値を上記式X に代入し、流量の平均 値と標準偏差を推定した結果を Table 44-1 に示す。月別の結果をグラフ化すると 7 月が極端に落ち込んでいるのが分かる(Fig.4-4-2)。これは 1 年を通じて速い流速値が 観測された 1997 年のデータが、7 月に関しては測定期間の狭間にあたりデータが得ら れていない事が原因である。従って 7 月を除いて考えると、4 月が最小で 37.5Sv、夏 から秋に掛けて緩やかに増加、冬期は急激に増加し1 月に最大値(53.8Sv)を迎える。2 月は急激に減少し、3・4 月と下降傾向が続いている。年別と各年 6 月の流速値から推 定される流量を地衡流量と比較して Fig.4-4-3 に示す。両推定値とも 1997 年が最大で、 1998 年が最小値を示す事は地衡流量の結果と一致している。また年別の変動は地衡流 量の変動傾向と良く一致しており、6 月の断面観測結果が当年の代表値となりうる事 を示している。月別に見て流量の少ない 4・5・6 月の値は標準偏差が 20Sv より大きく、 年変動が現れやすい月であると見る事もできる。1997 年 6 月の推定流量は 52.7Sv で

1月の平均推定流量 53.8Sv に匹敵する流量を持ち、1998 年 6月の 27.7Sv との差は月 別の 1月と 4月の差よりも大きい値である。また年別の標準偏差は 1998 年を除くと 16Sv 前後と年平均の 30~40%の値に留まっている。これに対し月別では標準偏差の 値が大きく、月平均に対して 50%を超える月もある。1998 年の標準偏差が大きく現れ たのは、1997 年から引き続いて流速値の増加が 1月まで有り、2月以降に急激に減少 したためと考えられる。

Alaskan Stream の季節変化に関して、Ohtani (1970)は夏期と冬期の循環構 造に大きな変化は見られないと報告している。Reed et al. (1980)は同様に Alaskan Stream に顕著な季節シグナルは見られないとした。また Royer (1981a)は Kodiak 島 沖の流量の季節変化を平均流量の13%と見積もり、季節変化が小さい事を示した。し かしこれらの報告は単発的な観測例から類推されたもので、年間を通じた観測例とし ては Tabata (1991)の報告がある。この研究はアラスカ湾中央の Station P (50°N, 145ºW)とVancouver 島を結ぶ Line Pで 25 年以上継続して行なわれた北上するアラ スカ海流のモニター観測結果からの記述である。この中で著者は冬期に流量は増加し、 夏期に減少する傾向が有るが季節変化は経年変化に比べて小さい事を述べている。ま た流量は風応力の季節変化に対応しているが、流量変化は風応力の変化量よりも小さ い事を示した。北太平洋中央部では Overland et al. (1994)が風応力を外力としたモデ ル計算の結果、Alaskan Streamの平均流量は 15Sv で、最大が 1~2 月、最低が 6~7 月となり、両者の差は 6Sv と推定した。また 3~4 月は南向き成分を強め、これが Near 海峡沖での時計周りの渦に繋がる事を報告した。本研究の結果においても、季節変化 は冬期に最大、春期から夏期に最低値を示す事は上記の研究結果と一致している。こ れは上記引用の文献が指摘するように、アリューシャン低気圧の発達周期が明瞭な季 節サイクルを持っている事に起因していると考えられる。また経年変化が季節変化に 比べて大きい事も上記の報告に一致している。Tabata (1991)は経年変化に現れる 6~ 7年の周期を、局所的な風ではなく更に大規模な大気変動と結び付いた亜寒帯循環の 変動現象として捕らえており、1990年、1997年の本研究で得られた Alaskan Stream の強まりと1997年から1998年にかけての極端な減少は循環全体の変動を捕らえたも のであると考えられる。次節では大規模な流量変化が、断面構造の変化としてどのよ うに現れてくるのかを EOF 解析の結果を基に議論する。

Fig.4-4-1. Correlations between the average geostrophic velocity at each depth and the geostrophic volume transport in the Alaskan Stream.

Average	Velocity at 15	500m Moor1	Estimated Volume Transport				
Period	Ave.(cm s ⁻¹)	STD(cm s⁻¹)	Ave.(Sv)	STD(Sv)			
January	13.37	2.45	53.80	17.46			
February	10.17	2.87	43.15	18.83			
March	9.08	2.23	39.54	16.70			
April	8.47	3.56	37.49	21.14			
May	8.79	3.29	38.55	20.23			
June	9.08	3.34	39.53	20.41			
July	7.47	2.82	34.18	18.68			
August	9.53	2.71	41.03	18.30			
September	9.58	1.84	41.21	15.42			
October	9.39	1.76	40.57	15.16			
November	10.10	2.79	42.93	18.58			
December	11.28	2.14	46.84	16.42			
All-data	9.70	3.09	41.60	19.58			
1995(Jun)	9.17	2.04	39.83	16.09			
1996	9.47	1.92	40.83	15.67			
1997	12.12	2.04	49.65	16.08			
1998(-Aug.)	7.65	4.42	34.76	24.01			
1995June(10)	6.80	1.05	31.95	12.80			
1996June(29)	10.67	0.84	44.81	12.08			
1997June(21)	13.04	1.17	52.70	13.19			
1998June(30)	5.54	1.90	27.72	15.61			

Table 44-1. Averaged velocity across component to the CTD section at 1500m Moor1, and the volume transport of the Alaskan Stream estimated from the relation formula of the regression line (Y=3.33X+9.29). Number in the parenthesis indicates the data number in every June.

Fig.4-4-2. Seasonal variation of the estimated volume transport in the Alaskan Stream.

Fig.4-4-3. Interannual variation of the estimated volume transport and the geostrophic volume transport in the Alaskan Stream.

4-5. EOF 解析結果と流量の経年変化

本節では 3-2-5 節で述べた EOF 解析の結果の中で、寄与率の高い特長あるモ ードに付いて亜寒帯循環の流量・輸送量との関係に注目し議論を行う。Fig.4-5-1 に当 海域の断面構造の特長を整理する目的で 180 度線における模式図を示す。Ridge Domainは深層からの低温・高塩な海水の湧昇が見られ、ピークの緯度(北緯 50.1度) に は経年的な変化が無く、上層には中冷水構造と表層に低塩分層が存在する。ピーク以 北のアリューシャン列島に至る約 120km の海域が Alaskan Stream の西向流で、ピー ク以南の極前線(Polar Front)迄が東向流の亜寒帯海流域である。

Fig.4-5-1. Schematic vertical section along 180° meridian.

地衡流速断面の第1モード(Fig.4-5-2(a))では、Ridge Domain ピークに境界 を持ち Alaskan Stream 領域では西向き流が強まり、亜寒帯海流域では東向きが強ま る空間分布を示した。時間スコアでは1991年と1997年に正のピークを示している。 この変動に対応する水温・塩分・密度のモードは、水温が第2モード(Fig.4-5-2(b))、 塩分・密度が第1モード(Fig.4-5-2(c)(d))であると類推される。塩分では1990年、1993 年にも正のピークを持ち、ずれが見られるが、水温・密度では1991年と1997年のピ ークが一致する。空間分布では Ridge Domain ピークの位置を頂点としたドーム状に 正負の分布が別れ、このモードが深層水湧昇の強弱を示していることが分かる。水温 分布はピークの形状が明瞭で、塩分は裾野が広く分布している。この事は Fig.3-1-4 に示した 2000m 深の経時平面分布図において、塩分では年によってかなり南方にまで 高塩分領域が広がっている事からも判断できる。これは当海域における熱の拡散効率 が塩分に対して小さい事も一つの理由と考えられるが、高塩分水の起源が深層だけで なく亜熱帯域の上層にもある事が主要因であると考えられる。

Fig.4-5-3(a)~(d)に、流速断面の EOF 第1モードの時間スコアと 180 度観測 線における流量の経年変化を比較する。EOF 解析の範囲である北緯 48 度以北の東向 き流量と比較した場合、前半にずれは有るものの変動傾向は非情に良い一致を見せる (a)。亜寒帯海流全体では 1993 年の大幅な減少にずれが有る事を除けばほぼ一致した 変動傾向を示している(b)。移行領域も含めた東向き流量では 1992 年に正のピークが 有り、1993 年から 1995 年にも流量が多く推移し不一致が見られる(c)。Alaskan Stream では 1990 年から 1991 年への減少が大きく、1992 年までの変動傾向は一致し ない(d)。しかしいずれの場合も 1996 年から 1998 年の大きな変動には共通した動き が見られ、この第 1 モードが亜寒帯循環全体の強弱を示していると考えられる。 Alaskan Streamの領域には第2モード、第3モードにおいて、領域内で正負の反転 する変動が見られた(Fig.3-2-14)。また流速分布としても9年間で3通りのパターンが 確認され、流量の変動がよりローカルな要因によって支配されている可能性がある。 具体的には最北端の点での偏差が大きく、これは Amchitka 海峡内での混合の影響と そこを通って流出入する海水交換量によるところが大きいと考えられる。この Amchitka 海峡を通過する流量に付いては、Reed and Stabeno (1993, 1994)に示され たように、海峡の東側で北向き、西側で南向きの流量が確認される事は共通しているが、 流量は観測時によって大きく異なり、渦の構造を持つ事も多く報告されている。また 4-3 節で述べたように Alaskan Stream の南境界に中心を持つ低気圧性渦の存在や、 渦に伴う亜寒帯海流域からの再循環流量の変動が、全流量に大きく影響している事が 原因で、流速断面第1モードの時間変動に合わない流量変動を示す場合が有ると考え られる。

Ridge Domain ピークの北緯 50.1 度は各要素の標準偏差プロファイルにおい ても中層(500~1000m)に大きな偏差が見られる(Fig.4-5-4)。また北緯 50.1 度の水温・ 塩分・密度のプロファイルを詳しく見てみると、各要素に付いて平均値との比較を示

した図(Fig.4-5-5)から、1991年、1992年、1997年が中層の水温が低く、塩分は高く 推移し塩分躍層は深くなる傾向がある。密度はほぼ塩分プロファイルと同様の年変動 がある。これらの事から、Ridge Domain ピークを中心とした深層水の湧昇が東西流 の強弱に結び付き、亜寒帯循環流量の増減にも繋がっている事が予想される。

Fig.4-5-6(b)に北緯 50.1 度の中層 750m 深の水温(上下逆スケール)・塩分・密 度の経年変化を示す。各要素における変化は流速断面第 1 モードの時間スコア Fig.4-5-6(a)と一致しており、流速変動・流量変動の大部分がこの点の変化に集約され ている。更にこの関係を発展させれば、この1点のみのモニターにより亜寒帯循環流 量の変動を大まかに押さえる事が可能となりえる。またこの変動傾向は塩分躍層・密 度躍層の上下変動にも現れている(Fig.4-5-6(c)(d))。密度躍層の変化は 5m 下層との密 度差が最大となる深度をプロットし、塩分値は躍層内の塩分値 33.5psu の存在する深 度をプロットした。深層高塩分水(高密度水)の湧昇が強くなった場合、塩分躍層(密度) 躍層)も上昇する事が予想されたが、結果は逆であった。これは亜寒帯循環が強まる事 と、表層水の低塩分化に密接な関係がある事を示している。当海域における低塩分水 は亜寒帯海流によって西部亜寒帯循環から運ばれるものと、Alaskan Stream によっ てアラスカ循環から運ばれるものが考えられる。しかし西部亜寒帯循環は亜熱帯循環 との混合を経て供給されるため高塩分化しており、強い塩分躍層上の極低塩分水はア ラスカ循環からの供給と考えられる。アラスカ湾における淡水供給量とアラスカ海流 及びアラスカ沿岸流(Alaska Coastal Current)流量との正の相関は多くの報告例があ る(Royer 1979, 1981b, 1982; Johnson et al. 1988)。これらの報告によると、降雨と河 川水による低塩分化が沿岸水の低密度化に繋がり、沖合いとの力学高度の差が広がる 事によって流量の増加に至る。またこの現象は流量の季節変化と経年変化に明瞭に現 れるとしている。そしてこの低塩分水の流量増加は Alaskan Stream に引き継がれ、 北太平洋の中央部における表面低塩分層の厚みを増し、密度躍層を引き下げると同時 に躍層の密度差を大きくする結果に至ったと考えられる。

水温断面の第1モード(Fig.4-5-7(a))に現れた現象は、亜寒帯中冷水域を中心 とした負の分布と 500m 以深の広い範囲に正の領域を示す空間分布であった。この空 間分布は亜寒帯中冷水がこの場の他の水温変化とは異なる変動を持ち、4-2・4-3 節で述 べたように西部亜寒帯循環域から輸送された水塊である事を裏付けている。時間スコ アは増加傾向を示し、これには二通りの解釈が出来る。一つは中冷水の低温化であり、 もう一つは中深層域全体の高温化である。両者の影響を調べるために、中冷水に付い ては 50~500m の間で水温逆転の値を積算する事で中冷水強度の指標とし、他領域に 付いては 500~3000m の水温値をすべて平均化する事で各年の指標とした。中冷水に は水温断面第1モードの時間スコアに相当するような変動はみられないが、下層域の 平均水温の変化には類似した変動が見られる(Fig.4-5-7(b)(c))。近年の中深層域全体の 高温化は水温断面の偏差図(Fig.4-5-8)においても傾向が確かめられ、下層域では正の 偏差域が増大している。Alaskan Stream、亜寒帯海流域の熱輸送量(Table 3-2-4)には これに相当するような変動は見られない事から、より南方の移行領域、亜熱帯海域から北方への熱供給が影響していると考えられる。その事は水温を指標とする極前線の位置もこの変動に類似する動きを見せている事からも考察される(Fig.4-5-7(d))。

塩分断面の第2モードの時間スコアは1993年に大きな正のピークを示し、それを除けば緩やかに時間につれて減少する変動となっている(Fig.3-2-16)。空間分布において、正偏差の中心は亜寒帯海流域の上層に有り、Alaskan Stream の領域にまで広がっている。この分布は塩分の偏差図(Fig.4-5-9)にも現れ、他の年では1993年と対照をなすような塩分偏差の分布は見られない事から、1993年の特異な現象であるといえる。1993年は流量の経年変化(Fig.3-2-8)に示したように、亜寒帯海流が極端に減少した年にあたっている。1998年も同様に極端な減少が見られた年であるが、この年の場合は西向きのAlaskan Stream と、移行領域も含めた東向き流量も同様に急減している。それに対して、1993年にAlaskan Streamの流量は前年に比べて増加している。そして1993年が特徴的なのは、調査期間9年間の内、唯一移行領域の流量が亜寒帯海流の流量を上回っていることである(Table 32-1)。従ってこの現象は、より高塩な亜熱帯海域の影響を受ける移行領域で、東向き流量がまかなわれる事により、亜寒帯領域の上層に高塩分水がもたらされていたことが原因であると推察した。

以上述べてきたように、北太平洋中央部における亜寒帯循環のスピンアッ プ・スピンダウンには Ridge Domain における深層水湧昇の強弱が密接に関わってい る事が証明された。地衡流の理論からすれば、両者の関係はどちらが原因・結果と判 別する事は出来ず、同時に存在する現象と見るべきである。直接測流結果のクロスス ペクトル解析(3-3-4 節)で、上下層で有意なコヒーレントを示す数日から 100 日程の周 期は、上層からの伝播、下層からの伝播の両方が見られ、伝播の起源を断定する事は 難しい。まして数年にも渡る経年変動の周期を、直接測流から捕らえる事は計測にか かる費用、測定技術・精度の面からも困難である。本研究での 9 年間の CTD 観測資 料では、EOF 解析により Tabata (1991)の示した 6~7 年周期をかろうじて捕らえる事 が出来た。今後もこのような定線における周期的な観測は経年変動をより正確に捕ら える為に必要で継続すべきである。同時に短周期で広範囲なデータが得られる衛星高 度場データの利用も有効な手段と考えられる。

Fig.4-5-2. Comparison between the 1st mode of geostrophic velocity (a) and other elements, 2nd mode of potential temperature (b), 1st mode of salinity (c), 1st mode of potential density (d).

Fig.4-5-3. Comparison between the time amplitude of the 1st mode of geostrophic velocity and interannual variation of the volume transports in north of 48°N (a), in the Subarctic Current (b), in the Subarctic Current and Transitional Domain (c), in the Alaskan Stream (d).

Fig.4-5-4. Standard deviation profiles of potential temperature (left), salinity (center) and potential density (right) at each CTD station north of 48°N.

Fig.4-5-5. Potential temperature (left), salinity (center) and potential density (right) profiles at 50.1°N in each year compared with average profile.

Fig.4-5-6. The time amplitude of the 1st mode of geostrophic velocity (a). Interannual variation of potential temperature, salinity and potential density at 50.1°N at 750m depth (b). Interannual variation of depth of the maximum difference of at 50.1°N (c). Interannual variation of depth of salinity 33.5psu at 50.1°N (d).

Fig.4-5-7. Comparison between the 1st mode of potential temperature (a) and other elements, interannual variation of the intermediate cold water index calculated by the integral of the temperature inversion from 50 to 500m (b), interannual variation of the average potential temperature from 500 to 3000m at all CTD stations (c), interannual variation of the geographical position of the Polar Front (d).

49 Latitude(°N)

101

48

1991

48

49 Latitude(°N)

0.05

1993

1995

1997

48

49 Latitude(°N)

48

49 Latitude(°N)

average potential temperature in each

Fig.4-5-9. Vertical sections of anomaly from average salinity in each year along 180° .

4-6. 研究のまとめと課題

第3章の結果、及び第4章の議論で述べた本研究の成果を箇条書きにまとめ、 その中で生じた問題点と新たな研究課題を本節に記す。

- 北太平洋中央部における Alaskan Stream の流量変動は亜寒帯海流と移行領域の 東向流の変動に対応し、実測流と継続的な断面観測から季節変化に比べて大きな 経年変化を有することが明らかとなった。
- 2. 北太平洋中央部における亜寒帯循環のスピンアップ・スピンダウンには、Ridge Domain における深層水湧昇の強弱が密接に関わっていることが証明された。
- 3. 流量の変動は水塊の変質に繋がり、両者の関係を定量的に示す事ができた。
- 4. 流量としての Alaskan Stream は不連続的で、亜寒帯海流からの再循環流が大き な割合を占めることが示された。
- 5. 北太平洋亜寒帯海域の熱・塩分東西輸送量に関する指標値を示す事ができた。

180 度線の断面構造に見られるフロント構造を、既往の研究例を参考に再確 認した。水温断面の EOF 解析結果から、極前線は亜寒帯下層域の温暖化に連れて北上 する傾向が見られた。また塩分断面の EOF 解析結果から、移行領域の流量変化が極前 線を越えて亜寒帯海流と Alaskan Stream 域の塩分分布にまで影響を及ぼしている事 を指摘した。Alaskan Stream による西向き流量は、亜寒帯海流のみの東向き流量を 上回り、移行領域と亜寒帯海流を合わせた東向き流量とバランスし、経年変化の傾向 も良い一致を示した。極前線の動きに比べて亜寒帯境界は変動が大きく、独自の周期 性を持っている事が分かった。

しかしフロント位置の変動は 1 観測ライン上で捕らえた変動であり、渦の通 過や境界の波動によって大きく変動する要素を持っていると思われる。その為、衛星 観測などによる東西方向に広がりを持った空間的な把握が必要であり、180 度の観測 ラインと同様な南北に伸びる他の観測ラインとの比較も重要な解析課題となっている。 フロント位置の変動は亜寒帯循環と亜熱帯循環の境界域において、東方に輸送される 水塊の変質過程を理解する上でも重要な課題である。また本研究の結果では Ridge Domain ピークの位置に変化が現れなかったが、より細かな空間解像度では微妙な南 北移動を示した可能性もある。また東西方向の変化も考慮に入れるべきであり、ピー ク位置の変化はピークを中心とした低気圧性渦の消長と亜寒帯海流から Alaskan Stream への再循環流に大きく関わってくる要素でもある。

Alaskan Stream の直接測流結果においては、既往の上流部における観測結果 と同様に安定した流速構造を持ち、これまでの係留観測結果で最下流域に当たる本研 究海域でも流れの特性は維持されている事が分かった。地衡流速値との比較では、地 衡流バランスが成立する基準深度は 3000m 付近にあり、経年的に変化することが分か った。また Alaskan Stream の北部域は非地衡流成分が南部域に比べて大きく、順圧 流成分もより大きい事が明らかとなった。スペクトル解析からは全点の上下層では高 いコヒーレンスが有り、北部と中央部の比較でも高いコヒーレンスが見られた。それ に対し南部は独自の変動を示し、亜寒帯海流との間に見られた低気圧回転の渦の影響 が大きい事が明らかとなった。また低気圧性渦が存在する期間では、非地衡流成分が 極端に大きくなる事が明らかとなった。上下層の高いコヒーレンスは、地衡流速断面 のパターン分類、流速断面の EOF 解析でも水柱全体の変動として確認された。また全 体流量の大きな変動に対して、層別輸送量の割合が大きく変化しない事でも確認する ことができた。

本研究における3年間に渡る連続観測と9年間に得られた地衡流量の関係か ら、Alaskan Stream の季節変化と経年変化に関する定量的な推定結果を得る事がで きた。季節変化は1月に最大値(53.8±17.5Sv)を持ち、1月の前後は急激な変動を示す。 最小値は4月(37.5±21.1Sv)で、春から秋にかけては大きな変化が見られない。年平 均値(41.6±19.6Sv)に対する季節変化の割合は39.2%で、Royer (1981a)のアラスカ湾 内での推定値(13%)を上回り、Overland et al. (1994)が数値モデルから得た北太平洋 中央部の季節変化(年平均15Sv/季節変化量6Sv:40%)に割合的に同程度の値が今回の 直接測流結果から得られた。しかし絶対量には大きな開きがあり、本研究の成果を持 って亜寒帯循環流量とそれによって運ばれる熱・塩分輸送量の規模を再認識する必要 がある。

経年変化では 1996 年冬期から徐々に強まった流速値が、1997 年の冬期に最 大値に達し、1998 年に入って急激な減少を示す大規模の変動を捕らえる事ができた。 この変動は地衡流量と流量に支配される熱輸送量・塩分輸送量にも明瞭に現れ、断面 構造の EOF 解析においても高い寄与率のモードとして現れている。流量の経年変動と 水塊分析を合わせた結果から、Ridge Domain ピークの水塊構造は、亜寒帯循環のス ピンアップ・スピンダウンと密接に関わっている事を明らかにした。Ridge Domain ピークにおける低温・高塩な深層水の湧昇が、傾圧構造の強弱を決定付け、亜寒帯海 流及び Alaskan Stream の流量変動に繋がることを定量的に導く事ができた。この結 果から、Ridge Domain における水塊構造を継続的にモニター観測する事により、亜 寒帯循環流量の経年変動の指標となりうる可能性を持っている(Onishi,2001)。

しかしこの大規模な経年変動を引き起こす原因の解明はなされていない。 Tabata (1991)は亜寒帯循環に見られる 6~7 年周期の経年変動は、同程度の周期性を
持つ大規模な気候変動に影響されているとし、大規模気候変動の影響はカリフォルニ ア海流への分岐にも現れる事を示唆した。また Niebauer(1998)はアリューシャン低気 圧の強度と位置の変化が、ENSO(El Niño - Southern Oscillation)イベントに対応して いることを示し、北太平洋の気候変動やレジームシフト(regime shift)に影響を及ぼし ていることを明らかにした。これらの研究からも、亜寒帯循環の経年変動要因を探る 上で、気候変動との繋がりを考慮に入れることは必要不可欠である。試みとして、 WMO(World Meteorological Organization)により作成された月平均の海表面風向風 力の分布図を Fig.4-6-1 に示す。1996 年と 1997 年では冬期季節風が弱まる 4 月にア ラスカ湾内に反時計周りの循環風を示す分布が見られるが、1998 年では 1 月 2 月に既 に循環風の様子が確認できる。1997 年はアラスカ湾の奥に向う風系が北緯 30 度以南 の緯度帯から見られ、アメリカ西海岸で時計周りに南に向うベクトル量が多くなってい る。この様な風系の変化が本研究に現れた亜寒帯循環流量の大規模変化に、直接的な 結び付きを持っているかどうかは判断できない。今後は気候変動資料との統合的な定 量解析により、両者の関係を明らかにして行く事が大きな研究課題となる。

Fig.4-6-1. Monthly mean zonal and meridional surface winds calculated using boundary layer similarity theory by AUSTRALIA WMO (http://www.wmo.ch/index.html).

第5章 謝辞

本論文をまとめるに当たり、ご校閲の労を賜った北海道大学大学院水産科学 研究科三宅秀男教授、論文審査に携わって頂いた同岸道郎教授、磯田豊助教授に心よ りお礼申し上げます。本研究のテーマを与えて頂き、多くのご指導を賜りました故大 谷清隆北海道大学名誉教授に心よりお礼申し上げます。

本研究に用いた貴重な海洋観測資料を取得するに当たり、多くのご協力をい ただいた北海道大学水産学部附属練習船おしょろ丸増田紀義、安間元元船長、山口秀 一船長を始め士官の方々、乗組員の方々、ならびに乗船研究者の方々、特設専攻科学 生の方々に感謝いたします。本研究の一部は文部省科学研究費に依ったことを付記し、 関係各位に感謝いたします。

最後に私のことをこれまで支えて下さった多くの方々に感謝し、本論文の謝 辞と致します。

第1章

- Bennett, E. B. (1959): Some Oceanographic Features of the Northeast Pacific Ocean during August 1955. J. Fish. Res. Bd. Canada, 16: 565-633
- Dodimead, A. J., F. Favorite and T. Hirano (1963): Salmon of the North Pacific Ocean-2. Review of oceanography of subarctic Pacific region. *Bull. Int. North Pacific. Fish. Comm.*, 13: 1-195
- Favorite, F. (1967): The Alaskan Stream. Bull. Int. North Pacific. Fish. Comm., 21: 1-20
- Favorite, F. (1974): Flow into the Bering Sea through Aleutian island passes. p.3-37. In Oceanography of the Bering Sea. ed. by D. W. Hood and E. J. Kelley, Occ. Publ. No. 2, Inst. Marine Science, Univ. Alaska, Fairbanks, 623p.
- Favorite, F., A. J. Dodimead and K. Nasu (1976): Oceanography of the Subarctic Pacific Region. Bull. Int. North Pacific. Fish. Comm., 33: 1-187
- Hasunuma, K. (1978): Formation of the intermediate salinity minimum in the Northwestern Pacific Ocean. *Bull. Ocean Res. Inst., Univ. Tokyo*, 9:1-46
- Ingraham, W. J. and F. Favorite (1968): The Alaskan Stream south of Adak Island. *Deep Sea Res.* 15: 493-496
- 河野時廣 (1991):北太平洋西部亜寒帯水域の水塊と水系.北海道区水産研究所研究報告, 55:91-108
- 三宅秀男 (1989):北太平洋西部亜寒帯境界域の水塊構造と塩分極小層水.海と空,65-2: 45-56
- Munk, W. H. (1950): On the wind-driven ocean circulation. J. Meteor., 7: 79-93
- Musgrave, D. L., T. J. Weingartner and T. C. Royer (1992): Circulation and hydrography in the northwestern Alaska. *Deep-Sea Res.* 39: 1499-1519
- Niebauer, H. J., J. Roberts and T. C. Royer (1981): Shelf Break Circulation in the Northern Gulf of Alaska. J. Geophys. Res., 86: 4231-4242
- 永田豊・鍵本崇・轡田邦夫・高杉知・石田享一 (1993):北太平洋中層水の起源としての高 塩の津軽暖流水.月刊海洋,25:128-134
- 永田豊・大谷清隆・柏井誠 (1992):北太平洋亜寒帯循環.海の研究,1-3:75-104
- 大谷清隆 (1991): "親潮"の再確認. 北海道区水産研究所研究報告, 55:1-25

- 大谷清隆 (1965): 夏期の Alaskan Stream について.北海道大学水産学部研究彙報, 15-4: 260-273
- Ohtani, K. (1970): Relative Transport in the Alaskan Stream in Winter. J. Oceanogr. Soc. Japan, 26: 271-282
- Ohtani, K., H. Onishi, N. Kobayashi and G. Anma (1997): Baroclinic Flow Referred to the 3000m Reference Level across the 180° Transect in the Subarctic North Pacific. *Bull. Fac. Fish. Hokkaido Univ.*, 48: 53-64
- Reed, R. K. (1984): Flow of the Alaskan Stream and its variations. Deep-Sea Res. 31: 369-386
- Reed, R. K. and N. P. Laird (1977): A Study of Subarctic Boundary Region in the Western North Pacific. J. Oceanogr. Soc. Japan, 33: 247-253
- Reed, R. K., and J. D. Schumacher (1984): Additional Current Measurements in the Alaskan Stream near Kodiak Island. *J. Phys. Oceanogr.*, 14: 1239-1246
- Reed, R. K., J. D. Schumacher and J. P. Blaha (1981): Eulerian Measurements in the Alaskan Stream near Kodiak Island. *J. Phys. Oceanogr.*, 11: 1591-1595
- Roden, G. I. (1995): Aleutian Basin of the Bering Sea: Thermohaline, oxygen, nutrient, and current structure in July 1993. J. Geophys. Res., 100: 13539-13554
- Roden, G. I., B. A. Taft and C. C. Ebbesmeyer (1982): Oceanographic Aspects of Emperor Seamounts Region. J. Geophys. Res., 87: 9537-9552
- Royer, T. C. and W. J. Emery (1987): Circulation in the Gulf of Alaska, in 1981. *Deep-Sea Res.*, 34: 1361-1377
- Royer, T. C., D. V. Hansen and D. J. Pashinski (1979): Coastal Flow in the Northern Gulf of Alaska as Observed by Dynamic Topography and Satellite-Tracked Drogued Drift Buoys. J. Phys. Oceanogr., 9: 785-801
- Schumacher, J. D., P. J. Stabeno and A. T. Roach (1989): Volume transport in the Alaska Coastal Current. *Cont. Shelf Res.*, 9: 1071-1083
- Stabeno, P. J., R. K. Reed and J. D. Schumacher (1995): The Alaska Coastal Current: Continuity of transport and forcing. J. Geophys. Res., 100: 2477-2485
- Talley L. D., Y. Nagata, M. Fujimura, T. Iwao, T. Kono, D. Inagake, M. Hirai and K. Okuda (1995): North Pacific Intermediate Water in the Kuroshio/Oyashio Mixed Water Region. J. Phys. Oceanogr., 25: 475-501
- Uda, M. (1963): Oceanography of the subarctic Pacific Ocean. J. Fish. Res. Bd. Canada, 20: 119-179
- Warren, B. A. and W. B. Owens (1985): Some Preliminary Results Concerning Deep Northern-Boundary Currents in the North Pacific. *Prog. Oceanogr.*, 14: 537-551
- Warren, B. A. and W. B. Owens (1988): Deep Currents in the Central Subarctic Pacific Ocean. J. Phys. Oceanogr., 18: 529-551

- Watanabe, T. and M. Wakatsuchi (1998): Formation of 26.8-26.9 Water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. J. Geophys. Res., 103: 2849-2865
- Woods, J. D. (1985): The World Ocean Circulation Experiment. Nature, 314: 501-511
- Yasuda, I., K. Okuda and Y. Shimizu (1996): Distribution and Modification of North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal Zone. J. Phys. Oceanogr., 26: 448-465

第2章

北海道大学水産学部 海洋調查漁業試験要報 No.34-42

第3章

- 安間元・増田紀義・小林源司・山口秀一・目黒敏美・佐々木成二・大谷清隆 (1990): 夏季 北太平洋 180 度線移行領域周辺の海洋構造とその変動.北海道大学水産学部研究 彙報,41-2:73-88
- Bryden, H. L., D. H. Roemmich and J. A. Church (1991): Ocean heat transport across 24°N in the Pacific. *Deep Sea Res.*, 38: 297-324
- 深澤理郎・雨地健一・宅間亮・杉森康宏 (1993): 太平洋における南北熱輸送の推算.1993 年度日本海洋学会春季大会講演要旨集,:116-117
- 深澤理郎・水谷倫也・杉森康宏・奥田邦明・安田一郎・坂東保・寄高博行・岩永義幸・今 脇資郎・久保田雅久 (1995): 北緯 30 度を通過する熱・塩分フラックスの推算(速 報).月刊海洋,号外9,:41-51
- Ichikawa, H., S. Imawaki and M. Fukasawa (1999): Mean Values of Volume and Temperature Transports of the Kuroshio South of Japan in 1993-1995. Proceedings of the Forth International Scientific Symposium UNESCO/IOC/WESTPAC,: 22-31
- Millero (1973): 「比熱」海洋大辞典 和達清夫監修 東京堂出版:pp589
- Ohtani, K., H. Onishi, N. Kobayashi and G. Anma (1997): Baroclinic Flow Referred to the 3000m Reference Level across the 180° Transect in the Subarctic North Pacific. *Bull. Fac. Fish. Hokkaido Univ.*, 48: 53-64
- Onishi, H. and K. Ohtani (1999): On Seasonal and Year to Year Variation in Flow of the Alaskan Stream in the Central North Pacific. *J. Oceanogr.*, 55: 597-608.
- Overland, J.E. and R. W. Preisendorfer (1982): A significance test for Principal Components applied to a cyclone climatology. *Mon. Weath. Rev.*, 110: 1-4
- Roden, G. I., B. A. Taft and C. C. Ebbesmeyer (1982): Oceanographic Aspects of Emperor Seamounts Region. J. Geophys. Res., 87: 9537-9552

髙木省吾・大西広二 (1997):北太平洋亜寒帯移行域における初夏の表層性魚類・イカ類群 集の分布と海況の経年変化(1979-1995).平成8年度さけ・ます資源部会報告,遠 洋水産研究所:10-26

第4章

- Cokelet, E. D., M. L. Schall, and D. M. Dougherty (1996): ADCP-Referenced Geostrophic Circulation in the Bering Sea Basin. J. Phys. Oceanogr. , 26: 1113-1128
- Dodimead, A. J., F. Favorite and T. Hirano (1963): Salmon of the North Pacific Ocean-2. Review of oceanography of subarctic Pacific region. *Bull. Int. North Pacific. Fish. Comm.*, 13: 1-195
- Favorite, F. (1967): The Alaskan Stream. Bull. Int. North Pacific. Fish. Comm., 21: 1-20
- Johnson, W. R., T. C. Royer and J. L. Luick (1988): On the Seasonal Variability of the Alaska Coastal Current. J. Geophys. Res., 93: 12423-12437
- 河野時廣 (1991):北太平洋西部亜寒帯水域の水塊と水系.北海道区水産研究所研究報告, 55:91-108
- 大谷清隆 (1989): 親潮水形成に関わるオホーツク海の役割.海と空, 65-2: 63-83
- Ohtani, K. (1970): Relative Transport in the Alaskan Stream in Winter. J. Oceanogr. Soc. Japan, 26: 271-282
- Okkonen, S. R. (1992): The Shedding of an anticyclonic eddy from the Alaskan Stream as observed by GEOSAT altimeter. *Geophys. Res. Letters.* 19: 2397-2400
- Onishi, H. (2001): Spatial and Temporal Variability a Vertical Section across the Alaskan Stream and Subarctic Current. J. Oceanogr., 57: 79-91
- Onishi, H., S. Ohtsuka, and G. Anma (2000): Anticyclonic, Baroclinic Eddies along 145°W in the Gulf of Alaska in 1994-1999. *Bull. Fac. Fish. Hokkaido Univ.*, 51: 31-43
- Overland, J. E., M. C. Spillane, H. E. Hurlburt, and A. J. Wallcraft (1994): A Numerical Study of the Circulation of the Bering Sea Basin and Exchange with the North Pacific Ocean. J. Phys. Oceanogr., 24: 736-758
- Niebauer, H. J. (1998): Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996. J. Geophys. Res., 103: 27717-27737
- Reed, R. K. (1984): Flow of the Alaskan Stream and its variations. Deep-Sea Res. 31: 369-386
- Reed, R. K. and P. J. Stabeno (1989): Recent Observation of Variability in the Path and Vertical Structure of the Alaskan Stream. J. Phys. Oceanogr., 19: 1634-1642
- Reed, R. K. and P. J. Stabeno (1993): The recent return of the Alaskan Stream to Near Strait. J. Mar. Res., 51: 515-527
- Reed, R. K. and P. J. Stabeno (1994): Flow along and across the Aleutian Ridge. J. Mar. Res., 52: 639-648

- Reed, R. K., R. D. Muench and J. D. Schumacher (1980): On baroclinic transport of the Alaskan Stream near Kodiak Island. *Deep-Sea Res.* 27: 509-523
- Royer, T. C. (1979): On the Effect of Precipitation and Runoff on Coastal Circulation in the Gulf of Alaska. J. Phys. Oceanogr., 9: 555-563
- Royer, T. C. (1981a): Baroclinic transport in the Gulf of Alaska Part I. Seasonal variations of the Alaska Current. J. Mar. Res., 39: 239-250
- Royer, T. C. (1981b): Baroclinic transport in the Gulf of Alaska Part I. A fresh water driven coastal current. *J. Mar. Res.*, 39: 251-266
- Royer, T. C. (1982): Coastal fresh water discharge in the northeast Pacific. J. Geophys. Res., 87: 2017-2021
- Royer, T. C. and W. J. Emery (1987): Circulation in the Gulf of Alaska, in 1981. *Deep-Sea Res.*, 34: 1361-1377
- Stabeno, P. J. and R. K. Reed (1994): Circulation in the Bering Sea observed by satellite-tracked drifter: 1986-1993. J. Phys. Oceanogr., 24: 848-854
- Stommel, H. and A. B. Aron (1960): On the Abyssal Circulation of the World Ocean-I. Stationary Flow Pattern on a Sphere. *Deep-Sea Res.* 6: 140-154
- Tabata, S. (1991): Annual and interannual variability of baroclinic transports across Line P in the northeast Pacific Ocean. *Deep-Sea Res.* 38: 221-245
- Thomson, R. E. (1972): On the Alaskan Stream. J. Phys. Oceanogr., 2: 363-371
- Warren, B. A. and W. B. Owens (1985): Some Preliminary Results Concerning Deep Northern-Boundary Currents in the North Pacific. *Prog. Oceanogr.*, 14: 537-551
- Warren, B. A. and W. B. Owens (1988): Deep Currents in the Central Subarctic Pacific Ocean. J. Phys. Oceanogr., 18: 529-551

Fig. A Map of the northern North Pacific from NOAA Ocean Atlas