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Abstract. We develop a chiral SU(3) RMF model for octet baryons, as an extension of the recently de-
veloped chiral SU(2) RMF model with logarithmic sigma potential. For Σ-meson coupling, strong repul-
sion(SR) and weak repulsion(WR) cases are examined in existing atomic shift data of Σ−. In both of these
cases, we need an attractive pocket of a few MeV depth around nuclear surface.

PACS. 21.65.+f Nuclear matter – 21.80.+a Hypernuclei

1 Introduction

In constructing the dense matter equation of state (EOS),
it is strongly desired to respect both of hypernuclear physics
information and chiral symmetry. Strangeness is expected
to play a decisive role and the partial restoration of chiral
symmetry would modify the hadron properties in dense
matter. One of the promising approaches is to apply chi-
ral symmetric relativistic mean field (RMF) models [1–7].

We have recently developed a chiral SU(2) symmetric
RMF model [6] with logarithmic sigma potential in the
form of − log σ, which is derived in the strong coupling
limit (SCL) of the lattice QCD [8]. In this model, the
energy density in vacuum at zero temperature is evaluated
in the mean field approximation as,

Uσ = −a log(detMM†) + b tr(MM†) + cσσ

∼ −2a fSCL(
σ

fπ
) +

1
2
m2

σσ
2 , (1)

fSCL(x) = log(1 − x) + x+
x2

2
, a =

f2
π

4
(m2

σ −m2
π) ,

where M denotes the SU(2) meson matrix, M = (σ+ iπ ·
τ )/

√
2. In the second line of Eq. (1), σ field is replaced

with its fluctuation around the vacuum expectation value,
σ → fπ − σ. In this SCL model [6], we can describe bulk
properties of finite nuclei, we have neither the chiral col-
lapse at low densities [1] nor instability at large σ [2], and
the nuclear matter EOS is not very stiff [3]. Compared to
previously proposed chiral RMF models [4,5] and a more
recently proposed one [7], this model has an advantage
that the vacuum energy density is derived based on QCD.

It is straightforward to extend this chiral SU(2) RMF
model to an SU(3) version which contains strangeness de-
grees of freedom. We expect that this extension enables us
to get detailed information on Λ, Σ and Ξ hypernuclei.

In this paper, we determine the hyperon-meson cou-
pling constants in this chiral SUf (3) RMF model by fit-
ting existing data. We show that we can reproduce the
separation energies of single Λ hypernuclei (SΛ) [9] and
the ΛΛ bond energy (∆BΛΛ) in 6

ΛΛHe [10] by choosing
the coupling constants appropriately in a reasonable pa-
rameter range. The EOS of symmetric matter is found to
be softened by the scalar meson with hidden strangeness,
ζ = s̄s, which couples with σ through the determinant
interaction. We also discuss the strength of repulsion in
nuclear medium and attraction around nuclear surface in
Σ−-nucleus potential by comparing the calculated results
with Σ− atomic shift data [11].

2 Chiral SU(3) RMF model

In extending the chiral SU(2) RMF model to SU(3), it is
necessary to include mesons with hidden strangeness (s̄s)
such as ζ and φ in addition to σ, ω and ρ. The chiral SU(2)
RMF model [6] tells us the form of chiral potential of σ
and ζ by a simple extension written as,

Uσζ = − a log(detMM†) + b tr(MM†)

+ cσσ + cζζ + d (detM + detM†), (2)

where the last term in rhs is introduced to take care of
the UA(1) anomaly. When the chiral symmetry is sponta-
neously broken and meson mass terms are generated, this
effective interaction is written as,

Uσζ = − a

[
2fSCL(

σ

fπ
) + fSCL(

ζ

f ′ζ
)

]

+
1
2
m2

σσ
2 +

1
2
m2

ζσ
2 + ξσζσζ , (3)
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where f ′ζ = fζ +ms and ms is related to the strange quark
mass. We have six parameters in this interaction (a, b, cσ,
cζ , d and ms), and five out of six are fixed by fitting ex-
perimental masses of π, K and ζ, and vacuum expectation
values of σ and ζ. There remains only one parameter, mσ.
With this scalar meson effective interaction, the RMF La-
grangian is given as,

L =LFree(ψi, ψ̄i, σ, ζ, ω, ρ, φ) + LEM − Uσζ +
cω
4
ω4

+
∑

i

ψ̄i [gσiσ + gζiζ − γµ(gωi ω
µ + gρi ρ

µ + gφi φ
µ)]ψi ,

(4)

where the ω4 term is phenomenologically introduced to
simulate the high density behavior of the vector self-energy
in the RBHF theory as in Ref. [12].

In determining hyperon-vector meson couplings, we
start from the SUf (3) symmetric interaction,

LBM =
√

2{gs tr (M) tr
(
B̄B

)
+ g1 tr

(
B̄MB

)

+ g2 tr
(
B̄BM

)
} . (5)

Following the Okubo-Zweig-Iizuka (OZI) rule [13], we as-
sume that nucleons do not couple with s̄s mesons (ζ and
φ). Then there are two independent parameters, gωN and
gρN , and hyperon-vector meson coupling constants are
found to be represented by gωN and gρN as follows,

gωΛ =
5
6
gωN − 1

2
gρN , gφΛ =

√
2

3
(gωN + 3gρN ) , (6)

gωΣ = gρΣ =
gφΞ√

2
=

1
2
(gωN + gρN ) , (7)

gωΞ = gρΞ =
gφΣ√

2
=

1
2
(gωN − gρN ) . (8)

In the later discussion, we try to keep the above relations
as far as possible.

In the scalar and pseudo scalar sector, it is necessary
to include negative parity baryons or we only have D-
type when the chiral SU(3) symmetry is required [5,18].
This problem is out of the scope of this proceedings, and
hyperon-scalar meson coupling constants are regarded as
parameters. When the Λ-scalar meson couplings are ob-
tained and SUf (3) symmetry works also for scalar cou-
plings, we can evaluate the Ξ-scalar couplings as,

gσΞ =
2
3
gσN −

√
2

2
gζΛ, gζΞ =

1
3
gσN +

√
2

2
gζΛ. (9)

3 Nuclear matter and hypernuclei

3.1 Normal nuclei and nuclear matter

In the present chiral RMF model, bulk properties of nor-
mal nuclei are well described, and these results are re-
ported elsewhere. The strangeness degrees of freedom are
found to soften the nuclear matter EOS, and thus have
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Fig. 1. Energy surface and EOS in chiral SU(3) model.

effects also on normal nuclei. The interaction in Eq. (3)
contains the σζ mixing term, which gives rise to a corre-
lation in σ and ζ along the softest valley in the vacuum
energy surface as shown in the upper panel of Fig. 1. Since
the matter can evolve along this valley as the density in-
creases, EOS is softened than in the chiral SU(2) RMF
model [6], in which there is no ζ degree of freedom. The
incompressibility is found to be K ∼ 220 MeV when we fit
the bulk properties of normal nuclei and nuclear matter
saturation point, as shown in the lower panel of Fig. 1.

3.2 Λ hypernuclei

Next we study Λ hypernuclei with this chiral SU(3) RMF
Lagrangian. There appear four additional parameters, gσΛ,
gζΛ, gωΛ and gφΛ. We fix the vector coupling constants,
gωΛ and gφΛ by using the SU(3) symmetry relation in Eq.
(6). Two remaining parameters are determined by fitting
SΛ and ∆BΛΛ data. As shown in the upper panel of Fig. 2,
we can explain SΛ nicely in a wide mass region by giving
the Λ potential depth around 30 MeV, which is repre-
sented by a linear combination of gσΛ and gζΛ. By fitting
∆BΛΛ in 6

ΛΛHe simultaneously with SΛ, both of gσΛ and
gζΛ are determined as shown in Fig. 2.



Tsubakihara et al.,: Hypernuclei and nuclear matter in a chiral SU(3) RMF model 3

-5

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2  0.25  0.3

S Λ
(M

eV
)

Acore
-2/3

SΛ from A+1
ΛZ Chiral SU(3)

exp.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

∆B
Λ

Λ

gζΛ/gσΛ

∆BΛΛ of 6ΛΛHe(MeV)

NAGARA

Chiral SU(3) (SΛ fit)
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ΛΛHe.

3.3 Σ hyper atom

Recent analyses of quasi-free Σ− production spectra [14,
15] suggest that Σ−-nucleus potential should be repulsive
in nuclear medium. On the other hand, Σ−-nucleus poten-
tial needs to possess a few MeV attractive pocket around
nuclear surface to explain Σ− atomic shift data [16,17].
Here we would like to extract Σ-meson coupling constants
which explainΣ− atomic shifts. In the present RMF model,
we have four additional parameters for Σ, gσΣ , gζΣ , gωΣ

and gρΣ . First we set gωΣ , which determines the strength
of repulsion in nuclear medium. We have examined two
cases. (i) Strong Repulsion (SR) case: From the flavor
SU(3) symmetry and OZI rule, gωΣ is given as gωΣ =
(gωN +gρN )/2 ∼ 2gωN/3. (ii) Weak Repulsion (WR) case:
gωΣ ∼ gωN/3 which is also adopted in Ref. [17]. Sec-
ondly, scalar meson couplings (gσΣ and gζΣ), which deter-
mine the attractive pocket depth around nuclear surface,
are chosen so as to reproduce atomic shifts of symmetric
N = Z core nuclei (O, Si, S). Finally, gρΣ is adjusted to
get a correct atomic shift in Pb.

In Fig. 3, we show calculated atomic shifts and con-
version widths of O, Mg, Al, Si, S, W and Pb for n =
4 → 3(O), n = 5 → 4(Mg, Al, Si and S) and n = 10 →
9(W and Pb) transitions. Atomic shift results are in good
agreement except for W and the total χ2/ dof is around
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Fig. 3. Atomic shift and conversion width of Σ−.

1.3. The conversion width is calculated as the expectation
value of ImVopt = tρp. Imaginary parts are found to be
−15 ∼ −20 MeV.

4 Summary and conclusion

We have developed a chiral SU(3) relativistic mean field
(RMF) model with a logarithmic chiral potential for σ
and ζ(= s̄s) mesons derived in the strong coupling limit
of lattice QCD [8], as an extension of the chiral SU(2)
RMF model [6]. The chiral symmetry and the mass gen-
eration by the spontaneous chiral symmetry breaking give
severe constraints on parameters. After fitting several me-
son masses and vacuum expectation values, mσ is left
unfixed in this chiral potential. Nucleon parameters (N -
meson coupling constants, mσ and the coefficient of ω4

term) are determined to reproduce the vacuum nucleon
mass, the nuclear matter saturation point, and bulk prop-
erties (binding energies and charge rms radii) of normal
nuclei from C to Pb isotopes. Λ-meson coupling constants
are determined by fitting hypernuclear data (Λ separa-
tion energies SΛ and ΛΛ bond energy BΛΛ) under the
constraints of SUf (3) symmetry for vector couplings.

By fitting the Σ− atomic shifts, we find that the at-
tractive pocket in the Σ-nucleus potential around the nu-
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Fig. 4. Re. part and Im. parts of optical potentials of Σ− in
SR and WR cases.

clear surface should have a few MeV depth. The conversion
widths of Σ− atom are well described with the imaginary
part of the optical potential in the form of ImVopt = tρp,
and the strengths are found to be −15 ∼ −20 MeV. These
results are consistent with the previous RMF analysis [17].

We have tried to keep the SUf (3) relations in the
baryon-vector meson coupling constants as far as possible,
and these relations seem to work well for Λ hypernuclei.
However, we have to break the SUf (3) relation for gρΣ

to reproduce atomic shift data at N > Z. It is suggested
that the short-range repulsion is strong in ΣN interac-
tion due to the Pauli blocking between quarks. Therefore,
the present result may indicate that we cannot describe
Σ−-nucleus potential properly in the chiral SU(3) RMF,
which should be applicable to hadronic interactions, and
that it is necessary to include the short-range repulsion
from quarks. While we have this conceptual problem, we
have now a chiral SU(3) RMF model, which can describe
nuclear matter, finite normal nuclei, single and double Λ
hypernuclei and Σ− atom.

It is desired to check the consistency between the present
results and quasi-free spectrum analyses. We have inves-
tigated Σ− quasi-free spectrum with DWIA+Local Opti-
mized Fermi Average t-matrix [15]. With this method, it
would be possible to judge whether Σ− repulsion should

be strong or relatively weak. It is also interesting to inves-
tigate Ξ hypernuclei and hyperatoms. If the SUf (3) rela-
tions in Eqs. (8) and (9) approximately hold in Ξ-meson
couplings, we have smaller ambiguities in the Ξ-nucleus
potential. Predictions along this line are in progress.
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