The antioxidative function of eicosapentaenoic acid in a marine bacterium, *Shewanella marinintestina* IK-1

Takanori Nishidaa, Naoki Moritab, Yutaka Yanoc, Yoshitake Orikasaa, and Hidetoshi Okuyamaa,*

a Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan

b Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo 062-8517, Japan

c National Research Institute of Fisheries Science, Fisheries Research Agency, Kanazawa-ku, Yokohama 236-8648, Japan

Abstract When the eicosapentaenoic acid (EPA)-deficient mutant strain IK-1\textsubscript{Δ8} of the marine EPA-producing *Shewanella marinintestina* IK-1 was treated with various concentrations of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), its colony-forming ability decreased more than that of the wild type. Protein carbonylation, induced by treating cells with 0.01 mM H\textsubscript{2}O\textsubscript{2} under bacteriostatic conditions, was enhanced only in cells lacking EPA. The amount of cells recovered from the cultures was decreased more significantly by the presence of H\textsubscript{2}O\textsubscript{2} for cells lacking EPA than for those producing EPA. Treatment of the cells with 0.1 mM H\textsubscript{2}O\textsubscript{2}...
resulted in much lower intracellular concentrations of H_2O_2 being consistently detected in cells with EPA than in those without EPA. These results suggest that cellular EPA can directly protect cells against oxidative damage by shielding the entry of exogenously added H_2O_2 in *Shewanella marinintestina* IK-1.

Keywords: Eicosapentaenoic acid; Hydrogen peroxide; Oxidative stress; Protein carbonyl; *Shewanella*

Corresponding author. Fax: +81 11 706 2347.

E-mail address: hoku@ces.hokudai.ac.jp (H. Okuyama)

Abbreviation: CFU, colony-forming unit; EPA, eicosapentaenoic acid; H_2O_2^+, in the presence of H_2O_2; H_2O_2^-, in the absence of H_2O_2; LB, Luria-Bertani; OD, optical density; PBS, phosphate-buffered saline.

1. Introduction

Previously we showed that eicosapentaenoic acid (EPA) has the potential to prevent the entry of H_2O_2 through the cell membrane in *Escherichia coli* strains genetically modified to
produce EPA. The *E. coli* strains DH5α [1] and UM2 [2] transformant cells, which contained EPA, became resistant to oxidative stress by exogenous H$_2$O$_2$. When the *E. coli* strains were transformed with the EPA biosynthesis genes (*pfaA*, *pfaB*, *pfaC*, *pfaD*, and *pfaE*) [3] from *Shewanella pneumatophori* SCRC-2738 [4], the transformant produced EPA at levels of approximately 10% of total fatty acids. In the case of *E. coli* strain DH5α, the colony-forming ability of EPA-containing cells treated with 3.0 mM H$_2$O$_2$ was similar to that of cells that were not exposed to H$_2$O$_2$.

However, colony-forming ability was lost rapidly in cells without EPA under the same conditions. This was reflected in the difference in the degree of protein carbonylation between the strain with EPA and that without EPA. The treatment of both types of cells with H$_2$O$_2$ changed the amount of cells recovered from the cultures (estimated by the amount of fatty acid). The recovery of fatty acids was lower from cultures of *E. coli* cells without EPA than those with EPA, but it did not affect the fatty acid compositions. From these data, it has been suggested that cellular EPA is stable *in vivo* in the presence of H$_2$O$_2$ and may directly protect cells against oxidative damage.

Using catalase-deficient *E. coli* UM2 that had been transformed with the same EPA biosynthesis genes, almost the same results were obtained [2], although the cells of *E. coli* UM2 were treated with 0.3 mM H$_2$O$_2$. In the case of *E. coli* UM2, cells were suspended in phosphate-buffered saline (PBS) and then treated with H$_2$O$_2$ under bacteriostatic conditions (medium-free and no agitation).

Much lower intracellular concentrations of H$_2$O$_2$ were detected in cells with EPA than in those
lacking EPA. From these results, it was suggested that cellular EPA could directly protect cells against oxidative damage by preventing the entry of exogenously added \(\text{H}_2\text{O}_2 \). A similar antioxidative mechanism is thought to operate in bacteria that produce EPA naturally. However, no evidence for this was found in the literature.

Shewanella marinintestina IK-1 is an EPA-producing bacterium that was isolated from a squid body [5]. Although EPA is regarded as a modulator of membrane fluidity at low temperature also in this bacterium [5], we present here the results of an investigation into the possible role of EPA in protecting against oxidative stress (exogenous addition of \(\text{H}_2\text{O}_2 \)) in bacteria that inherently produce EPA. The study compared the responses against exogenously added \(\text{H}_2\text{O}_2 \) of *S. marinintestina* IK-1 and its EPA-deficient mutant (strain IK-1\(\Delta8\)).

2. Materials and methods

2.1. Bacterial cells and cultivation

S. marinintestina IK-1 [5] and its EPA-deficient mutant *S. marinintestina* IK-1\(\Delta8\) (see below) were used as the test organisms throughout the work. Both strains were precultured by agitation at 180 rpm in Luria–Bertani (LB) medium containing 3.0\% (w/v) NaCl normally at 15 °C. Nongrowth cells of the both strains were prepared as follows. The cells were grown until the
culture had an optical density of 1.0 at 600 nm (OD$_{600}$) and were harvested by centrifugation at $3500 \times g$ for 5 min at 4 °C. Collected cells were washed three times with PBS containing 3.0% (w/v) NaCl and suspended in the same buffer at an OD$_{600}$ of 1.0. The cell suspension was mixed with a solution of H$_2$O$_2$ (30% solution in water; Wako Chemicals, Osaka, Japan) normally at a final concentration of 0.01 mM and then incubated without agitation for 30 min at 15 °C. Cells were harvested at appropriate time intervals by centrifugation and used for further assay. The number of colony-forming units (CFUs) was measured as previously described [1].

2.2. Generation of EPA-deficient mutant of S. marinintestina IK-1

S. marinintestina IK-1 has an EPA biosynthesis gene cluster (N. Morita, Y. Yano, S. Ohgiya, and H. Okuyama, unpublished results), of which structure is very similar to that from *Shewanella pneumatophori* SCRC-2738. Namely, the EPA biosynthesis gene cluster of *S. marinintestina* IK-1 consisted of *pfaE*, *pfaA*, *pfaB*, *pfaC*, and *pfaD* in this order. To generate EPA-deficient mutants of *S. marinintestina* IK-1, insertional inactivation mutagenesis was performed targeting the *pfaD* gene. An insertional fragment of *pfaD* was amplified using primers of 5’-CGCTACCCAATGGCCCTTAC-3’ and 5’-GCTGGCTCCAGCTTCAACAC-3’ and cloned into the *EcoRV* site of mobilizable suicide pKNOCK-Cm [6]. The resulting *pfaD*: pKNOCK-Cm construct was introduced into *S. marinintestina* IK-1 from *E. coli* BW20767 (ATCC47084) by conjugal transfer as described by Fukuchi et al. [7]. Chloramphenicol-resistant exconjugants arose
from plasmid integration into the *S. marinintestina* IK-1 chromosome in a single crossover event yielding strain IK-1Δ8 with *pfaD* insertionally inactivated. The site of plasmid insertion was verified by PCR amplification of a portion of the *pfaD* gene using primers located upstream and downstream of the insertion site.

2.3. **Analytical procedures**

The carbonyl content in oxidatively modified cellular proteins was determined using cells treated with 0.01 mM H$_2$O$_2$, as previously described [8]. The degree of carbonylation was expressed as nmol of protein carbonyls per mg of protein. Protein was assayed by the Bradford method [9].

The intracellular and extracellular concentrations of H$_2$O$_2$ were measured with the method by González-Flecha and Demple [10,11]. The cells of *S. marinintestina* strains IK-1 and IK-1Δ8 that had been suspended in PBS at an OD$_{600}$ of 1.0, were treated with and without H$_2$O$_2$ and then separated as supernatants and cell pellets by centrifugation as previously described [2]. The extracellular concentration of H$_2$O$_2$ in the supernatants was measured using a titanium-based method [12]. The cell pellets were resuspended in the same buffer at the same concentration of cells and then allowed to stand for 30 min at 15 °C. This time is sufficient for the medium to reach the intracellular steady-state concentration of H$_2$O$_2$ on the basis of its free diffusion through the
cell membrane [10]. After centrifugation the intracellular concentration of H$_2$O$_2$ was measured by assaying the concentration in the supernatants.

Packed wet bacterial cells from 10 ml of cultures were subjected to methanolysis using 2 M methanolic HCl in the presence of 20 μg of heneicosanoic acid as an internal standard, as previously described [13]. The resulting fatty acid methyl esters were analyzed by gas–liquid chromatography, as previously described [13]. The amount of fatty acids was expressed as micrograms of their methyl esters per millilitre of culture.

To measure the dry cell weight the packed cells were freeze-dried and weighed. Total lipids from dry cells were extracted by the Bligh and Dyer method [14]. Phospholipids were separated by one-dimensional thin-layer chromatography of total lipids. Fatty acid composition and phosphorus contents of individual phospholipids were determined, as described previously [15].

The catalase activity of their cell-free extracts of *S. marinintestina* strains IK-1 and IK-1Δ8 was measured spectrophotometrically at 240 nm at room temperature, as described previously [16].
3. Results

3.1. Effects of H$_2$O$_2$ on growth of S. marinintestina strains IK-1 and IK-1Δ8

S. marinintestina strains IK-1 and IK-1Δ8 similarly grew in LB medium containing NaCl at 15 °C (data not shown). A similar finding has been observed for EPA-producing *Photobacterium profundum* SS9 and its EPA-deficient mutant [17]. To investigate their susceptibility to H$_2$O$_2$, cells of these strains were subjected to bacteriostatic conditions, where the cells were suspended in PBS containing (H$_2$O$_2$+) or not containing (H$_2$O$_2$−) various concentrations of H$_2$O$_2$ and incubated for 30 min at 15 °C with no agitation. In Fig. 1 the number of CFUs of each strain under H$_2$O$_2$+ and H$_2$O$_2$− conditions was represented as a relative value (%) against the respective baseline under H$_2$O$_2$− conditions. CFUs for *S. marinintestina* strains IK-1 were much higher than those for strain IK-1Δ8 at any concentration of H$_2$O$_2$ (Fig. 1).

3.2. Effects of H$_2$O$_2$ on catalase activity and carbonyl contents in S. marinintestina strains IK-1 and IK-1Δ8

The catalase activity was almost the same in both *S. marinintestina* strains IK-1 and IK-1Δ8 and it was not affected by the presence of H$_2$O$_2$ (data not shown). It should be noted that the baseline catalase activity (0.18 U mg protein$^{-1}$) of *S. marinintestina* IK-1 was remarkably low,
being only one tenth of that of *E. coli* and other bacteria such as *Bacillus subtilis* and *Vibrio parahaemolyticus* [16].

When bacterial cells are treated with H$_2$O$_2$, various proteins such as elongation factor G [18] or glyceraldehyde-3-phosphate dehydrogenase [19] are carbonylated, leading to a growth arrest. The baseline level of protein carbonyls in *S. marinintestina* strains IK-1 and IK-1Δ8 was approximately 80 nmol mg protein$^{-1}$ (Table 1). In *S. marinintestina* IK-1, levels of protein carbonyls did not change notably after incubation with 0.01 mM H$_2$O$_2$ for 30 min, while for strain IK-1Δ8, levels of protein carbonyl increased slightly from 83.1 ± 1.3 nmol mg protein$^{-1}$ to 94.1 ± 1.9 nmol mg protein$^{-1}$ for 30 min under H$_2$O$_2$+ conditions. However, no change was observed in either strain under H$_2$O$_2$– conditions.

3.3. Effects of H$_2$O$_2$ on amount of *S. marinintestina* strains IK-1 and IK-1Δ8 cells and their fatty acid composition

The baseline weight of dry cells from 1 ml of culture was 220 ± 30 μg and 190 ± 30 μg for *S. marinintestina* strains IK-1 and IK-1Δ8, respectively. When cells were treated with 0.01 mM H$_2$O$_2$ for 30 min a significant decrease in the dry cell weight per culture were observed only for strain IK-1Δ8 (Table 2). Little changes were observed in either strain under H$_2$O$_2$– conditions.
Similarly the amount of fatty acid extracted from H$_2$O$_2$-treated cells of *S. marinintestina* IK-1Δ8 was much lesser than that of *S. marinintestina* IK-1 (data not shown).

The major fatty acids in *S. marinintestina* IK-1 cells were dodecanoic acid (10.9 ± 1.1%), tetradecanoic acid (15.1 ± 0.3%), palmitoleic acid (22.4 ± 0.6%), and EPA (17.3 ± 0.4%). Under the same condition, no EPA was detected and levels of palmitoleic acid significantly increased to 49.0 ± 0.5% in cells of strain IK-1Δ8. Treating both strains with H$_2$O$_2$ had little effect on their fatty acid composition (data not shown).

S. marinintestina strains IK-1 and IK-1Δ8 had phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), accounting for approximately 70 mol% and 25 mol%, respectively, of total lipids. In strain IK-1 all of EPA was detected in PE and PG.

3.4. Extracellular and intracellular concentrations of H$_2$O$_2$ in *S. marinintestina* strains IK-1 and IK-1Δ8

The extracellular and intracellular concentrations of H$_2$O$_2$ were also determined for *S. marinintestina* strains IK-1 and IK-1Δ8 using cells incubated under bacteriostatic conditions in the presence of 0.1 mM H$_2$O$_2$ and where no H$_2$O$_2$ was present. Cells were treated with 0.1 mM H$_2$O$_2$ in consideration of the detection limit of H$_2$O$_2$ by the titanium-based method [12]. The extracellular levels of H$_2$O$_2$ for both strains decreased slightly and gradually over time (Fig. 2A).
The rate of decrease was essentially the same for cells of *S. marinintestina* strains IK-1 and IK-1Δ8. Negligible concentrations of H₂O₂ were consistently detected in cells of both strains where no H₂O₂ was present (Fig. 2A). The intracellular concentration of H₂O₂ increased over time for both strains under H₂O₂ conditions. The H₂O₂ concentrations were 20.8 ± 4.2 μM for strain IK-1 and 39.4 ± 3.1 μM for strain IK-1Δ8 cells, 30 min after the addition of H₂O₂ (Fig. 2B). The intracellular concentration of H₂O₂ in cells of *S. marinintestina* strain IK-1 was approximately one-quarter of that in cells of strain IK-1Δ8.

4. Discussion

In this study, the antioxidative function of EPA was demonstrated in the marine bacterium *S. marinintestina* IK-1 that inherently produces EPA and in its EPA-deficient mutant (strain IK-1Δ8). *S. marinintestina* IK-1 produced EPA at approximately 17% of total fatty acids at 15 °C. *S. marinintestina* IK-1 completely lost the capacity to synthesize EPA after the insertional inactivation mutagenesis of the *pfaD* gene. The lack of EPA in strain IK-1Δ8 was maintained after repeated cultivations in a medium without antibiotics.

Previously we presented data based on *E. coli* recombinant systems showing that EPA in the cell membrane exerted an antioxidative effect on exogenously added H₂O₂. Although the molecular mechanism of this antioxidative function of EPA is unknown, it has been speculated
previously that the inherent molecular properties of EPA (as acyl constituents of phospholipids) allow it to form a more highly packed structure [20] than most other phospholipids so that it can inhibit the entry of H₂O₂ through the cell membrane. Considering that polyunsaturated fatty acids like EPA and docosahexaenoic acid are cellular molecules with the greatest susceptibility to oxidation [21], this shielding function of EPA against exogenous H₂O₂ is a unique mechanism. This mechanism operated against other oxidants such as t-butyl hydroperoxide (analog of hydrogen peroxide and not degraded by catalase) (unpublished result).

The ability of EPA to shield the cell membrane against exogenous H₂O₂ was also present in bacteria that naturally produced EPA. The CFU counting method (Fig. 1) showed that S. marinintestina IK-1 that produced EPA was more resistant to H₂O₂ than its EPA-deficient mutant strain IK-1Δ8. The higher resistance of S. marinintestina IK-1 to H₂O₂ was exemplified by the finding that lower levels of protein carbonyls were detected in S. marinintestina IK-1 (with EPA) than in strain IK-1Δ8 (without EPA) (Table 1), and that the recovered amount of cells (dry cell weight) and then simultaneously that of fatty acids was much higher from cultures of strain IK-1 than from cultures of strain IK-1Δ8 (Table 2). The latter observation suggests that more significant cell breakage occurred in strain IK-1Δ8 than in strain IK-1 and that EPA in cell membrane phospholipids function to prevent the entry of H₂O₂ from the external medium. The cell breakage was at a level of approximately 30% in strain IK-1Δ8 that had been treated with 0.01% H₂O₂.
(Table 2), where CFU of this strain was much more significantly reduced (approximately 70%; Fig. 1). These results suggest that a viable but non-culturable state might have been induced in some of

\[\text{H}_2\text{O}_2 \text{-treated strain IK-1}^{\Delta 8} \text{ cells, as was the case of H}_2\text{O}_2 \text{-treated } \text{E. coli [1]. Although the} \]

shielding mechanism of the cell membrane is largely unknown, we speculate the involvement of the structural hindrance of EPA-containing phospholipids, whose structure is more compact and prohibits the entry of \(\text{H}_2\text{O}_2 \) from outside.

Levels of protein carbonyls in nongrowth cells of \(\text{S. marinintestina} \) strains IK-1 and IK-1\(^{\Delta 8} \) before treatment with \(\text{H}_2\text{O}_2 \) were approximately 80 nmol mg protein\(^{-1}\). Only slightly higher values were obtained for the mutant cells (Table 1). These values were significantly higher than those measured in catalase-deficient \(\text{E. coli} \) UM2 transformant cells, both with EPA and without EPA, in which levels of protein carbonyls determined under the same conditions were approximately 0.2 nmol mg protein\(^{-1}\). The value was increased to approximately 0.5 nmol mg protein\(^{-1}\) and 0.75 nmol mg protein\(^{-1}\) for cells with EPA and those without EPA, respectively [2]. This was despite \(\text{E. coli} \) UM2 having no catalase or other notable \(\text{H}_2\text{O}_2 \)-decomposing activity and \(\text{E. coli} \) UM2 transformants were treated with 0.3 mM \(\text{H}_2\text{O}_2 \), whereas \(\text{S. marinintestina} \) strains IK-1 and IK-1\(^{\Delta 8} \) were treated with 0.01 mM \(\text{H}_2\text{O}_2 \).

All of these observations suggest that the cellular proteins of \(\text{S. marinintestina} \) strains might be much more susceptible to oxidation than the cellular proteins of \(\text{E. coli} \). It is known that
the marine bacteria *Vibrio rumoiensis* and *V. parahaemolyticus* are considerably more sensitive to exogenous H$_2$O$_2$ than *E. coli* and *B. subtilis* [22]. However, it is unknown whether such a characteristic is common in marine bacteria. To determine this would require biochemical and molecular testing of the susceptibility of proteins to oxidants.

Reference

Table 1. Effects of H₂O₂ on the protein carbonyl contents of *Shewanella marinitestina* IK-1^a and its EPA-deficient mutant IK-1Δ8^a

<table>
<thead>
<tr>
<th>Protein carbonyl (nmol mg protein<sup>−1</sup>)</th>
<th>H₂O₂<sup>−</sup></th>
<th>H₂O₂<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0<sup>b</sup></td>
<td>30<sup>b</sup></td>
</tr>
<tr>
<td>IK-1</td>
<td>78.6 ± 0.9</td>
<td>82.2 ± 5.5</td>
</tr>
<tr>
<td>IK-1Δ8</td>
<td>83.1 ± 1.3</td>
<td>84.6 ± 3.0</td>
</tr>
</tbody>
</table>

^aCells were treated with 0.01 mM H₂O₂.

^bTime (min)
Table 2. Effects of H$_2$O$_2$ on the dry cell weight of *Shewanella marinitestina* IK-1 and its EPA-deficient mutant IK-1Δ8 that had been treated with and without H$_2$O$_2$ under bacteriostatic conditions

<table>
<thead>
<tr>
<th></th>
<th>Dry cell weight (μg ml cell culture$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IK-1</td>
</tr>
<tr>
<td>H$_2$O$_2^-$</td>
<td>220 ± 30 (100.0)</td>
</tr>
<tr>
<td>H$_2$O$_2^+$</td>
<td>210 ± 10 (94.5)</td>
</tr>
<tr>
<td>0 time</td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>210 ± 0.0 (95.4)</td>
</tr>
</tbody>
</table>
Fig. 1. Effects of H$_2$O$_2$ on the colony-forming ability of *Shewanella marinitestina* IK-1 and its EPA-deficient mutant IK-1Δ8. Cells of strain IK-1 (●) and strain IK-1Δ8 (▲) were suspended in phosphate-buffered saline. After incubated for 30 min in the presence of 0.01, 0.1, 1, and 10 mM H$_2$O$_2$ under nongrowth conditions, the number of CFUs was determined. The baseline value of each strain was that of cells treated without H$_2$O$_2$. The CFU of *S. marinitestina* strains IK-1 and IK-1Δ8 was $7.5 \pm 0.3 \times 10^9$ ml of culture$^{-1}$ and $7.2 \pm 0.3 \times 10^9$ ml of culture$^{-1}$, respectively, at each baseline.

Fig. 2. Changes of extracellular (A) and intracellular (B) concentrations of H$_2$O$_2$ in *Shewanella marinitestina* strains IK-1 and IK-1Δ8 cells that were treated with and without H$_2$O$_2$ under nongrowth conditions. Portions of cell suspensions were withdrawn at various time intervals and assayed to determine extracellular and intracellular H$_2$O$_2$ concentrations. △, strain IK-1Δ8 under H$_2$O$_2^−$ conditions; ▲, IK-1Δ8 under H$_2$O$_2^+$ conditions; ○, IK-1 under H$_2$O$_2^−$ conditions; ●, IK-1
under H$_2$O$_2$+ conditions. Cells were incubated at 15 °C. The data indicated are means ± standard errors for three independent experiments.
Fig. 1.
Fig. 2.

A

![Graph A]

B

![Graph B]