<table>
<thead>
<tr>
<th>Title</th>
<th>Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nishioka, Jun; Ono, Tsuneo; Saito, Hiroaki; Nakatsuka, Takeshi; Takeda, Shigenobu; Yoshimura, Takeshi; Suzuki, Koji; Kuma, Kenshi; Nakabayashi, Shigeto; Tsumune, Daisuke; Mitsudera, Humio; Johnson, W. Keith; Tsuda, Atsushi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Geophysical Research, 112: C10012</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-10-11</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/30285</td>
</tr>
<tr>
<td>Rights</td>
<td>An edited version of this paper was published by AGU. Copyright 2007 American Geophysical Union. Nishioka, Jun; Ono, Tsuneo; Saito, Hiroaki; Nakatsuka, Takeshi; Takeda, Shigenobu; Yoshimura, Takeshi; Suzuki, Koji; Kuma, Kenshi; Nakabayashi, Shigeto; Tsumune, Daisuke; Mitsudera, Humio, (2007), Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk, JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 112, C10012, 10.1029/2006JC004055. To view the published open abstract, go to http://dx.doi.org/10.1029/2006JC004055</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>JGRO112.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Iron supply to the western subarctic Pacific:
Importance of iron export from the Sea of Okhotsk

Jun Nishioka¹,‡, Tsuneo Ono³, Hiroaki Saito⁴, Takeshi Nakatsuka¹, Shigenobu Takeda⁵, Takeshi Yoshimura⁶, Koji Suzuki⁶, Kenshi Kuma⁷, Shigeto Nakabayashi⁸, Daisuke Tsumune², Humio Mitsudera¹, W. Keith Johnson⁹, Atsushi Tsuda¹⁰

¹Pan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
²Central Research Institute of Electric Power industry, Abiko, Chiba 270-1194 Japan
³Hokkaido National Fisheries Research Institute, Kushiro, Hokkaido, 085-0802 Japan
⁴Touhoku National Fisheries Research Institute, Shiogama, Miyagi, Japan 985-0001
⁵Department of Aquatic Bioscience, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
⁶Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
⁷Faculty of Fisheries Science, Hokkaido University, Sapporo, Hokkaido 060-0813, Japan
⁸Japan Agency Marine-Earth Science and Technology, Yokohama, Kanagawa 237-0061, Japan
⁹Climate Chemistry Laboratory, Institute of Ocean Sciences, Fisheries and Oceans Canada, PO Box 6000, Sidney, BC, V8L 4B2, Canada
¹⁰Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan

Correspondence and requests for materials should be addressed to Jun Nishioka. (e-mail: nishioka@lowtem.hokudai.ac.jp)
Abstract

Iron is an essential nutrient and plays an important role in the control of phytoplankton growth [Martin et al., 1989]. Atmospheric dust has been thought to be the most important source of iron, supporting annual biological production in the Western Subarctic Pacific (WSP) [Duce and Tindale, 1991; Moore et al., 2002]. We argue here for another source of iron to the WSP. We found extremely high concentrations of dissolved and particulate iron in the Okhotsk Sea Intermediate Water (OSIW) and the North Pacific Intermediate Water (NPIW), and water ventilation processes in this region probably control the transport of iron through the intermediate water layer from continental shelf of the Sea of Okhotsk to a wide areas of the WSP. Additionally, our time-series data in the Oyashio region of the WSP indicates that the pattern of seasonal changes in dissolved iron concentrations in the surface mixed layer was similar to that of macronutrients, and that deep vertical water mixing resulted in higher winter concentrations of iron in the surface water of this region. The estimated dissolved iron supply from the iron rich intermediate waters to the surface waters in the Oyashio region was comparable to or higher than the reported atmospheric dust iron input and thus a major source of iron to these regions. Our data suggests that the consideration of this source of iron is essential in our understanding of spring biological production and biogeochemical cycles in the western subarctic Pacific and the role of the marginal sea.
1. Introduction

Mesoscale iron enrichment experiments conducted in the western and the eastern subarctic Pacific clearly reveal that iron limits phytoplankton growth, especially during the summer, in these two areas [Tsuda et al., 2003; Boyd et al., 2004]. Previous studies reported that the eastern subarctic Pacific (ESP) oceanic time series station showed little seasonal variation in phytoplankton increase [Boyd and Harrison, 1999]. In contrast, the western subarctic Pacific (WSP) is often more productive in its lower trophic levels, especially during the bloom season from spring to summer in the Oyashio region [Saito et al., 2002]. A very large biological drawdown of pCO_2 in the WSP was also observed during this period [Takahashi et al., 2002]. Since iron limits phytoplankton growth during the summer in the WSP, there are considerable interests in determining the source and seasonal timing of iron input, which can lead to a steady spring phytoplankton bloom as found in the Oyashio region. A previous study indicates that there is a longitudinal dust gradient across the North Pacific, that is, the flux of dust containing iron over the WSP is an order of magnitude higher than in the ESP [Duce and Tindale, 1991]. This is due to the closer proximity to the second largest dust source in the world, the Gobi Desert, and this has been believed to be the leading cause for the longitudinal differences in biological production between the WSP and the ESP. A recent study by Uematsu et al. [2003] has reported that a numerical model simulation successfully reproduced the variation of mineral aerosol concentrations and total deposition flux over the western North Pacific and Measures et al. [2005] showed that dust fluxes, which were estimated based on dissolved Al concentrations in surface water, are significantly lower than those estimated by the previous study of Duce and Tindale [1991]. However, the role of iron dust supply to stimulate biological production has not been well quantitatively evaluated due to lack of information on the fraction of atmospheric iron that is bioavailable [Jickells et al, 2005]. Alternatively Brown et al. [2005] suggested that upwelling dominates the supply of dissolved iron to surface
waters north of 45 °N in the WSP. Additionally, previous studies indicate that re-
suspended particles from continental shelf sediments are postulated as a primary source
of iron for phytoplankton [Wells and Mayer, 1991; Croot and Hunter, 1998; Johnson et
al., 1999; Bruoland et al., 2005; Chase et al., 2005; Elrod et al., 2004], and that these
iron-containing particles can be transported over long distances by eddies and water
current systems [Wu and Luther, 1996; Johnson et al., 1997; Löscher et al., 1997; Wells
et al., 1999; Johnson et al., 2005; Lam et al., 2006]. To date, however, the importance
of iron supply processes from the continental shelf by water current transport has not
been argued before for in the WSP.

Physical properties of each water mass in the WSP are complex and are strongly
influenced by a marginal sea, the Sea of Okhotsk. A schematic drawing of the
ventilation and water current system in the WSP can be found in Figure 1. The Sea of
Okhotsk is a marginal sea located on the northwest rim of the Pacific Ocean and is
known to be the lowest latitude seasonal sea ice area in the world [Alfultis and Martin,
1987; Kimura and Wakatsuchi, 2000]. Every winter, large amounts of sea ice are
produced along the Siberian coast on the north-western continental shelf of the Sea of
Okhotsk (shallower than 400 m depth) as a result of the cold winter winds blowing in
from East Siberia coupled with the fresh water discharge from the Amur river. The sea
ice formation rejects a large volume of cold brine, and subsequently the brine water
settles on the bottom of the north-western continental shelf along the Siberian coast to
form Dense Shelf Water (DSW: 26.8-27.0σθ) [Martin et al., 1998; Gladyshev et al.,
2000]. Because the density of the DSW generally does not exceed 27.0σθ, reflecting the
low salinity of surface water, the DSW does not sink to the bottom of the open sea, but
tends to penetrate the upper layer (250 ~ 450 m depth) of the Okhotsk Sea intermediate
water (OSIW) [Wong et al., 1998; Itoh et al., 2003; Yamamoto-Kawai et al., 2004].
The OSIW flows southward along the East Sakhalin coast, and is further exported
through “Bussol Strait” into the North Pacific Ocean after strong vertical diapycnal
mixing in the Kuril Straits [Nakamura and Awaji, 2004]. Thus, the OSIW contributes
to the formation of the North Pacific Intermediate water (NPIW) [Tally, 1991; Yasuda,
1997; Nakamura and Awaji, 2004; Nakamura et al., 2006]. Thus the waters properties
of the Oyashio region are strongly influenced by the intermediate water originating in
the Sea of Okhotsk. On the other hand, the WSP off the east coast of Japan is a
crossroads of water masses that are carried by the Kuroshio, the Oyashio and eddies
(Figure 1). The Kuroshio transports a large amount of warm saline water into the
midlatitude Ocean. The Oyashio is the western boundary current of the western
subarctic gyre which is formed by cold, fresh water being transported along the east side
of the southern Kuril Island [Nakamura et al., 2006; Yasuda et al., 2001]. The Oyashio
current flows southward along the northeast coast of Japan as far as 30-40º N, then turns
eastward and mixes with warm saline subtropical Kuroshio water. The Subarctic Front
(SF: temperature front) is formed at the Oyashio-Kuroshio inter-frontal region (Figure

Nakatsuka et al., [2002; 2004] pointed out that, in the Sea of Okhotsk, there is an
efficient system of sediment material transport from the north-western continental shelf
to the open sea via intermediate water transportation (DSW, OSIW). Other studies also
found that injections of large amounts of POC and DOC from the Sea of Okhotsk led to
increased DOC concentrations in the NPIW [Hansell et al., 2002; Hernes and Benner,
2002]. Extrapolating from these previous studies, it is possible that iron would also be
transported by the intermediate waters from the continental shelf of the Sea of Okhotsk
to wide area of the WSP. In this study, we investigate, 1) iron transport process from
the continental shelf of the marginal sea to the WSP by an intermediate water
ventilation and 2) the seasonal variability of dissolved iron concentrations from winter
to late spring (including the natural spring bloom period) in the Oyashio region. Then,
we argue for the possibility of the influence of this source of iron on the spring bloom in
the Oyashio region, which is one of the highest biological productive areas in the world oceans.

2. Methods

2.1. Observations around the Kuril Islands

Seawater sampling was conducted from the R/V *Mirai* to observe spatial distributions of iron in the WSP and the southern part of the Sea of Okhotsk in May to June 2000. The observation stations are indicated with triangles in Figure 1. To characterize vertical profiles of iron concentration, seawater samples and hydrographic data were collected using a clean CTD-carousel multiple sampler (CMS, SBE-911plus and SBE-32 water sampler, Sea Bird Electronics, Inc.) system which housed twelve acid cleaned Teflon coated 12-L Niskin-X bottles. For sub-sampling from the Niskin-X sampler, 0.22 µm Durapore filters (Millipac 100, Millipore Corp.) were connected to the Niskin-X spigot, and the filtrate was collected in acid-cleaned 125-ml LDPE bottles (Nalgene Co., Ltd) under gravity pressure. The filtrate and unfiltered samples were adjusted to pH 3.2 with addition of 2.4 M ammonium -10 M formic buffer, and “dissolved iron” (that is, leachable iron in 0.22 µm filtrate at pH 3.2) and “total dissolvable iron” (that is, dissolved plus leachable iron in unfiltered sample at pH 3.2) were analyzed onboard by FIA chemiluminescence detection system [Obata et al., 1993]. It should be noted that acidification to pH 3.2 is not sufficient to release all the iron from particulate forms [Obata et al., 1997]. For this cruise, the samples were allowed to sit at pH 3.2 for approximately 24 hours at room temperature to allow for a weak digestion of particulate matter resulting in analysis of what we have defined as “total dissolvable iron”. Therefore, “total dissolvable iron” in this study only includes the iron leached at pH 3.2 for 24 hour. All sample treatments were performed in a
laminar flow clean-air hood in a clean-air laboratory. Nutrients concentrations were also analysed in water samples collected from the same stations.

2.2. Observations for seasonal variation of iron concentration in the Oyashio region

Time-series observations were carried out monthly from January to the end of May, 2003, along the observation line of the National Fisheries Research Institute (A-line [Saito et al., 2002]) which crossed the Oyashio current (Figure 1) in the WSP (stations indicated by filled circles in Figure 1). During five cruises by the the following research vessels, Hokko-Maru in January (15 – 22 January), Oshoro-Maru in February (10–14 February) and March (11–20 March), and Wakataka-Maru in April (11–25 April) and May (7–19 May), samples were collected from surface to 800 m maximum with one to seven stations sampled regularly along the A-line (Table 1). During the April and May cruises, we visited A-line twice in each cruise, with sampling conducted at the beginning and end of each cruise. Samples to investigate temporal variability were also collected at oceanic station KNOT (44 °N, 155 °W, B9 in Figure 1) during March, April and May. Additionally, in the April and May cruises, seawater sampling was conducted to observe spatial distributions of iron in the WSP at the stations indicated by open circles in Figure 1. Seawater samples for this set of observations were collected using acid cleaned Teflon coated 10-L Niskin-X bottles suspended on Kevlar line. The unfiltered samples were adjusted to pH <1.8 with addition of 0.05 M of HCl, and the filtrate were adjusted to pH 3.2 with addition of 2.4 M ammonium -10 M formic buffer. Our defined “dissolved iron” concentrations (that is, leachable iron in 0.22 μm filtrate at pH 3.2) were analysed onboard and “total iron” concentrations were measured after more than 1 year storage by FIA chemiluminescence detection system (that is, dissolved plus leachable iron in unfiltered sample at < pH 1.8 during more than 1 year storage). All sample treatments were performed in a laminar flow clean-air hood.
in a clean-air tent. Nutrients and chlorophyll a concentrations were also analysed for water samples. Hydrographic data was also collected at all stations using a CTD.

2.3. Observations of a longitudinal section of iron profiles in the North Pacific along 165° E

A longitudinal vertical section observation in the North Pacific along 165° E was carried out (stations indicated filled square in Figure 1) in September 2003 by Hakuho-maru KH03-2 cruise. Seawater samples for total iron, dissolved iron, other chemical measurement and hydrographic data were collected using a clean CTD-CMS system as described in Section 2.1. “dissolved iron” and “total iron” concentrations were measured as described in Section 2.2.

2.4. Iron analysis in this study

Concentrations of Fe (III) in buffered and acidified samples were determined using an automatic Fe (III) analyzer (Kimoto Electric Co. Ltd.) using chelating resin concentration and chemiluminescence detection [Obata et al., 1993]. The detection limit (three times the standard deviation of Fe (III) concentrations for purified seawater, which was passed through an 8-quinolinol resin column three times to remove Fe) was 0.017 to 0.032 nM (among the cruises). The relative standard deviation was within 4.2 % (n=34) for replicate measurements of a reference seawater sample containing 0.54 nM Fe (III). Our iron measurement method and reference seawater were vetted by using SAFe (Sampling and Analysis of Iron) cruise [Johnson et al. 2007] reference standard seawater (distributed by Moss Landing Marine Laboratory (MLML) for an inter-comparison study) several years later, with our results comparing favourably for dissolved iron concentration in ~ 0.1 nM and ~ 1 nM (MLML reference standard
seawater containing 0.099 nM and 0.91 nM iron were measured to be 0.10 ± 0.010 nM (n=3) and 0.99 ± 0.023 (n=3) by our method, respectively (the reference seawater was analysed on Dec. 26, 2006)).

3. Results and Discussion

3.1. Iron export from the Sea of Okhotsk to the western subarctic Pacific

Total dissolvable and dissolved iron concentrations around the Kuril Islands were measured, and vertical profiles of iron and dissolved oxygen in the WSP, the Oyashio region and the Sea of Okhotsk are shown in Figure 2 (a, b and c). Total dissolvable and dissolved iron versus density plots are also shown in Figure 3 (a and b). The dissolved iron profiles on the WSP side of the Kuril Islands showed nutrient-type distributions with low iron concentrations in surface waters (< 0.1 nM), and extremely high concentrations (~ 1.5 nM in dissolved iron) in the intermediate layer (maximum at 500-800 m) (Figure 2a). These dissolved iron concentrations in the intermediate waters in the WSP are approximately three times higher than that maximum concentration found in the ESP (0.6 nM) [Nishioka et al., 2001]. Similarly, the intermediate water iron concentrations in the Oyashio region were higher than that of open-ocean stations (B9 and C11) (Figure 2b). Meanwhile, in the Sea of Okhotsk, dissolved iron was substantial in the surface mixed layer (0.2 ~ 0.6 nM), and obviously it showed much higher total dissolvable iron concentrations (~ 10 nM) in the intermediate layer than found in the WSP side (Figure 2c). Regarding the fractions of iron, maximum depths for total dissolvable iron are shallower than that of dissolved iron in all profiles, and the maximum depths for dissolved iron corresponds to the minimum depth for dissolved oxygen (Figure 2 a, 2b and 2c). This is probably caused by sinking and remineralization of particulate iron. The density of iron-rich intermediate waters in the
Sea of Okhotsk observed in this study obviously correspond to the density range of the DSW and the OSIW (Figure 3a and 3b). It has been reported that the Oyashio region waters originate partly from Sea of Okhotsk water with 26.6-27.5 σ_θ [Yasuda et al., 2001] and that this density range also corresponds to the iron-rich intermediate waters (NPIW) in the Oyashio region and the other region of the WSP (Figure 3a and 3b). These our data suggests that substantial iron was exported along with the intermediate water discharge from the Sea of Okhotsk to the WSP.

3.2. Lateral iron transportation via intermediate water ventilation

A longitudinal section of salinity, dissolved iron and total iron profiles in the North Pacific along 165° E are shown in Figure 4a, 4b and 4c. Vertical profiles of dissolved iron, total iron, salinity and dissolved oxygen at 35 °N, 165° E are also shown in Figure 5. These longitudinal sections clearly indicate that high iron concentrations extend southward at intermediate water depths (26.6-27.5 σ_θ). A low salinity intermediate water mass, which was influenced by NPIW formation in the subarctic corresponds to the iron-rich water mass (Figure 4a, 4b and 4c, Figure 5). Maximum depth of dissolved iron corresponds to the minimum depth in dissolved oxygen (at 35 °N, 165° E; Figure 5) indicating remineralization processes as mentioned above. Watanabe et al. [1994] reported that apparent ages for the NPIW along 175 °E as by measured chlorofluorocarbons in the North Pacific, and that NPIW is laterally transported between subpolar and subtropical regions on timescales of a few decades. Therefore, iron is transported by NPIW from the subarctic region to subtropical region within a few decades. Moreover, we observed a high total iron core in the intermediate water at 35 °N (Figure 4c). Watabnabe et al. [1994] also suggested that NPIW (greater than 26.80 σ_θ) near 37 °N was older than its surrounding waters and that new NPIW formed in the subpolar region is not transported directly southward. Additionally, a previous
physical modelling study pointed out that core of the Oyashio flow, which is
constructed of subarctic water, intrudes into the intermediate layer (around $27\sigma_0$ or 800-
1000 m) below the Kuroshio extention after the Oyashio flow turns eastward between
30-40 ° N off the coast of Japan (Figure 1) [Mitsudera et al., 2004]. The high total iron
core in the intermediate water at 35° N might be induced by the Oyashio water pathway.

On the other hand, we observed high total iron in the bottom water in north of the
study region along 165° E (Figure 4c). It is likely that the northward increasing trend in
the iron levels in the bottom water is due to the effect of sinking particles of strong
biological productivity at high latitude, and southward advection and/or mixing of this
iron-rich bottom water occurred.

Our data described above suggest that the intermediate water masses, in the Sea of
Okhotsk (OSIW) and the WSP (NPIW), are extremely rich in dissolved and particulate
iron, and that water ventilation processes in this region control the transport of dissolved
and particulate iron through the intermediate water layer from the Sea of Okhotsk to a
wide areas of the WSP.

3.3. Source of iron in the intermediate water

It has been reported that the DSW, which is a source water of the OSIW,
consistently contains large amounts of re-suspended sedimentary particles, due to strong
tidal mixing on the shelf of the Sea of Okhotsk [Nakatsuka et al., 2002], and that the
outflow of DSW results in a large flux of particulate and dissolved organic matter (POC
and DOC) from the shelf to the OSIW [Nakatsuka et al., 2004]. Finally, the OSIW
transports the POC and DOC into the NPIW [Hansell et al., 2002; Hernes and Benner,
2002; Nakatsuka et al., 2004]. Another report has indicated that the OSIW has
extremely low N* value ($([\text{NO}_3^-]-16*[\text{PO}_4^{3-}]+2.9)*0.87$) due to the denitrification (or
exudation of phosphate) of anoxic pore water in the sediment of the north-western shelf region of the Sea of Okhotsk, and can act as a conservative tracer of the water [Yoshikawa et al., 2006]. Vertical profiles of iron and N* in the Sea of Okhotsk (station C1) and Oyashio region (C5) are shown in Figures 6a and 6b. Our data show that the iron-rich intermediate water masses clearly have low N* values in the Sea of Okhotsk (Figures 6a for station C1), and that this feature is also found in the water column of the Oyashio region (Figure 6b for station C5). In 2006 summer, we conducted direct observation in the north-western continental shelf area of the Sea of Okhotsk, and detected extremely high total iron concentration (> 60 nM) in original seawater of the DSW (data not shown) and Fe (II) in the pore water of the sediments (Minami, personal communication). These previous reports and our data imply that the large amounts of dissolved and particulate iron in the OSIW would be introduced by the re-suspension of the sediments from the north-western continental shelf area of the Sea of Okhotsk.

There is one more possible source of iron for the NPIW in the Oyashio region. Amakawa et al. [2004] reported neodymium isotopic data that the radiogenic Nd ultimately derived from volcanic provinces as the Kuril-Kamchatska and Aleutian islands is transported by the Oyashio current to form the NPIW. A recent study also reports that subduction zone volcanic ash has high iron concentrations [Duggen et al., 2007]. Therefore, coastal sediments of the Kuril Islands might be another source of the iron in the NPIW.

3.4. Spatial and temporal distributions of iron in the WSP

Our vertical measurements of iron in the WSP confirm previous observations that increased gradients in dissolved iron concentrations with depth from subsurface to
intermediate water (NPIW) were greater in the WSP [Fujishima et al. 2001, Nishioka et al., 2003, Brown et al., 2005] relative to that of the ESP. Furthermore, particulate iron was extremely high in the whole water column of the western region [Nishioka et al., 2003, Kinugasa et al., 2005, Brown et al., 2005]. However, the observations in this study also provide some new information on features of tempo-spatial variability of iron concentrations in the WSP. We found that extremely high total iron concentrations in the surface were observed only in subarctic water masses north of the SF, and that this feature was clearly separated by the SF border, which was as defined 6 °C in this study (Figure 7a, 7b and 7c). North of SF, there was a cold water mass which had extremely high total iron concentrations (Figures 7a, 7b and 7c) with the main form of iron being found in the particle phase (~ 80 %) (Figure 8 for Station A4). Conversely, high total iron concentrations were not observed in warm (> 6 °C) surface waters south of the SF as can be clearly seen in the profile of station B6 (Figure 8 for Station B6).

Additionally, time series iron observations of vertical profiles in the Oyashio region (A7) and at an oceanic station in the WSP (B9) clearly show that there was temporal variability in dissolved iron and total iron concentrations in the water column in both the regions (both the stations are located north of the SF) (Figure 9a and 9b). This variability was more pronounced than those of nitrate or salinity. Higher temporal variability of dissolved and total iron concentrations, especially in total iron, was observed in the entire water column in the Oyashio region (A7), upstream of the Oyashio flow and near the source of iron, than at the oceanic station (B9), downstream of the Oyashio flow (Figure 9a and 9b). These time-series data indicates that some fractions of the iron in particulates and colloidal matters were lost from the water column during the water transportation.

From our spatial and temporal iron distributions, it can be inferred that the high iron input, mainly in the particulate phase, occurs north of the SF and upstream of the
Oyashio region, and the iron is subsequently distributed to the cold subarctic water in the WSP area. The results are consistent with our data that the iron-rich water is transported from the Sea of Okhotsk to the WSP (described in section 3.1), and cannot be solely explained by aeolian dust supply over the study area.

3.5. Changes in dissolved iron concentrations during a spring bloom in the Oyashio region

Changes in dissolved iron, nitrate, surface mixed layer depths (MLD) and chlorophyll \(a\), in the surface of the Oyashio region are shown in Figures 10a, 10b, 10c and 10d. We found there to be clear seasonal variability of dissolved iron concentrations in the surface mixed layer along the monitoring line \(A\)-line in 2003 (Figure 10a). High nutrient levels in the surface mixed layer occurred in winter (~ 25 \(\mu\)M nitrate) (Figure 10b), due to the deep vertical mixing (~ 200 m) in winter, which delivered high nutrient subsurface water into the surface (Figure 10c). In spring, thickness of the surface mixed layer decreased (Figure 10c) and the nitrate concentration was drawn down to 2 ~ 10 \(\mu\)M nitrate (Figure 10b) due to biological uptake in spring bloom (Figure 10d). During the observation period in 2003, seasonal changes in dissolved iron level was similar to that of nitrate in the surface mixed layer. The dissolved iron concentration observed in the surface mixed layer of the Oyashio region reached a maximum in January, and kept high throughout winter (ave. 0.6 nM). As the development of the spring phytoplankton blooms, the dissolved iron levels decreased to < 0.2 nM (Figure 10a). Higher surface dissolved iron concentrations in
March (~0.3 nM) compared to May (< 0.1 nM) were also observed in the oceanic region (B9) (Figure 9b).

Three sources can be proposed for explaining the relatively high dissolved iron levels in the surface mixed layer before the phytoplankton bloom in the Oyashio region: 1) input of soluble aerosol iron, 2) lateral transport into the surface layer and 3) turbulent vertical mixing of dissolved iron from the subsurface layer. Regarding 1), mineral dust and particulate pollutants from the Asian continent are transported eastward over the North Pacific, especially in spring [Uematsu et al., 1983]. Recently, significant temporal variability of iron concentrations in near surface waters at station HOT-ALOHA in the central North Pacific, one of the most intensely studied site for iron in the ocean, was reported by Boyle et al. [2005]. They indicated that the highest observed iron concentrations was seen during the period of peak Asian dust transport in spring season, and suggest that significant inter-annual differences in near-surface iron will occur as a result of inter-annual variability in Asian dust transport. The observed frequencies of dust events in 2003 were 0 day both in January and February, 6 days in March, 7 days in April and 2 days in May (these observations were performed by Japan meteorological agency at 98 meteorological stations on Japan using visually transmittance survey [http://www.data.kishou.go.jp/obs-env/kosahp/kosa_table_1.html]).

In this study, the monthly variation (seasonality) of the dust events was clearly inconsistent with the seasonal change in dissolved iron in the surface mixed layer of the Oyashio region in 2003. Hence, the aeolian dust input would be a minor process for the phenomenon. However, occasionally surface maxima of dissolved and total iron can be found in vertical profiles of our data (e.g. Figure 9; station A7 January and station B9 March), which can not be explained by the vertical mixing of iron-rich intermediate water. Atmospheric input of mineral dust is one potential sources that could explain these surface maxima events.
As for 2), previous studies clearly indicated that strong vertical mixing occurs around the Kuril Straits. The diapycnal mixing around Kuril Straits strongly affects the temperature and salinity properties of the OSIW [Tally et al., 1991; Wong et al., 1998; Yamamoto et al., 2002]. Nakamura and Awaji [2004] performed numerical experiments to study tidally generated internal waves in the Kuril Straits and showed that tidal mixing was able to reach down to the OSIW. These previous studies suggest that the iron-rich intermediate waters probably influence the surface layer around the Kuril Straits and thus raise the MLD iron concentrations with subsequent transport to the Oyashio region. These theories cannot be verified using our data, unfortunately, but can be crucial processes for iron distributions in the Oyashio region. Detailed seasonal investigations of iron concentrations with physical parameters around the Kuril Straits must be needed to estimate the surface lateral iron transport from the Kuril Straits to the Oyashio region. Lateral transport from the Kuril Straits is also a possible source that might explain the surface maxima described in 1).

Regarding 3), our time series data can support the importance of the upward flux of iron by deep winter mixing in this region. One of the proof or evidence for this is that the seasonal change in dissolved iron behaves similar to that of nitrate in the surface mixed layer. The dissolved iron to nitrate supply ratio from the subsurface layer are summarized for the Oyashio region (St. A11), WSP (St.B9) and ESP (St. Papa) [Nishioka et al., 2001] in Table 2 (the values are calculated from data which show in Figure 11). The ESP consistently contains 0.004 nM Fe/μM NO$_3$ in the subsurface gradient. On the other hand, Stations A11 and B9 have significantly higher ratios (0.044, 0.052, respectively) than ESP. Winter vertical mixing in the Oyashio region and the WSP supplies more iron than in the ESP. A greater supply of macronutrients and
substantially higher seasonal nutrient utilization in the WSP and Oyashio region [Tsurushima et al., 2002; Harrison et al., 2004], compared with ESP, could be explained by a larger upward iron flux in the WSP and Oyashio regions.

3.6. Estimation of annual upward iron flux

The vertical distributions of dissolved iron concentrations in the Oyashio region, WSP, and ESP were utilized to estimate the vertically transported iron amounts to the surface waters by eddy diffusion, vertical advection and winter mixing in order to determine the annual upward flux of iron into the surface mixed layer. Typical dissolved iron profiles in winter and late spring at Station A11 (Oyashio region), B9 (WSP) and Papa (ESP: reported data [Nishioka et al., 2001]) are used for this estimation (Figure 11).

A schematic drawing of evaluated upward iron transport processes are shown in Figure 12.

We have employed a simple one-dimensional model by Martin et al. [1989] to estimate the vertically transported iron amounts to the surface waters from spring to autumn by vertical advection and eddy diffusion (F1). We define the winter period as 5 months (150 days), therefore, the formula of F1 is used as an estimation for the remaining 215 days.

\[F1 = W \times R \times 215_{\text{days}} + Kz \times (dFe/dz) \times 215_{\text{days}} \mu\text{mol Fe m}^{-2} \]

(referenced by Martin et al. [1989])

Where W is the vertical velocity, with a value of 0.012 m/day being employed as per Martin et al. [1989], in all regions, R is the mean concentration of dissolved iron in the
vertical gradient in the subsurface layer, and K_z is the coefficient of eddy diffusivity. We used 5 m2/day for K_z from Martin et al. [1989] for all regions, and calculated dFe/dz (gradient in dissolved Fe with depth (μmol/cm4)) from our data set (Figure 11).

The winter water column of the Oyashio region is characterized by weak density stratification from the surface to intermediate waters (Figure 11), due to the strong influence of the NPIW. Therefore, the true K_z value would be higher than the value used for our F_1 calculation. In consideration of this fact, we decided to use a simple straightforward method to estimate the iron amounts transported by winter mixing (F_2). According to the concept of isopycnal mixing model reported by Sarmiento et al. [1990], an inventory of iron raised to the surface waters by winter mixing (F_2) was estimated as follows.

$$F_2 = (C_1-C_2)*D_1 \quad \mu\text{mol Fe m}^{-2}$$

C_1 is the summer dissolved Fe concentration at the maximum depth of the winter mixed layer. C_2 is dissolved Fe concentration in the summer surface mixed layer. D_1 is the summer surface mixed layer depth. We used our observed data for C_1, C_2 and D_1 (Figure 11, Table 2). We also assumed that the inventory of iron raised to the surface waters by winter mixing (F_2) include the iron transported by vertical advection and eddy diffusion.

The annual total upward dissolved iron flux is estimated by summation of F_1 and F_2 (μmol Fe m$^{-2}$yr$^{-1}$).

These fluxes are summarized and presented in Table 2. An estimate of atmospheric dust deposition reported by Fung et al. [2000], results of the ocean global model including iron, suggest that the total atmospheric dust flux in the western North Pacific is 929 μmol Fe m$^{-2}$yr$^{-1}$ (ave. value for 40$^\circ$N, 170$^\circ$E), and that the average
solubility of airborne iron within the mixed layer must be ~ 1 % to represent observed
distribution of High Nutrient Low Chlorophyll (HNLC) waters in the North Pacific
[Fung et al., 2000; Aumont et al., 2003]. If the atmospheric dust solubility is 1 %, the
upward iron flux from intermediate waters to the surface in the Oyashio region and
other parts of the WSP (Table 2), would be comparable to or larger than the atmospheric
dust flux (9.29 µmol Fe m\(^{-2}\) yr\(^{-1}\)). Moreover, the upward iron flux estimated is
significantly higher for the Oyashio region and the WSP than the ESP area, due to the
“rich iron in the subsurface-intermediate water” and “deeper winter vertical mixing”
[Suga et al., 2004] in the WSP. These simple calculations suggest that the upward iron
flux is particularly significant in the Oyashio region and other parts of the WSP, and
probably comparable to atmospheric iron input. If we compare our upward fluxes to
estimates from previous studies from other regions, the flux in the Oyashio region and
the WSP are comparable or lower than those reported in the Southern Ocean (53.6 µmol
Fe m\(^{-2}\) yr\(^{-1}\) [Lösch et al., 1997], 12.9 µmol Fe m\(^{-2}\) yr\(^{-1}\) [Crook et al., 2004]).

Uematsu et al. [2003] using numerical simulation study indicated that several
sporadic deposition event of mineral dust over the HNLC region during the spring will
increase the dissolved iron concentration in surface water, 0.3-0.6 nM increase in 50 m
deep mixed layer if dissolution of iron in mineral particle is 10%. Furthermore, resent
other study by Buck et al. [2006] reported wide range of airborne soluble iron flux (0.56
~ 710 nmol Fe m\(^{-2}\) day\(^{-1}\)) supplied by several dust event to the east of Japan and further
north off the Sea of Okhotsk in the northwest Pacific Ocean, which are estimated with
onboard dust observation data and solubility experiment of aerosol iron. However,
there are still uncertainties in the quantitative evaluation especially in regard to
atmospheric iron fluxes and the fraction of atmospheric dust that is bioavailable.
According to previous reports, iron solubility from dust could be < 0.1 % ~ 10%
[Jickells and Spokes, 2001; Jickells et al., 2005]. Baker et al [2006] also reported that
iron solubility in dust varies as a function of the dust load. On the other hand, iron
concentrations in the intermediate water are also variable (See section 3.4), and probably distributed heterogeneously. Therefore, we need more detailed studies to compare these dissolved iron sources with quantitative evaluation by observation and simulation studies with modelling including biogeochemical processes of iron in the ocean and atmosphere.

3.7. Possible iron supply system in the WSP

Here we propose a hypothesis that one of the important sources of iron in the WSP region is the transportation of iron-rich intermediate waters, which contain re-suspended iron from the continental shelf areas of the Sea of Okhotsk to a wide area of the WSP (Figure 13). Water ventilation processes in this region control the iron transportation. This source of iron is supplied to the surface layer by diffusion and strong winter turbulence mixing in the Oyashio region, and diapical mixing at the Kuril Straits. The proposed process can explain the significant and steady increases in phytoplankton biomass in the Oyashio region during spring, as a result of turbulent winter mixing processes increasing surface iron concentrations in a timely fashion-suitable for the spring phytoplankton bloom. The same is not true for sporadic iron supply from airborne dust events. The physical dynamics of currents transporting iron and the diffusing and winter mixing system should be considered as important sources of iron when predicting natural spring phytoplankton blooms in Oyashio region.

Although the intermediate water iron transportation process explains external iron input to a wide area of the WSP, the available iron is not sufficient for complete utilization of upwelled nitrate in the HNLC region in the WSP. This is mainly due to the loss of iron during water transport.
4. Conclusion

In conclusion, we indicate that the intermediate waters in the western subarctic Pacific (WSP) receive their primary source of iron through ventilation processes originating in the Sea of Okhotsk, a marginal sea. This source of iron is distributed to subarctic waters in the WSP area, and the form of the introduced iron is mainly in the particulate phase. Furthermore, there is a clear seasonality in dissolved iron concentrations in the surface waters of the Oyashio region. The waters are significantly influenced by high iron concentrations in the intermediate waters through diffusion and winter mixing. Therefore, in addition to the traditional view of dust input, the iron transported by intermediate waters should be considered as an important source of iron for phytoplankton blooms in the Oyashio region. In future studies, quantitative evaluation is necessary for these sources, 1) intermediate water iron transportation, 2) airborne dust iron supply, 3) surface lateral transport, to understand the influence of iron to biological production in the WSP. Our findings contribute to a better understanding of the mechanisms influencing biological production and iron biogeochemical cycles in the subarctic Pacific as well as defining the role of its marginal sea, the Sea of Okhotsk.

Acknowledgements. We express our appreciation and thanks to Dr. T. Kusakabe for support during observations in the Sea of Okhotsk. Thanks are also extended to the crew and officers of R/V MIRAI, Hokko-maru, Oshyoro-maru, Wakataka-maru, Hakuho-maru for their assistance. Anonymous reviewer’s comments improved the manuscript. This work was supported by the Central Research Institute of Electric Power Industry, the Ministry of Education, Science and Culture, and the Fisheries Agency.
research funding, and is a contribution to the Amur-Okhotsk Project, promoted by the Research Institute for Humanity and Nature (RIHN).

References

Japan meteorological agency observed data, http://www.data.kishou.go.jp/obs-env/kosahp/kosa_table_1.html

Global sea-air CO$_2$ flux based on climatological surface ocean pCO$_2$, and seasonal biological and temperature effects, *Deep-Sea Res. II*, 49, 1601-1622.

Figure 1. Chart of the subarctic Pacific area with sampling locations in this study. Stations indicated by filled triangles are observed total dissolvable iron and dissolved iron concentrations in May to June, 2000 cruise. Time-series observations were conducted from January to the end of May in 2003 at stations along “A-line”, which are indicated by filled circles. Spatial observations were conducted in April and May 2003 at stations indicated by open circles. Time-series observations were also conducted at station B9. A longitudinal vertical section observation in the North Pacific along 165º E were carried out, at the stations indicated by the filled squares, in September 2003. Arrows indicate a schematic image of the intermediate water currents (dashed line) and surface water currents (solid line). DSW=Dense Shelf Water; OSIW=Okhotsk Sea Intermediate Water; OY=Oyashio; KR=Kuroshio.

Figure 2. a, Vertical profiles of Total dissolvable iron (TD-Fe), dissolved iron (D-Fe) and dissolved oxygen in the, a, WSP (western subarctic Pacific), b, the Oyashio region and, c, the Sea of Okhotsk.

Figure 3. a, Total dissolvable iron (TD-Fe) versus water density plot (right) around the Kuril Island. Green symbols indicate the data from the Sea of Okhotsk, red symbols indicate the data from the Oyashio region and blue symbols indicate the data from oceanic regions of the WSP. b, Dissolved iron (D-Fe) D-Fe versus water density plot around the Kuril Island. All symbols are same as “a”.
Figure 4. A longitudinal section of a: salinity, b: dissolved iron and c: total iron profile in the North Pacific along 165° E. Density range of 26.6-27.5 σ_0 is located on each figure.

Figure 5. Vertical profiles of dissolved iron, total iron, salinity and dissolved oxygen at 35°N, 165° E.

Figure 6. Vertical profiles of N* values (filled triangles), and TD-Fe (open circles) and D-Fe (filled circles) at station C1 (at the Sea of Okhotsk: a) and C5 (at the Oyashio region: b).

Figure 7. Average Total Fe concentrations and average temperatures in the surface mixed layers at stations in the WSP. a: data from the April 2003 cruise, b: data from the May 2003 cruise. C: Iron concentrations are plotted on the map of the WSP. dotted line indicates the subarctic front (SF).

Figure 8. Vertical profiles of D-Fe, T-Fe and Temperature at station A4 (at north of subarctic front) and B6 (at south of subarctic Front).

Figure 9. a, Vertical profiles of dissolved iron, total iron, salinity, and nitrate+nitrite, from January to May at stations A7 (Upper stream of Oyashio region) and b, from March to May at station B9 (down stream of Oyashio region) in 2003.
Figure 10. a, Seasonal variations in sea-surface dissolved iron concentrations (average in surface mixed layer), nitrate+nitrite concentrations (average in surface mixed layer), surface mixed layer depths (MLD) and chlorophyll a concentrations (average in surface mixed layer), from January to the end of May, 2003, along the “A-line”.

Figure 11. Dissolved Iron, Nitrate and Temperature profiles at Station A11, B9 and Papa [data from Nishioka et al., 2001] used in the estimations of slopes and mixed layer depth (MLD) shown in Table 2.

Figure 12. A schematic drawing of evaluated upward iron transport processes. A: by winter mixing, B: by eddy diffusion, C: vertical advection. C1 is the summer dissolved Fe concentration at the maximum depth of the winter mixed layer. C2 is dissolved Fe concentration in the summer surface mixed layer. D1 is the summer surface mixed layer depth. D2 is winter surface mixed layer depth.

Figure 13. Schematic of iron supply process proposed in this study. Water ventilation processes in this region control the transport of dissolved and particulate iron through the intermediate water layer from the continental shelf of the Sea of Okhotsk to the wide area of the WSP.
Table 1 Cruise, stations, observed depth range and Fe measurement in this study

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Vessel</th>
<th>Cruise</th>
<th>Stations*</th>
<th>Observed minimum and maximum depth(m)</th>
<th>Fe measurement**</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>May-June</td>
<td>Mirai</td>
<td>MR00K-03</td>
<td>C0, C1, C2, C3, C4, C5, C7, C8, C9, C11, B9</td>
<td>10-5500</td>
<td>TD-Fe, D-Fe</td>
</tr>
<tr>
<td>2003</td>
<td>January</td>
<td>Hokko-maru</td>
<td>HK0301</td>
<td>A3, A4, A5, A7, A9, A11, A15</td>
<td>10-800</td>
<td>T-Fe, D-Fe</td>
</tr>
<tr>
<td>2003</td>
<td>February</td>
<td>Oshoro-maru</td>
<td>OS131</td>
<td>A7</td>
<td>10-300</td>
<td>T-Fe, D-Fe</td>
</tr>
<tr>
<td>2003</td>
<td>March</td>
<td>Oshoro-maru</td>
<td>OS133</td>
<td>A4, A7, B9</td>
<td>10-800</td>
<td>T-Fe, D-Fe</td>
</tr>
<tr>
<td>2003</td>
<td>April</td>
<td>Wakataka-maru</td>
<td>WK0304</td>
<td>A4, A7, A11, A17, B1, B2, B3, B4, B5, B6, B7, B8, B9, B14, re-A4, re-A7, re-A11</td>
<td>10-800</td>
<td>T-Fe, D-Fe</td>
</tr>
<tr>
<td>2003</td>
<td>May</td>
<td>Wakataka-maru</td>
<td>WK0365</td>
<td>A4, A7, A11, A17, B3, B4, B9, B14, re-A4, re-A7, re-A11</td>
<td>10-800</td>
<td>T-Fe, D-Fe</td>
</tr>
<tr>
<td>2003</td>
<td>September</td>
<td>Hakuho-maru</td>
<td>KH03-2</td>
<td>D1, D2, D3, D4, D5</td>
<td>10-5000</td>
<td>T-Fe, D-Fe</td>
</tr>
</tbody>
</table>

* All station are indicated in Figure 1. re-: re-visit
** TD-Fe: Total dissolvable iron (dissolved plus leachable iron at < pH 3.2)
 T-Fe: Total iron (dissolved plus leachable iron at < pH 1.8 during more than 1 yr storage)
 D-Fe: Total iron (leachable iron in < 0.22 mm at pH 3.2)
Table 2 Calculated dissolved iron upward flux and iron/nitrate ratio from below surface

<table>
<thead>
<tr>
<th></th>
<th>OY (A11)</th>
<th>WSP (B9)</th>
<th>ESP (St.Papa*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>winter max. MLD (m)</td>
<td>200</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>summer MLD (m)</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>dFe/dZ (µmol/m^4)</td>
<td>0.0032</td>
<td>0.0060</td>
<td>0.0017</td>
</tr>
<tr>
<td>Dissolved Fe conc. at winter MLD in the summer vertical profile (nM): C1</td>
<td>0.45</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>Dissolved Fe conc. in summer MLD (nM): C2</td>
<td>0.07</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>mean D-Fe concentration at subsurface gradient (nM): R</td>
<td>0.73</td>
<td>0.48</td>
<td>0.17</td>
</tr>
<tr>
<td>dN/dZ (mmol/m^3)</td>
<td>0.072</td>
<td>0.115</td>
<td>0.453</td>
</tr>
<tr>
<td>dFe(nM)/dN(µM) ratio</td>
<td>0.044</td>
<td>0.052</td>
<td>0.004</td>
</tr>
<tr>
<td>Iron amounts transported by winter mixing (µmol Fe/m^2)</td>
<td>7.6</td>
<td>3.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Iron amounts transported by eddy diffusion** (µmol Fe/m^2)</td>
<td>3.4</td>
<td>6.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Iron amounts transported by vertical advection*** (µmol Fe/m^2)</td>
<td>1.9</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Total annual upward iron flux (µmol Fe/m^2/yr)</td>
<td>12.9</td>
<td>11.3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

OY: Oyashio region, WSP: western subarctic Pacific region, ESP: eastern subarctic Pacific region

Data in station A11, station B9 and station Papa are shown in Fig. 11.

MLD: surface mixed layer depth

*Station Papa data was referred from Nishioka et al., 2001

** Employed coefficient of eddy diffusivity: Kz = 5m^2/day

*** Employed vertical velocity: W = 0.012 m/day
Nishioka et al., Fig. 2
Nishioka et al., Fig. 4
Station C1

N* vs. Depth (m) vs. Fe conc. (nM)

Station C5

N* vs. Depth (m) vs. Fe conc. (nM)

Nishioka et al. Fig. 6
Nishioka et al. Fig. 7
Nishioka et al. Fig. 8
Nishioka et al. Fig. 9
Nishioka et al. Fig. 10
Station A11 (Oyashio)

Station B09 (KSP)

Station Papa (ESP)
Nishioka et al. Fig. 12

Dissolved Fe conc. nM

A: winter mixing flux

B: eddy diffusion

C: vertical advection

iron profile in summer

Depth

C2

C1

D1

D2