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A SOLVING METHOD FOR ASSIGNMENT PROBLEMS 

USING IMBEDDING PRINCIPLE 

Y ASUKI SEKIGUCHI 

1. INTRODUCTION 

Assignment problems are some of the most familiar and fundamental 
problems in the mathematical programming field. One of the more famous 
and effective solving methods is the "HUNGARIAN METHOD"3),4), the 
method based on the K5nig-Egervary theorem. The Hungarian method 
handles the whole cost matrix (n X n cost matrix) through its solution process, 
but the K5nig-Egervary theorem is not restricted only to square matrices. 

The fact that the theorem is valid for rectangular matrices also gives 
a hint that there may be another solution where an original cost matrix is 
divided into a set of rectangular submatrices, i. e. n X 1, n X 2, . ", n X (n 1), 
nXn. 

By going along with this rather simple and evident idea, a new solving 
method can be considered. The original problem with a n X n cost matrix 
is imbedded in a set of rectangular assignment problems with n X 1, n X 2, "', 
n X (n 1) and n X n cost matrices. Therefore the larger the size of the 
original problem, the greater the computation-saving in applying a new meth­
od as compared to the conventional Hungarian method. The computing 
effort needed for the new method is about 50% of the conventional one 
if the problem size is large enough. Moreover, the proposed method has 
several merits from the applicational point of view. 

The Hungarian method for (m, n) assignment problems is derived from 
the solving method of the Hitchcock transportation problems (This is a 
generalization of the original Hungarian method)l). The new solving method 
using the imbedding principle is then explained in section 3. In section 4 
and 5 there are discussions on the computations. 

2. PROBLEM STATEMENT AND THE CONVENTIONAL 

SOLUTION PROCESS 

An assignment problem is usually stated as follows; "There are nomen 
and n-machines. If i-th man is assigned to j-th machine, it causes a loss 
of Ci,j. Every man can be assigned to only one machine and every machine 
has to be assigned to one person. What assignment minimizes the total 
loss? 
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Here, we expand this situation to rn-men-n-machines case (rn ~ n). 
Mathematically, this problem is defined as P(rn, n). 

P(rn, n) minimize z = ~ Ct,jXt,j 
i,j 

s. t. ~. xi,j~1 
j 

~ xi,j~l 
i 

Ci,j"';?:' 0, Xi,j~O 

i=1, 2, "', rn, 1,2, "', n 

( 1) 

( 2) 

Inequality (2) in P(rn, n) can be altered by equality because of non­
negativity of Ci'/S. P(rn, n) is a special case of the "Hitchcock transporta­
tion problem" (HTP, hereafter) as it is easily understood. A solution process 
of HTP is also effective on P(rn, n). One of the most effective solutions 
is basicly a primal-dual method though it is not the simplex method. 

Let lIt, II j be dual variables corresponding to constraints (1) and (2), 
respectively. The dual problem of P(rn, n) is; 

F(rn, n) e= ~Jl,I+~IIj 
i j 

maximize 

s. t. -IIi+IIj~Ci,j ( 3) 

IIi, IIj~O 

Assume (IIi, II j ) be a dual feasible solution for F(rn, n), then the restricted 
primal problem for P(rn, n) in the primal-dual simplex method is equivalent 
to (RP 1); (RP 1) is a special type of maximal flow problems and can be 
efficiently solved by a labeling process. 

(RP 1) maximize ~ Xt,j 
',j 

s. t. ~ xi,j~1 
j 

~ xi,j~l 
i 

{
",;?:,O if -IIi+IIj 

Xi,j = 0 otherwise 
Ct.J 

(4) 

(5) 

( 6) 

The solution procedure emphasized above is the Hungarian method for the 
HTP'sll. For the general HTP's, this procedure starts with a dual feasible 
solution (IIi, II j ), solves a maximal flow problem defined by the dual solution 
and, if the given maximal flow is not a primal feasible solution for the HTP, 
the current dual solution is improved through minimal line covering of ad­
missible cells (a cell Ct.j is called admissible if -IIi +IIj = Ct,,). This process 
is repeated until a maximal flow corresponding to a dual feasible solution 
becomes a primal feasible solution. The generalized assignment problem 



ASSIGNMENT PROBLEMS USING IMBEDDING PRINCIPLE 11 

defined above is a special HTP and the algorithm can be simplified using 
the specialities such as; 

(a) all the constant terms in the constraints are equal to 1. 
(b) all the integral Xtjs in a optimal solution are equal to 1 or 0. 
In the simplified algorithm stated below, Step 1 is an initial setting of 

dual variables and etc. Steps two through seven give a simplified labeling 
procedure for maximal flow problems (i. e. RP 1) and Step 8 improves the 
current dual solution when the labeling procedure failed to find a solution sat­
isfying the constraints of P(m, n), and a new maximal flow problem emerges. 
When the termination happens, set Xi,j = 1 if Ci,j is enclosed with a circle, 
otherwise set Xi,j=O, then X=IXi,jl is the optimal solution and the current 
value of z is the value of the objective function z for the optimal X. 
[Algorithm for HTPJ*1 

Step 1: Set II .. = 0, II j = min Ct,j. z 'L,IIj 
i j 

Step 2: Search for admissible cells Ci,1 in order of CI,I, CI,2 • ",CI,n> C2,l> 

"', C2,n> "', Cm,n and let admissible Ct./s be enclosed with circles if there is no 
enclosed cell in column j. 

Step 3: If there is an enclosed cell in every column, terminate the 
algorithm. Otherwise, (erase all the old labels and) go to Step 4. 

Step 4: Assign label (-) to every row i which has no enclosed cell. 
Step 5: Select a (newly) labeled row, say row i, scan it for all unlabeled 

columns j such that cell Cu is admissible, and label these columns (i). Repeat 
this process until (1) the newly labeled rows have been all scaned or (2) 
a column j, which has no enclosed cell, is labeled. In case (2), go to Step 
7. In case (1), if there are some newly labeled columns, go to Step 6, other­
wise go to Step 8. 

Step 6: Select a newly labeled column, say column j, scan it for an 
enclosed cell Ci,j where the row i has not been labeled yet, and label these 
rows U). Repeat this process until the newly labeled columns have all been 
scaned. If there are some newly labeled rows, then go to Step 5, other­
wise go to Step 8. 

Step 7: Assume row i is the current scaned row and column j is 
the one which caused the jump to Step 7 (r(j) is the label of column j 
and c(i) is the one of row i). (1) Let Cr(j),j be enclosed with a circle and 
let i be equal to r(j). (2) Erase the circle enclosing Ci,cCi) and let j be equal 
to c(i). Repeat the process (1) and (2) until c(tj = ( -) happens, then go to 
Step 3. 

* 1 (The max-flow min-cut theorem is used in the steps from 4 to 7, i. e. in the labeling 
process. On the other hand, the Hungarian method is said to be based on the Ktlnig­
Egervary's theorem. In order to see this in the above algorithm, notice that I II + IJI 
=(the maximum number of independent admissible cells under H" H j» 
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Step 8: Let I and J be the index sets of labeled rows and columns, 
respectively. Define new dual variables by; 

where 

fII. if iE1 
II'- ' 

i - lIIi+o if iEI = {I, 2, "', m}-1 

{
IIj if jEJ 

II'. = 
J IIj+o if jEJ = {I, 2, "', n}-J 

2 = - L: m+ L: IIj = 2+0.( -Ill + IJI) 
i j 

0= min {ci.j+IIi-IIj} 
iEI,jEJ 

( 7 ) 

( 8) 

( 9) 

(10) 

Go back to Step 4 and repeat Step 4 through 6 with new admissible cells 
defined by eqs. (7) through (10). 

Let a matrix e= led and define C' by eq. (11), 

(11) 

then 

, f = 0 if cell ci,j is an admissible cell 
Ci,j l> 0 otherwise 

(12) 

If C' is used in the steps 2 through 8, the statements of each step is valid 
only if the word "admissible cell" is changed to "O-cell" (see (12)) and only 
if the eq. (10) is changed to (10)'. 

o = min_c~.j (10)' 
iEI,jeJ 

Let e" be the matrix C' corresponding to Il~, IIj in Step 8. elf can be 
generated by directly applying eq. (11) for e, m, IIj. But if C' corresponding 
to IIi, II j is given, the two-step procedure below is more efficient. 

(i) add 0 to all cells on row i if i EI 
(ii) subtract 0 from all cells on column j if j E J 
Thus further simplification of the algorithm is possible and the resulting 

algorithm is shown in Figure 1. 
The algorithm shown in Fig. 1 is slightly different from the usual one 

for (n, n) assignment problems. These differences are caused by the fact 
that m~n and m=n is not always true (this means that all columns have 
at least one O-element but there may be some rows having no O-element 
when the algorithm is terminated). Firstly, only column minimums are con­
cerned in block 1. Secondly, the labeling process is started with searching 
columns for O-elements and subsequent procedures are revised along this 
line. 
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3. PROPOSED ALGORITHM 

The proposed algorithm uses almost the same method as one stated 
in Section 2. Only one difference is that the proposed one solves a sequence 
of subproblems (they are also assignment problems) derived from the original 
problem, that is, the original problem is embedded in a sequence of easier 
problems. 

I'd like to discuss its validity first. Assume there is a (m, n) assignment 
problem P (m, n) and its optimal solution X* = I x';,i!' Also assume the cost 
matrix is C= !cui and C" is a submatrix made of the first k columns of 
C. Let P(m, k) be a subproblem of P(m, n) concerning to a cost matrix 
C". Define X", in the same way as C". X: has to be a feasible solution 
of P(m, k) for any k (1 ;;;k;;;m), though it may not be an optimal solution. 
This fact suggests an algorithm where an optimal solution for P(m, k-l) 
can be used as an initial solution for P(m, k) (see block 1 in Fig. 1). 

To see how the solution process of P(m, k) is initiated, define as follows. 
0,;: The sum of all 0 which have been added to row i in the solution 

process of P(m,1), P(m,2), ... , P(m, k-1). 
C~-l: The resulting cost matrix when the solution process of P(m, k-1) 

is terminated. 
C~: A m X k matrix where the first k-1 columns are those of C~_l 

and the k-th column made of ~.k' 

C~.k = Ci."+O,; 

(IIi, II';): IIi is the optimal IIi for F(m, k-1) (i=1, 2, ... , m), II"; is the 
optimal II j for F(m, k 1) if j=1, 2, "', k-1 and II";=min C~.k if j=k. 

i 

Then, (IIt, II1) is a feasible dual solution for P(m, k) because 
(1) Ci.i+ IIi -II'; =cLj~O for i = 1,2, ... , m, j 1,2, ... , k-1 by the opti­

mality of ([ft, IIj). 
(2) ci.,,+IIi-iit -minc~.k~O. Toseethis,noticethatIIt=oifor 

i 

i=l, 2, ... , m because IIi is the sum of 0 by eq. (7). And 

where 

%" = 1: IIi + 1: II"; = %"'-1 + min C~.k 
i j i 

C'1 = !c~~j! 

JcLj for i 1,2,···,m,j=1,2, .. ·,k-1 

tC~.k-min C~.k for i = 1, 2, "', m, j=k 
i 

can be used as an initial % and C in block 10f Fig. L 

(13) 

An outline of the proposed algorithm is the next two-step procedure 
repeated from k=1 to k=n. 
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Step I; 
Step II; 

Step 1. 

Solve P (m, k) by the algorithm III Fig. 1 
Make zk+ 1 and e" k+1' and if k ~ n, let k = k + 1 and go to 

Because the optimal solution of P(m, k-1) is used as an initial solution III 

Step I, the k-th column is the only one which has not an enclosed-with­
circle O-element. Therefore, block 2 is not needed, block 3 is far simple, 

block i 
(?ART) --. 

block 2 I Cij-Cij-min Cij, Z-f ,min Cij 
.-

starling with the col. I, .seorch from top to boltom on each 
Col. for the first 0': eiement such that its row has no @, 
and let it @ 

@"'- YES Do all col. 's have a s ... 
block 3 ~o (TERMINATE) 
1 Assign label (-) to every col. 1 

which has no @ 

(onl,v fOr) block 4 •• 
new 0- Select a (newly) labeled col., say col. j, scan 
ehments it for 0/1 O-elements on unlabeled rows and 

label these rows (j) 

.-
Do 01/ newly labeled NO 

rows i, have @ 's' 
block! ~ 

+YES 
(1) let Gi, CCiI be NO Have all newly labeled 

col. 's been scaned @ 

,""YES (2) J -C(i) 

NO Are there any newly (3) let @in 

block 6 ~ labeled rows cell (r(j), j) 

]oYES 
be -0 

o-"!..in Cij block 5 (4) i-rO) 
iEI,jfJ Select a newly labeled row, say Repeat (1) ~(4) 

Cij-Cij + 0 row i, scan it for @ such that until r(j)= (-) 

for iEI,jd its col., say j, has not been 
labeled yeL and label these 

block 8 ! Cij-Cij - 0 col. 's (j) 

1 Erase old' .1 for h:i,jf:.J J ' labels 
Z-Z+8-(-III+IJiJ ~ Have all newly labeled I rows been scaned 

.YES 

YES Are there any newly 
labeled col: s 

INa 
Fig. 1. The conventional algorithm for the (m, n) assignment problem 
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-I II + I JI = 1 for every k in block 6 (notice that I II + I JI 1 for every 
k), and when a jump to block 7 first happens is the time of termination of 
Step I, in the algorithm of Fig. 1. A flow chart of the algorithm is shown 
in Fig. 2. 

Fig. 3 
algorithms. 

shows an example comparing the conventional and proposed 
The problem is taken from Little et a12) (but the last column 

(
only for new) 
O-elements 

hlock 2 

Assign label (-). to col. k 

block 4 

The Some process as the 
block 4 in Fig, 1 

Do 01/ newly labeled rows }N.;.;O~ ___ ...., 
i hove @'s 

YES 

Have all newly labeled 
col. IS been scaned 

YES 

..-___ :--l~N...;O~ Are there any newly 
block.p labeled rows 

YES 
[j ....... min, Cij ..-------i~ 

i€I,jEj block 5 

block 7 

The saine process 
as the block 7 in 
Fig. 1 

" " The same process as' the 
Cij-C'j + 0 F' I block 5 in Ig, 
for iE!, 

C:~-C~: 0 
IJ IJ 

for it1, jl';;J 

0;- OJ + 0 
for iEl 

z2'-zt+ a 

NO Hove all newly labeled 
rows been scaned 

YES 

Are there any newly 
labeled col. '8 

NO 

note ; J = { 'f 2, .... } k} J 

(zERMINATE) 

Fig. 2. The proposed algorithm for the (m, n) assignment problem 
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is omitted). Fig. 3 (a) shows the problem and Fig. 3 (b)-(g) show the solution 
process by the conventional algorithm in Fig. 1. Fig. 3 (h)-(q) show the pro­
cess by the proposed one. The number of comparisons needed in block 1 
and block 6 of Fig. 1 was sixty-three, and in figure 2, in block 1 and 6 
seventy-three (see section 4 for detail). In this case, computational effort 
increased by the new algorithm is about 16%. 

I~ 1 2 3 

1 +cc 27 43 

2 7 +0::> /6 

3 20 13 +eo 

4 21 16 25 

5 12 46 27 

6. 23 5 5 

mjnC;.i 7 5 5 

r=5x5=25 
Z=23 

(b) block I 

~ 2 3 

/ + 77 33 

4 5 

16 30 

I 30 

35 5 

+CP 18 

48 +00 

9 5 

5 

10 :5 

2 +cc 11 I~~ _0 

3 3 L1 +0:> ~ IG~ 
4 6 15 +po I~ 

5 I@_ 36 17 2+1>=> 
I'ii\ 

I"::" 

N 
1 

2 

3 

4 

5 

6 

CUi 

I- 2 3 4 5 

+cc 27 43 16 30 

7 +cc 16 

20 13 +0:> 

/ 

35 

30 

5 

( a) an example problem 

[Little, et i1/2)] 

2/ 16 25 +0:> 18 

12 46 27 48 +0:> 

23 5 5 9 5 

IX ,- I 2 3 4 

I +00 22 38 15 t> 
'1 1(11\ 00--'- 1>-....., 
3 73 8 +00 34 IG~ 
4 14 " 20 +00 I~ 

5 SA 41 22 47 +j:o 

l..ull 1L -"-
- "" ~ 

T(J) (2) (6) H (-) 

r=25+4x4=41 
Z=23+5(-2+4)=33 

(e) block 2~5, 6 

I'H: 2 3 5 

1 + 14 30 I~ 25 

2 +00 8 IGD 30 
., n lLzil 

~ 

4 3
L1 

12 +po 13 

5 I@ 33 14 .42 +eo 

fih _LL -<L 
'-"./ -

c(n 

)-

Cli) 

~ 

-(-3+-

r>< 1 2 -3 4 

1 +00 /7 33 10 

2 '.!Li. +00 II r® 
3 8 3 +00 29 

4 9 6 15 +00 

5- I@ 36 17_ 42 

6 16 ® 0 8 
rU) (2) (6) H (-) 

r=41 
Z-=33 

(d) block 4,7, B 

1>( 1 2 3 4 

I +00 II 27 10 

2 0 tCC 5 ® 
3 /I o +cc 32 

4 9_ l@:l 9 too 

:5 ® 30 11 39 

6 22 Icqj Iff) 14 

5 

25 

30 

® 
13 

+00 

5 

5 

22 

27 

® 
10 

too 

8 

-TUJ (6) ( ) -TOJ (6) ( ) (3) T(J) (6) (-) (3) 

r=41+5x-2=51 
Z=33 +3 (-1+2)=36 

(e) block 2-5,6 

r=51+4X3=63 
Z=36+3(-2+3) =39 

(f) block 4,5,6 

r=63 
Z=39 

(g) block 4,7,8 

Fig. 3. An example of the conventional and proposed algorithms 

(a) an example problem 
(b)-(g) solution process by the conventional algorithm 

em 

(4) 

(n 
(3) 

em 

(2) 

(2) 

(3) 
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J r 
+00 +00 

2 7 2 @ (1) 

3 20 3 13 

4 2! 4 14 

5 12 5 5 

"6 23 6 16 
H 

Tp=5 7j,=5 
2=7 Z=7 

(hJ block 1 (i) block 2,4,7 

2 3 em 0; 
2Z 38 

8'" +00 

II 20 

41 22 

T(j) (6) (-) 

rp=IS+2x5t 1=26 
Z=17+8=25 
(I) block 2,4,5,6 

IX I 2 

, +00 27 

2 @ +00 

3 "13 13 

4 14 16 

5 5 46 

6 16 5 

Tp=5+5=IO 
Z=7+5=12 

(j) block 1 

4 em 0; 
f-'-'-+--+--+--+--l 

16 

5 

6 
Tu) (6) (-) 

Tp=26+6+5=31 
Z =25+1=26 

"em) block 4, 7, I 

4 14 11 25 

5" 5 41 Z7 

6 16 ® 5 
TO) (-) 

7J, =10+5 = 15 
Z=:.12+5=17 

(k) blook 2,4,l,J 

3 

(2) 

4 

34 

47 

16 

(-) 

Tp=37+2 X5+1=48 
2=26+5=31 
(n) block 2,4,5,6 

17 

em ~i 

5 

8 

4 5 em OJ 5 em 0; 3 4" 5 em 

4 

"533 14 42 +00 (n 
6 19 0 @ 1/ 13 8 

rw (2) (-) 

" rp=48+6+5=59 
Z=31+5=36 

(0) block 4,T, I 

5 

.ll-+(~H-I'l!~-;::!<;;+'f1-.Ii~t-- 3 

"rU) (3) (6) (-) 

"Tp=59+4X3+2=73 
Z=36+3=39 

(p) block 2,4,5,6 

Fig. 3. Continued 

11 

22 

5 II 42 +0:> 

6 22 Q @ 14 8 (2) 

rw (3) (6) (-) 

rp 73 
Z=39 

«({) block 4, 7 

(h)-(q) solution process by the proposed algorithm 

4. THEORETICAL COMPARISON OF COMPUTATIONAL EFFORTS 

The proposed algorithm solves a sequence of assignment problems while 
the conventional one does only one problem. It intuitively seems that the 
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former needs more computational effort than the latter. This was true at 
least for the example in Fig. 3. Nevertheless, it will be shown here that 
less computations are strongly expected for the proposed algorithm than for 
the conventional one. 

Estimating exactly the computational effort needed for an algorithm is 
not easy even when its computer program has already been completed. So 
does this case. Therefore, the total number of comparisons which are needed 
for finding out the minimum elements on each row and each column (i. e. 
in block 1 and 6 of Fig. 1 and Fig. 2) is used as a measure of computational 
efforts. The reason is that the computations needed during one cycle of 
labeling process (i. e. until a jump to block 6 or 7 happens at first) may 
be made less than that in block 6 by using bit manipulation and that addi­
tions and subtractions needed are proportional to comparisons, and finally 
that the total computational effort needed is heavily dependent on the number 
of repetitions of block 6. 

How many times block 6 is repeated depends on the data given to 
a certain problem. But its maximum can be estimated as follows. 

For the conventional algorithm, comparisons needed in block 1 are 

n(m 1) times. (15) 

Next, assume that k@'s are made at block 2. III =1 for the first labeling 
process in the worst case, then at block 6, Ct,j which determines (j (i. e. 
a new O-element) may be on the row of a certain @. in this case I II in­
creases just by 1 during the second labeling process. If this process succeeds 
until III becomes equal to k, the k+lst © is made after and block 6 is 
repeated k times (see, for example, Fig. 5). Comparisons needed at block 
6 during each repetition is shown in Fig. 4. 

In the worst case, the total number of comparisons needed at block 6 is ; 
I;; 1;;-1 

L;(m-i) (n-k+i) = km(n-k)+ L; i(k-i) i(m-n) (16) 
i~l i~l 

The above cases hardly succeed from the k+ 1st © to the n-th @. But 

repetition III IJI !11·!JI at block 6 

1st 1 n-k+1 (m-l)·(n-k+l) 

2nd 2 n-k+2 (m-2)-(n-k+2) 

i-th n-k+i (m-i)·(n-k+i) 

k-th II 11 (m-k)'1/ 

Fig. 4. Number of comparisons needed at block 6; 

the worst case of the conventional algorithm 
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4 83 73 63 40 13 

5 84 74 64 50 14 

mineij 10 10 10 10 10 
I r=s X4=20, Z=50 
(a) on example problem 

1>( I 2 3 4 5 
170\ 

"'" 
" 170\ LA C' (\ ,n - ~ Y' v 

~ 
Y ""-" 'v 

4 72 61 53 28 ,.iJ 

5 73 62 54 38 2 
(2) el) (3) (-) H 
r=44+IO=54 

(d) Z=S4+1(-3+5)=56 

4 71 

5 72 
(2) (1) (-) 

r=62+9=71 
(9) Z=65+9(-2+3)=74 

I'''' 
(s)-

4 5 

2 

3 

4 

(1) (-) (-) 

r=20+12=32 
(b) Z=50+/(-J+3)=52 

ff< I 2 3 4 5 , 
72 @ , 53 0 0 

'2 @ 60 53 9 0 

( 

( 

3 71 60 @ 18 o { 
4 

5 

71 60 52 27, @( 

72 61153137 I 
(2) (I) (3) H (-) 

T=54 
(e) Z 56 

5 63 43 53 19 
(2) (1) (3) (-) 

r=71+8=79 
(hJ Z=74+9(-3+4) = 83 

J 4 5 

19 ,.iJ 

29' 2 

39 3 

(2i m (-) .c-r 
r= 32+12 =44 

(e) Z=52 + 1(-2+4}=54 

- (1) (-) 

t=54+8 =62 
(f) Z=56+9(-/+2)=65 

K 
• 

--3-

5 

f 2 3' 4 5 
in, Ifill "7 n "" I v. "'" 
I~ 1 i"", 'u 

~2 170\ " - 'L --= 
"-', ,,-, A~ n (1ft 
'V """ 
54 34 44 10 lil 

(2) (f) (3) (-) (4) 

7=79+5=84 
(i) Z=83+'l(-4+5)=84 

Fig. S. An example of the worst case; 

the conventional algorithm, m=n=5, k=3, r(3)=84 

19 

)-

'AI 
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assuming that it happens, the maximum number r(k) (1~k~n-1) of the 
comparisons are estimated (an example of the worst case is given in Fig. 5). 

n-l 

= n(m-1)+ I; (pmn-p2 m) 
p~k 

n-l{p2(p_1) (P-1)P(2P-1)} n-l p(p+1) 
+ ~k 2 - 6 +p~k(m-n) 2 

n 
= n(m-1)+ 24 (n-1) (8mn-3n2-4m+7n-2) 

-;4 (k-1){k2-k(4m+4n+1)+12mn+8m-4n-2} (17) 

Next, the maximum comparison number for the proposed one is esti­
mated. Assume that the P (m, k) has solved and we are going to solve 
P(m, k+1). Firstly, Oi has to be added to Ci,k+l' then the minimum on 
the column k + 1 is discovered and is subtracted from each C'i,k+l' This 
completes e" k+l' Adding Oi to the k + 1st column is an additional operation 
caused by adopting the iterative procedure and we count this addition also, 
though comparison is the only operation noticed now. Therefore, the total 
operation number needed at block 1 in Fig. 2 is; 

2m-1 (18) 

Doing the same thing as for the conventional one, comparisons needed during 
each iteration of block 6 in Fig. 2 are obtained and shown in Fig. 6. 

In Fig. 6, additions needed to make o/s are counted because of the 
same reasons as additions in block 1. The total number of operations needed 
at block 1 and 6 when the k + 1st @ is made are; 

k k 

I; (m-i) (i+1)+ I; i+2m-1 
i=l i=l 

m(k2+3k+4) _ k(k+1) (2k+1) -1 
2 6 (19) 

repetition \I\ \J\ \1\.\J\ at block 6 iii 

1st 1 2 (m-l)·2 1 

2nd 2 3 (m-2)·3 2 

i-th i+l (m-i)-(i+l) 

k-th k k+l (m-k)·(k+1) k 

Fig. 6. Number of comparisons needed at block 6; 

the worst case of the proposed algorithm 
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(a) on example problem 
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Fig. 7. An example of the worst case; 

the proposed algorithm, m=n =5, kp=3, r p(3)=96 
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Fig. 8. Comparison of the computational efforts 

The total maximum number rp needed during solution process of a (m, n) 
assignment problem is estimated at; (notice that Oi=O for i=l, 2, "', m if 
k=O or 1, and that the additions concerning to Oi are not needed) 

rp = (m-I)+(m-1+2(m-1» 
i i k=O k=l 

n-l{ mW+3k+4) 
+I: k=2 2 

k(k+1) (2k+1) 
6 I} = 4(m-1) 

- ~X::k3+ m;-l X:>2+ 9m6-1 X:>+X:>m-(n-2) 

n(n-1) 
= 2m(n-1)-(n+1)+ 12 (2mn-n2+8m-n) (20) 

Eq. (20) is derived from the assumption that block 6 is repeated by the 
maximum times for every k (2;;;;;k;;;;;n-1), and this is the case where k=l 
in eq. (17). In this case, the coefficients of the 4-th order terms in eq. (17) 
and (20) are 5/24 and 1/12, respectively, and the computational effort needed 
by the proposed algorithm is about 40% of that by the conventional one 
if m and n are large enough. 

Assume a case where the first kp @'s are made without passing block 
6. In this case, additions relating to Oi are not needed from k=O to k=kp 
because II/s are all zero, and the total number rp(kp) (1;;;;;kp;;;;;n-1) of com­
parisons is; 

k1J on-I 

rp(kp) = I: (m-l)+ I: (2m-I) 
k=O k=kp+l 

+k~lp {m(
k2i 3k) k(k+ 1)6(2k+ 1) } 
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n(n-1) 
= m(2n-1)-kpm-n+ 12 (2mn-n2+8m-n) 

_ kp (kp-1) (2k m-k2 +8m-k ) 12 p P p 
(21) 

An example of the worst cases where m=n=5 and kp=3 is given in Fig. 7. 
If k=kp=n/2, m=n in eq. (17) and (21), the coefficients of the 4-th 

order terms are 47/(24.16) and 26/(24.16), respectively. This implies rp 
(n/2) =(26/47) r=0.55 r if n--+=. Fig. 8 shows rp/r via k/n=kp/n when n=10, 
50, 100, 5000 (FACOM 230-75 Computer in Hokkaido University Computing 
Center was used). 

5. DISCUSSION 

Several discussions on the merits of the proposed algorithm are given 
here. 

A little amount of the computational effort is saved by the proposed 
algorithm if problem sizes are large enough, as it is shown in the previous 
section. But, if problem sizes are fairly small, more computation than the 
conventional algorithm is sometimes needed (see for example, Fig. 5 and 7). 

If problem sizes are fairly large, the whole cost matrix can not be stored 
in core memory and communications between auxiliary memory and central 
processing unit increase remarkably. This causes a remarkable increase of 
computation time. This increase is surely restrained by the fact that the 
problem size in making the k-th @ is only m X k (which is distinguishably 
smaller than m X n during the early stage of the solution process), if the 
proposed algorithm is used. 

It can be said that the proposed algorithm is more effective if problem 
sizes are larger. 

Another merit of the algorithm is that a sequence of problems, m xl, 
m X 2, ... , m X (n -1), are also strictly solved. Assume that machines are 
needed to be assigned to n-jobs but each job has a probability of cancellation. 
In such a case, arrange the jobs in increasing order of the probabilities, and 
the proposed algorithm may give flexible assignments which are adaptable to 
cancelations. On the contrary, if the n+ 1st job is jumped into the schedule, 
only the n + 1st is needed for re-scheduling the previous one for n jobs (of 
course, this may be true even for the conventional algorithm, but it is not 
so natural expansion as in the proposed one). 

Assignment problems often appear as subproblems in more complicated 
and more difficult-to-solve problems, such as independent assignment problems 
traveling salesman problems, etc. The effect of the computational saving, 
though it is not very remarkable, is important in saving the computational 
effort needed in order to solve such problems. 
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6. CONCLUSION 

A new solution method for assignment problems is proposed, and the 
computational efficiency is theoretically estimated. The algorithm is based 
on the conventional Hungarian method and is very effective for large prob­
lems. 

If an assignment which has no cycle is obtained in each stage k (1 ~ 
k~n-1), then the resultant solution is a tour. This suggests the applicability 
of the proposed algorithm to the traveling salesman problems, because solving 
smaller problems is always easier than doing the larger problems. 
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