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SEPARATED EFFECTS OF A COST FUNCTION AND 
A PRIOR DISTRIBUTION ON A SINGLE 

SAMPLING ATTRIBUTE PLAN 

Y OSHIAKI SATO 

1. INTRODUCTION 

A discussion of the Bayesian sampling plan has resulted in claiming 
its advantages of including economic costs and prior information formally 
in its solution. Inclusion of them allows us to find an optimal sampling plan 
corresponding to the minimum expected total cost. 

We are confronted, however, with a question in explicitly specifying of 
/o(p) (a prior distribution for a lot fraction defective) and len, x, p) (a cost 
function for decision on a 10t)1). In the practical application of this plan, 
a decision maker may be interested in determining whether or not reductions 
in the sample size and/or the expected total cost can offset his effort to do 
research into and estimate parameters of 1o(P) and l{n, x,p) 

This article aims to describe how to look into the separated effects of 
1o(P) and len, x,p) which have different characteristics from each other for 
a decision maker. Section 2 introduces equations which determine a sampling 
plan (called model 2) without len, x,p) using a beta distribution as Io(p) in 
its relation with a non-Bayesian sampling plan (called model 1). Then, sec­
tion 3 deals with a sampling plan (called Model 3) for len, x, p) and 1o(P). 
Finally, section 4 sets forth two approaches to the above aim. The one is 
a standard sensitivity analysis using model 3. The second one proposed is 
that changes in the sampling size and the expected total cost between models 
1 and 2 and between models 2 and 3 are looked on as the effects of 1o(P) 
and len, x,p) respectively. 

2. A SINGLE SAMPLING ATTRIBUTE PLAN WITHOUT A COST 

FUNCTION FOR A BET A PRIOR DISTRIBUTION 

First, consider JIS (Japanese Industrial Standard) Z9002 as an example 
of the non-Bayesian sampling plan. The sample size n and the acceptance 
number c are determined by solving the following equations: 

( 1) a 

1) [1] proposes a new prior distribution for the sampling attribute plan. 
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(2) 

where lX is Producer's Risk, p is Consumer's Risk, Po is Producer's Risk 
Point, PI is Consumer's Risk Point, PO<PI' and x is the number of defectives 
found in the sample. We now have modell that consists of lX, p, Po and Pl' 

Next, suppose that a decision maker can use a beta distribution fp<P[ kl> k2) 

as Io(p) for the lot fraction defectivep in addition to information to determine 
lX, p. Then, Io(p) is given by 

( 3) Io(p) = ft,(p[k1, k2) 

= pk,-l(l_ p),,,,-lj B(kl> k2) , 

where O<p<l, O<k1 <k2 and the beta function B(kl'~) is given by 

(4) B(kb k2) = J>k1-1(l-P)k,-ldP. 

The decision maker will decide whether or not to accept a lot based on 
a posterior distribution for P after observing x. From Bayes' theorem, a 
posterior distribution !I<P) is given by 

(5) !I(p) = fo(p) g(x1n,p)/f/o(p) g(x[n,p) dp 

= pro,+:C-I(l_p)',,+n-:C-lj B(kl +x, k2+n-x) 

=ft,(plk1+x, k2+n x), 

where g (x[p) is the binominal distribution and given by 

(6) g(xln,p)=(~)P"'(l-p)n-x. 

If the decision maker desires the probability of rejecting good lots under 
Po to be at most lX and that of accepting bad lots above PI to be at most 
p on a posterior distribution, he will solve the following (7) and (8) with 
respect to n and x to obtain a satisfactory sampling plan for him :2) 

( 8) 

= p, 

where for a specific value, p'J:'fp(P[o, 0) is called the incomplete beta func-

2) We go along with the same idea as [5] which designs the sampling. variables plan 
for a normal prior distribution. 
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tion ratio, whose values are given by [9], so that we can find nand c, given 
a, f3, Po, PI> kl' and k2• But in order to compare (7) and (8) with (1) and (2), 
we use the relation between the partial sum of a binominal expansion and 
the incomplete beta function rati03) which is given by 

( 9) for any m(;;;'n). 

Then, we rewrite (7) and (8) as below: 

(10) [P°f,.(P) = c+±-l(n+kl +k2-1) p~(I_po)n+k.+k,-I-X = a, 
J 0 X~O x 

(11) f1 f,.(p) = 1- C+±-I (n+kl +k2-1) PI(I-PI)n+k.+k,-I-X = f3 , 
Jp. X~O x 

where such x above the summation notation that satisfies (7) and (8) is re­
placed by c. We propose here model 2 that consists of a, f3, Po, PI and fo(p). 

Comparison of (10) and (11) with (1) and (2) shows us that if a=f3, 
a prior distribution reduces the sample size by ki + k2 -1 and the acceptance 
number by kl-l. In general (a~f3), nand c are reduced by kl+k2-1 and 
ki -1 respectively from the sampling plan having exchanged values of a 
and f3 in the original equations (1) and (2). As mentioned above, we can 
find nand c in them in the general case of a and f3 by means of [4]. The 
equations having exchanged values of a and f3 in (1) and (2) give almost 
the same value of n as the value of n in the original equations and a little 
smaller value of c than the value of c in the original equations. So we 
may approximately consider the effect of l(n, x,p) in the case of a=f3. In 
any case, the larger are the parameters of fo(p), ki and k2' the larger is 
a reduction in the sample size. 

(12) 

(13) 

3. A SINGLE ATTRIBUTE SAMPLING PLAN BASED ON A COST 

FUNCTION AND A BETA PRIOR DISTRIBUTION 

In this section we take l(n, x,p) into the model in addition to fo(p). 

l(n, x,p) = ap(N-n)+rx+ns 

=rpN+Ns 

for x;;;' c, 

for x> c, 

where N is the lot size. We use three parameters having following inter­
pretation4) : 

a : cost of a defective item accepted, 
r: cost repairing a defective item found in sampling and testing, 
s: cost of sampling and testing. 

3) See [8]. 
4) We use the same cost function as [7]. 
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1£ the consumer represents the next production process, the cost parameter 
a may consist of costs of rework or costs of assembling, dis-assembling and 
so on. If items are finished goods, the cost parameter a may include even 
losses of good will in the markets adding to repairing cost or replaced costs. 
What happens to rejected lots and to defective items in either accepted or 
rejected lots are represented below: 

Submitted Lots 
(Sampling Inspections) 

I 
Rejected Lots 

(Screening Inspections) 
t 

I 
Defective Items 

~ 
Effective Items 

1 
(Repairing) 

~ 

Fig. 1. 

I 
Accepted Lots 

1 
(
Defectives found in the ) 
next Processes or Markets 

1 
(Repairing) 

The general form of such a cost function is given by [2]. 
First, we try to find c, given n based upon [3]. As we consider x=np 

on the average, by equating (12) with (13) and solving them for P. we deter­
mine the break even value of p which is denoted by Po. 

(14) Po =s/(a-r). 

We still assume that a decision maker can use a prior distribution fo(p). 
From (5) the average of the posterior distribution E1(p) is given by 

If (14);?;(15), the decision maker accepts a lot at a cost of (12), otherwise 
he rejects a lot at that of (13). Therefore, c and Po must satisfy the following 
inequation : 

(16) 

By solving (16) for c, we get 

(17) (kl+k2+n) Po-(k1 +1) <c ~ (k1+k2+n) Po-k1 • 

Next, we must find the optimal sample size n*. While the asymtotic 
formular by [2)5) allows us to obtain the approximate value of n*, we use 
a computer6) to evaluate ETC (the expected total cost) and find n* corre­
sponding to the minimum ETC. For given nand c, we define ETC, given by 

5) [10] uses this asymtotic formula to get the approximate value of n* for a beta prior 
distribution and a cost function. 

6) ETC is computed in Hokudai University Computing Center. 
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(18) fog(x»): {ap(N-n) ns}.t;.(p) dp+ x~tlg(x)t(rpN+Ns).t;.(P)dP 

= fog(x) {aE1(p)(N-n)+rx} + X~l g(x) {rE1(p)N+(N-n) s} +ns, 

where g(x) is the marginal distribution of x, given by 

(19) g(x) = »~(P) g(x/n,p) dp. 

We have now model 3 that consists of fo(p) and len, x,p). 

4. SEPARATING THE CHANGES OF THE SAMPLE SIZE AND 

THE EXPECTED TOTAL COST INTO THE EFFECTS 

OF A COST FUNCTION AND A PRIOR 

DISTRIBUTION RESPECTIVELY 

In this section we consider the separated effects of fo(P) and len, x,p) 
using two different approaches. They are shown by some numerical examples 
at N=100. 

THE FIRST APPROACH USING THE STANDARD SENSITIBITY ANALYSIS 

First, we fix the parameters of len, x,p) at a=36, r=lO and S=5 (The 
unit may be yen). And the parameters of fo(p) are changed from (k1 =1, 
~=7) to (k1 =1, 9). On the other side, for the fixed parameters of fo(p), 
~=1 and ~=8, the parameters of len, x,p) are changed from (a=34, r=10, 
S=5) to (a=38, S=5). Each case is by the case number 
specified in Tables 1 and 2. 

TABLE 1 

a==36, r=lO, S=5 

k1=1, k2=7 

k1=1, k2=8 

kl ==1, k2=9 

Case 1 

Case 2 

Case 3 

TABLE 2 

kl=l, kz=8 

a=34, r=lO, s=5 Case 4 

a=35, r=10, $=5 Case 5 

a=36, r=10, s=5 Case 6 (Case 2) 

a=37, r=10, s=5 Case 7 

a=38, r=10, s=5 Case 8 

Figures 2 and 3 show the changes of ETC due to the effects of the 
parameters of fo(p) and l (n, x,p) respectively. For each case in Tables 3 
and 4 show the optimal sampling plan (n*, c*) and the corresponding mini­
mum ETC. 

The change in Eo (p) from case 1 to case 3 is 0.0250 (1/8 -1/10), while 
the change in h from case 4 to case 8 is 0.0297 (5/(34-10)-5/(38 10», 
Though the former has a little smaller change than the latter, we read 
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TABLE 3 TABLE 4 

min ETC (n*, c*) min ETC (n*, c*) 

Case 1 4066 (41, 8) Case 4 3596 (31, 7) 

Case 2 3731 (35, 7) Case 5 3665 (33, 7) 

Case 3 3443 (29, 6) Case 6 3731 (35, 7) 

Case 7 3795 (37, 7) 

Case 8 3855 (38, 7) 

that the effect of the former on ETC and the optimal sampling plan is 
fairly large. So, under the situation considered here, the effect of fo(p) on the 
optimal sampling plan is relatively large as compared with that of l(n, x, p). 

THE SECOND APPROACH PROPOSED 

Next, we take the second approach to see the effects of fo(p) and l(n, 
x, p) by means of models 1, 2 and 3 not like the first approach using only 
model 3. Model 3 includes both fo(p) and l(n, x,p); Model 2 includes only 
fo(p); Model 1 includes neither fo(p) nor l(n, x,p). The one that operates 
on the optimal sampling plan through Pb is l(n, x,p). So we interpret that 
Po and PH which are included in models 1 and 2, are used by the decision 
maker as the substitute for Pb' since he cannot explicitly specify l(n, x, p) 
for any reason. But he may specify l(n, x,p), consequently determine Pb 
at his expense to do research into it. Therefore, we regard models 1 and 
2 as those which give a sub-optimal solution. If the decision maker deter­
mines Po and PI between which Pb is put, his determination on Po and PI is 
considered appropriate. 

Now, we consider the situation described by case 2 (a=36, r=10, S=5, 
kl=l and k2=8) to show the numerical examples of the second approach. 
Model 3 gives the optimal solution (n*=35, c*=7, ETC =3731) as previ­
ously shown. Under this situation the decision maker, using models 1 or 2, 
may determine Po=0.10 and PI =0.25. They are appropriate because Po< 
Pb<PI' Or he may determine Po=0.02 and PI=0.12 which are not appro­
priate because PO<PI<Pb. 

Suppose a=0.05 and .8=0.10 that are the general case of JISZ9002. 
For the appropriate case model 1 gives n=49 and c=8 (exactly a=0.05187, 
.8=0.10457). Since model 1 gives n=48 and c=7 in (1) and (2) in which 
a=O.lO and .8=0.05 (exactly a=0.10207, .8=0.06114), model 2 gives n=40 
(=48- 8-1+1) and c=7 (=7-1+1). For the inappropriate case model 
1 gives n=41 and c=2 (exactly a=0.04857, .8=0.11562). Model 2 gives 
n=33 and c=l because model 1 having a=0.10 and .8=0.05 gives n=41, 
c=1. 

The solution that model 3 gives is denoted by Ms. The solutions by 
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models 1 and 2 for the appropriate Po and PI are denoted by MI and M2 
and those for the inappropriate Po and PI by Mi and Mi respectively. Those 
solutions are characterized by the sub-optimal or optimal sample size and 
the corresponding ETC, whereby we represent them in Figs. 4 and 5. 

A vertical difference between Mi and MI is regarded as a loss due to 
the inappropriate Po and PI in model 1. Reductions in ETC (20) and n (9) 
between MI and M2 are due to Io(p). Those (13 and 5 respectively) between 
M2 and Mg are due to l(n, x,p). We call the former "information effect" 
and the latter "cost effect". 

5. SUMMARY AND CONCLUSION 

Using the sampling attribute plan without a cost function for a pnor 
distribution, which is proposed in section 2, we see the following; 

(1) Prior information can reduce the sample size, while, if Producer's 
Risk Point and Consumer's Risk Point are appropriate, it also reduces ETC. 

(2) If we take a beta distribution fp(plkb k2) as a prior distribution it 
reduces the sampling size by about 1'I+k2 -1 (exactly k1+k2 -1 in the case 
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of a=f3). 
By putting this sampling plan between the non-Bayesian sampling plan 

and the sampling plan based on both fo (p) and l (n, x, p), we see the separated 
effects of fo(P) and l(n, x, p). They have different characteristics for a de­
cision maker. For instance, though he has much information about p, it 
may be difficult for him to specify l(n, x, p). In fact, if the items are final 
goods, the parameter a includes a loss of good will which may be fairly 
large and not easy to estimate. 

It is important to decompose a reduction in the sampling size and ETC 
into the effects of fo(P) and l(n, x, p) for the decision maker who is interested 
in a degree of the specification in the sampling model. It is because, while 
specifying parameters in the model lessons ETC, it requires costs and efforts 
to do research into and make an estimate of them. To see the separated 
effects of fo(p) and l(n, x, c) is useful in view of the above reason. The 
second approach to see them seems to be more useful because the practical 
situation implies the decision maker's choice among some models which 
reflect a degree of the specification. 
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