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On Bayesian Analysis, Multi-Stage 
Bayes Decisions, and Generalized Inverses 

Preface 

Shintaro SONO 

Associate Professor 

Faculty of Economics 

Hokkaido University 

This paper is based on Chapters 1, 4, 6, 7, & 8 in 

Sono [14], and the writer is most indebted to Professor 

Yukio Suzuki, whose critical and methodological advices 

always stimulates the writer's brain. 

Section A & Appendix A are concise & critical notes 

on Bayesian analysis. Sections B to D & Appendix Dare 

formal developments of Bayesian approaches to some multi

stage decision problems, and generalized inverses are used 

to derive the general solutions in Sections C, D, & 
Appendix D. 

Section A. Notes on Bayesian Analysis 

1. Introduction 

Bayesian philosophy is one of the most important 

mathematical methodologies. The logical foundation of 

Bayesian methodology was seriously considered by some 

statisticians, especially, by Leonard J. Savage [11]. For 

the concise expositions of the foundation, see, for 

example, DeGroot [5], Chapters 6 & 7, and Miyasawa [9], 

Chapter 1. But it must be remarked that these instant 

courses to Bayesian thought are too convenient to 

understand its profound significance. (The formal 

development for the conceptions of personal or subjective 

probability and utility in DeGroot [5], is different from 

the Savage's manner. Perhaps it might be necessary for 

practical purposes to simplify the consequences and acts 
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in Savage [11]. See, for example, Savage [11], Section 5. 

5, pp. 82-91.) 

On the other hand Bayesian approaches are considered 

to be powerful methods which propose logical procedures to 

accomplish the reasonable statistical inference and 

decisions, where, of course, the mathematical 

representations of some organizations' knowledge states on 

crucial unknown factors are required rather than abstract 

mathematical optimizations. (In fact many Bayesians, 

explicitly or implicitly, regard Bayesian methodology as 

one logical foundation for Operations Research. See, for 

example, Aoki [1), DeGroot [5] I Martin [8] I Miyasawa [9], 

and Suzukl [15].) 

2. Objective Bayesian Inference 

The objective Bayesian inference like Box and Tiao 

[4J seems to have the most convincing power in Bayesian 

inference based on so-called noninformative priors. 

Because the derivation of the noninformative priors based 

on approximate data translated likelihoods has a more 

reasonable methodological interpretation than the formal 

use of some invariance criteria like Jeffreys' rule. (See 

Box and Tiao [4], Section 1. 3, pp.25-60.) But some 

Bayesians might criticize the Box and Tiao's approach. In 

fact Berger says; "Box and Tiao (1973) actually 

recommended only locally noninformative priors, i.e., 

priors which behave like noninformative priors locally and 

then tail off to zero. The rules they recommend are the 

same as the rules calculated from noninformative priors, 

however, so the difference seems solely cosmetic." (See 

Berger [3J, Section 4. 3, p.99.) A possible answer to 

this criticism is the following; The actual construction 

of priors in Box and Tiao [4] is based on the data 

translated or approximate data translated likelihoods and 

the prior independence .assumptions on the suitably 

transformed parameters. Hence the formal application of 



Jeffreys' 

example, 
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rule must be cautiously examined. 

Box and Tiao [4], Section 1. 3. 6, 

5. 2. 2, pp.251-252, Appendix 5. 5, 
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(See, for 

pp.46-58, 

pp.303-304, 

Appendix 5. 6, pp. 304-315, Section 10. 3. 1, pp.531-533, 

and Sono [12].) But the criticism in Berger [31 Section 

4. 3, p.99, is convincing to other constructions of 

noninformative priors. 

3. Selection on Priors 

The selection of priors including noninformative 

priors is one of the main subjects in Bayesian analysis. 

(See, for example, Berger [3], Chapter 3.) The robustness 

to the misspecifications of priors have been considered by 

some Bayesians, who criticize the wide use of conjugate 

priors. (For concise exposition, see, for example, Berger 

[3], Section 3. 3, Example 2, p.85, and Section 4. 6. 3, 

pp . 139 -l4 2 . ) 

spaces have 

implicitly 

In practice, however, actual parameter 

natural constraints, and conjugate priors 

take account of their constraints by the 

relatively tight tails. On the other hand so-called 

robust priors have rather loose tails and, hence, have no 

information for the natural constraints. If an extreme 

value is observed, it is natural to suspect the assumed 

data generating model. And if practical Bayesians are 

interested in the specifications of priors, they should 

consider the constraints of parameter spaces and the 

validities of the constraints must be checked by their 

posterior analyses. 

4. Asymptotic Property of Posteriors 

Bayesian analyses use implicitly or explicitly the 

following simple asymptotic property; If the constrained 

parameter space includes the unknown fixed true parameter, 

the posterior on the parameter space is concentrated 

around the true parameter for large sample size, and if 

not, the posterior accumulates near the boundary points 
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which have the smallest distance from the true parameter 

in the sense of the Kullback-Leibler information. (See, 

for example, many graphs and tables in Box and Tiao [4] 

and Appendix A in this paper.) 

In practice Bayesian analysis is indifferent to the 

preexperimental asymptotic argument. Because the analysis 

is based on the posterior distributions and the 

computational analysis of the posteriors. (See, for 

example, many approximation formulas and numerical 

comuputations for posterior analyses in Box and Tiao [4].) 

5. Bayes Decision Problems 

It should be remarked that the loss or utility 

functions are not indispensable elements for Bayes 

decisions. For example, the Bayes tests based on H. P. D. 

(Highest Posterior Density) regions need no loss 

functions. But, of course, the loss or utility functions 

are widely used as convenient instruments to save the 

decision maker's labor for the examination of posteriors. 

use the However it might be more effective to 

characteristics of posteriors like modal values instead of 

the decisions under the convenient loss functions. 

Bayesian 

has logical 

situations. 

Suzuki [16], 

approach to statistical decision problems 

flexibilities to sequential or dynamical 

(See, for example, Aoki [1], Martin [8], 

[17], and Sections B to D in this paper.) 

But the difficulty, which was named "curse of 

dimensionality" by Richard Bellman [2], Section 5. 16, 

p.94, Section 15. 2, p.197, of DP-algorithm requires 

approximate Bayes procedures and error estimations of the 

approximations. (See, for example, Aoki [1], pp.224-241, 

Berger [3], Section 7. 4, Sono [13], and Section B in this 

paper. ) 

6. Criticisms 

The following criticisms, (6.1) and (6.2), have been 
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repeatedly proposed by nonBayesians; 

(6.1) The results in Bayesian analysis are often 

inconsistent with the common sense in nonBayesian 

analysis. 

method. 

Therefore Bayesian analysis is unreasonable 

(6.2) The logic in Bayesian analysis is consistent with 

the likelihood principle. Therefore Bayesian analysis is 

invalid in the situations under which the likelihood 

principle is not effective. 

However the validity of these criticisms is quite 

questionable. To (6.1), many Bayesians already pointed 

out the illogicalities in nonBayesian common sense like 

Neyman-Pearson statistics. (See, for example, Berger 

[3], Section 1. 6, pp.17-30, and Jaynes OJ.) To (6.2), 

it should be remarked that, in proper Bayesian analysis, 

the likelihood principle in weak form is supported only in 

the post-experimental situation. (See, for example, 

Berger [3], Section 1. 6. 2, pp.23-28, Section 7. 7. 1, 

pp.352-354.) Hence, the use of the likelihood in Bayesian 

analysis is quite different from the nonBayesian use of 

it. On the other hand, in objective Bayesian inference, 

data generating models are used as prior knowledge to 

specify noninformative priors. But the inference is 

accomplished by the posterior distributions. Hence, the 

pre-experimental use of the likelihood is not necessary. 

(See, for example, Box and Tiao [4], Section 1. 3, pp.44-

46, Section 2. 8. 1, pp.123-l24.) 

The next criticism, (6.3), seems to be convincing in 

formal sense; 

(6.3) Proper Bayesian analysis is based on the 

probability constructed by the decision maker. 

the construction is for 

applications. Moreover, 

too 

the 

complex 

error 

subjective 

However, 

practical 

of the estimation 
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construction procedure is quite vague. Hence, in numerical 

sense, the applicability of proper Bayesian approach is 

questionable. 

An answer to (6.3) is the use of convenient priors 

like noninformative priors, conjugate priors, locally 

uniform priors as reference priors, and so on. Practical 

abilities of these priors have been illustrated by many 

numerical examples and experiments. But, from logical 

view point, the use of convenient priors is different from 

the use of the decision maker's subjective prior. Hence, 

the convenient priors should be interpreted as some 

imaginary decision makers' priors. (In some situations 

the imaginary decision makers might be "imaginary enemies" 

in Operations Research.) It might be possible that the 

Bayesian approach based on computational analysis and 

numerical experiments using convenient priors should be 

called "computational Bayesian analysis". 

7. Conclusion 

In practice the difficulty in "computational Bayesian 

analysis" is only the "curse of dimensionality" of DP

algorithm and numerical integrations on multi-dimensional 

parameter space. Because, in general, Bayesian analysis 

has so-called "inference robustness". (See, for example, 

Box and Tiao [4], Section 3. 2, pp.152-156, Section 4. 2. 

3, pp.208-209.) 

Appendix A. A Simple Asymptotic Property of the Posterior 

1. Assumptions and Result 

Cons ider the pair, (8, d; e*, r ), where e is a 

topological space with a metric, d, e* is an unknown fi:ced 

point E 8, and r is a compact subset C 8. f (x Ie) is a 

probability density function, given e, with respect to 

some fixed a-finite measure, ~(dx), on a measurable space, 

(X, IF). f(xle) is assumed to be continuous on eEr for 

each xEX. (Therefore f(xle) is measurable on (Xxr, IFxIB 
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(r», where lB(r) is the topological Borel field on r.) 

f(xle»o for all (x,9)e:Xx (rU{9*}) is also assumed. The 

set, {eEr; d(S, 90 )<o} is written u(eo ' 0; r) for any 

(eO' o)e:rx)O, 00(, The Kullback-Leibler information, if 

exists, is written 1(9*; a), i.e., 1(13*; e):= E(log(f(xI9*) 

/f(xls»le*), where E(·ls*) is the expectation with 

f(xI9*)~(dx), The conventions, min ~:= +00 and log 0:= -00, 

are used. 

Result: Assume E (sup El E:f U { 8*} Ilog f (x Ie) 11 6*)<00 

and put f*:= {Soer; mine e:r I (9* ; e )= 1(8*; 90 )}. Let pedS) 

be a a-finite measure on (6), !B(e» suc'h that O<P(r)<oo and 

P(U(90 ' 0; r) »0 for all (90 , 0)£ f* x J 0, 00 C. Then, for 

any closed set, FCf- f*. and any (60 ,0 )e:f* xJO, 00(, 

(f F P (de) JI~=/ (xJ6» / (fU(Elo' 0 ;f)P (dS) JI~=l f (~Ie» 

n::;:: 0, a, s, 0(=/ (xkI9* ) II (dxk ) =: P~:» 

2. Proof 

Put f(lfla): = nk=lf(~le), xn: == (~; k=l, 

rex; 0):= 2sup( I log f(x19
1 

) - log f(xI62 )! ; 
(91 , 62)e:rxf). The following inequality 

obtained; 

(1) limsup log(fHP(d9)f(xnla)/ fKP(de)f(xle»~ 
n+oo 

, n), and 

d(el , 92 ).:5.6 & 

is easily 

I 
(00) 

E(r(x; 0) 9*)- minSEFI(9*; e) + minSe:rI (9*; 9), a.s. PS*' 

where HcFc f - f*, F is closed in S, and Kc r satisfying 

Kf1r* '" CJ & P(K»O, and max(diam(K), diam(H» ~o (0)0). 

(In general diam(S):= 

sup(d(sl' s2); (sl' s2 )E8xS) for S~g, and diam(0):= ~oo.) 

FromE(r(x;oo)le*)+o (00 +0), there exists 0
0 

such 

that the right-hand side of (1)< 0, for all 0:;>00 ' and, for 

o ~ °0 , the inequality, (1), implies 

(2) 
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Take the finite covering of F, {H.; i€I}, satisfying 

l 

diam(Hi ):;;6a, and put K:=U(90 ,o;f) for any (90 ,0 ) €f*x) ° , (0), 

Then, using (2) and fFP(d9)f(XnI9):;;2:i€IfH/(d9)f(XnI9), 

the result is obtained. 

Section B. An approximate Bayes procedure for some Markov 
chains 

(It is remarked that an idea in Aoki [1], pp.224-241, and 

Sono [13] is applicable to a multi-stage decision problem 

of some Markov chains with unknown transition 

probabilities. ) 

1. System and DP-algorithm 

Consider the temporally homogeneous finite state 

Markov chain, (~; k=O, ... , N+1), in which the transition 

probability from the k th stage to the k+1 th stage 

depends on the unknown but fixed paramete'r, 8, and the 

decision maker's k th act, ak · Let p (xk ' xk+l 1 9, a
k

) be 

the transition probability from Xk€S to xk+1€S given 

8€8and ~€A, where S,6), and A are the finite state 

space, the parameter space, and the finite action space, 

respectively. In the following discussion, in general, 

the sequence of symbols like (si; i=O, 1, ... k) is 

simply written sk. The sequence of A-valued functions, 
.6 k k-l (ak(x ,a ); k=O, ... , N), where each ~(.)depends only 

on (xk , ak- 1) € Sk+l x Ak, is called a policy. If the prior 

on e, P(d9), and the loss function on the Markov chain, 

L(xN+1 ), are given, then, for each n=O, 1, '" , 

N, the conditional expected loss of the policy, 

(&i:
k 

(xk , ak- 1 ); k=O, ... , N), given (xn , an), is obtained 

by the formula, 

N+l n n n n-l _~+l n 
(1.1) E(L(X )Ix, a )= f~P(d9Ix ,a )E(L(X )19, x , 

I
n n-l 

fe1(d9 x ,a )2: x €sp(xn , x n+l19, a)2: S 
n+l n xn+2€ 

p (xn+l ' xn+2 1 8, ~n+l )2:x €S p (~+2' xn+3 1 e, ~n+t2:x 4€s n+3 n+ 
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... 2:XN+lE: sP (XN' XN+l I a, ~N) L (xN+l ) , 

h A _A k n A" A were ak-ak(x, a, an+l , an+2 , ••• ,ak_I), k=n+l, n+2, 
, N, and p(delxn , an-I) is the posterior given (xn , an-I). 

The optimal policy of the Bayes decision problem with 

the additive loss function, 2:~=oLk' where Lk:= Lk(xk , x k+l ) 

depends only on the k th transition, (xk ' xk+J. for each 
k=O, ... , N, is constructed by the backward induction or 

DP-algorithm, i.e., by the recursive formula; 

* k k * (k k-I J~:=am~r.l E(Lk + Jk+ll x, a), and let ak x, a ) be 
k 

the minimizing ak , then (a~ (xk , ak- I); k=O, 1, ,N) is 
the optimal policy. 

In Martin [8] (1.2) is discussed under the 

assumptions; N is sufficiently large, the prior is a 
natural conjugate family, and the rewards are discounted 

by a known constant rate. However, in some Bayesian 
situations, the priors and losses are somewhat arbitrarily 

defined by the decision maker. 

2. Approximation and Error Estimation 

The approximation procedure is derived under the 

assumption; There exists a known function from SxS to some 
finite set Y, written y(.), such that the loss on the kth 

transition, Lk , is the function of y(.), i.e., Lk=Lk(xk , 

~+l)= Lk(y(xk , ~+l» for some function on Y, Lk (·), and 
the probability, p(yla, a):= Prob( y(xk,Xk+J=yle, xk, ak-l, 

ak =a)= 2: xdx E:S' y(x )=} p(xk , xle, a), depends 
k+l ' k' xk+l y 

only on (8, a) E:8xA and YE:Y. For simplicity, the nOll
negativity of each Lk is also assumed. If S={O.l, ... , M } 
and the stochastic and loss matrices for each transition 

are cyclic, then the function, ye.), is always constructed 

by taking Y:=S and y(xk ' xk+l):= r E: Y, where xk+l - ~ = 
r + q'(M+l) for some integer q. 

Take any policy, (ak(xk , ak- I); k=O, 1, ... ,N), and 
define 
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" (2.1) IN+l (9) : = 0, 

Jk (8):= E(~ + Jk+l (8)19, xk, ak- 1, a
k

= ak ), and ]k:= Edk(fr)1 

k k-l '" x , a , a
k 

= a
k

), k=O, ... , N. 

To estimate the 1*' s from below, the following J
O

, s are 

employed; 

o 
(2.2) IN+l( 9) : = 0, 

o 8 0 8 1 k k) J ( ): = min E (L
k 

+ Jk+l ( ) 8, x , a . 
k akEA 

o 0 .,.0 . k k-l 
Let ~ (8) be the minimizing ~, and put Jk := E(..J

k 
(9) 1 x , a ), 

k=O, ... , N. From the assumption ~ (9) is the minimizing 
o 

a E A in minaEAL:YEyLk (y) p (y 1 e, a) and J
k 

(8) depends on-ly on 

(k, 0). Hence, from (2.2), 

o * "'-It is clear that Jk~Jk~{ for each k=O, ... , N+l. In 
" * '" practice the relative errors, (Jk -J

k 
) / Jk , k=O,... N, 

might be needs, and, hence, .\ -{, k=O, , N, should be 

assessed. Using (2.1) and (2.3), the recursive formulas, 

(2.4) and (2.5), are obtained; 

k x , k-l _" (k ak-1», a , ak-~ x , 

I!.. ... 0 
where ti Jk (a) : = J

k 
(8) - J

k 
(9), and 

A h 0 
Dk (9):= L: ~(y)·(p(YI9, ~) - p(yI9, ~(8»), k=O, ... , N. 

YEY 

(2.5) ~ Jk = " 1\ 
1\ k + E(L::.Jk+l1 x , k-l a , ~=~), 

~Jk " 0 1\ " k ak- 1 " where :"" J k --\ ' and 1\ :=E(1\ (a) 1 x , a k =ak ) , 
k=O, ... , N. The ~, k=O, ... , N, are roughly estimated by 

(2.6) ; 

1\ 
(2.6)D

k 9 1 
k k-l 19" 1 L: b 0- )P(d x, a ) L: (p(y , ak )- p(y a, a» 

aEA 'LJJ\~-a yEY 

:;> (l-P(9(a~=~)1 xk, a k- 1 )\h Lk(y), 

where e(~=a):= {aEC8; ~ (a)=a}, k=O, ... ,N. From (2.5) & 
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(2.6), the formula, (2.7), is easily derived; 

(2.7) 

3. Simple Application 

ai-I) I xk, ak- 1)) }: Li (y) , 
yf.y 

k=O, ... , N. 

71 

Let 3.(1) and ~(2) be the minimizing and maXl.mHl.ng ak " k k k k-l ,... 
in min(Dk ; ~f.A) and max(P(e(a~=~)1 x ,a ); akf.A) , re-

spectively. For each k=O, 1, ... , N, take the dichotomous 

parti tion of S, (~l), ~2)), where Ik' s depend only on 
k-l k-l . . ~(3) (x ,a ), and defl.ne the po1l.cy, ('K ; k=O, 1, ... , N), 

by (3.1); 

( 3) (1) (1) ,,(2) (2) 
(3.1) \ : = ~ for ~ f. Ik ' and '\ for ~ f. Ik ' 

k=O, ... , N. 

Using the formula, (2.6), we obtain 

k=O, ... , N, 

where, in general, the superscript, (3), denotes the use 

of the policy, (~3); k=O, ... , N). From (3.2) and the in

equalities, E(P(e(a~=~l2))1 xi, ai-I) I ~, ak- 1);:: 

max E(P(e(a~=a)1 xi ai-I) I xk ak- 1)= max P(8(ao =a)1 xk, 
af.A 1 ' , af.A i 

ak- 1) , i=k, k+l, ... , N, the rough estimation, (3.3), is 

derived; 

N 0 k k-l 
}: (l-max AP(6)(B{ =a) I)C, a ))}:y Li (y), 

i=k af. Yf. 

k=O, ... , N. 
1\ 6 ,(\ 0 /'> * 

From (2.3) and (3.3), using llJk/Jk :::; LiJk /-1t and Jk -Jk:::; 
"ItiJk, k=O, ... , N, we obtain 
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For the simplest case, S={O,l}, A={a
O

' al}' p(Ole, a)= 

p(O,Ole,a)= p(l,lIS,a), p(lle,a)=p(O,lle,a)=p(l,Ole,a),Lk 
(l»Lk(O):=O, k=O, ... , N, the right-hand side of (3.4) 

is reduced to (l-maxa€AP(B(ao=a)lxk, ak- l)) / (l-E(p(O Ie, 

aD (e) ) I xk, ak- l)), k=O, ... , N, where aO (e) : =a
O 

for p (0 Ie, 

ao»p(Ole, a l ), a l for p(Ole, a l » p(ole, ao )' and arbi

trary for p(Ole, ao)=p(Ole, al ). 

In practice, instead of the conditioning variables, 

(xk , ak-) , k=O, , N, some sufficient statistics of 

them are used. In fact the statistics are recursively 

defined by MO:=O and Mk+r=Mk+Tk , k=O, ... , N, where M's and 

T's are SxSxA matrices and, if the k th transition, (~, 

~+l)' occurs under the k th act, ~, then the (xk ' ~+l' 

~) element of Tk is one and all other elements are 

zeros. (See, for example, Martin [8], Chapter 2.) But, 

for some formal discussions like above, the use of the 

sufficient statistics is not necessary. 

Section C. Notes on Least Squares Method and Bayesian 
Method 

Abstract 

In some statistical models least squares method and 

Bayesian method give some similar results for the analysis 

of the models, and many Bayesians remark that such 

similarity is in numerical sense and not in logical sense 

and, often, the results proposed by Bayesian method are 

more natural than the results proposed by least 

method. In this Section one of such statistical 

which is a linear dynamical system with two 

squares 

models, 

kinds of 
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noises which are called plant and observation noises, is 

discussed. 

1. System 

Consider the model, 

where i=O, ... , N-l (N is a positive integer), state 

vectors XIS and observation vectors y's are real valued n 

and m dimensional column vectors, respectively. A's and 

H's are deterministic real valued (n,n) and (m,n) matrices. 

Plant and observation noises, q's and r's, are nand m 

dimensional vector valued random variables on some 

probability space. The initial state vector Xo is un

known but fixed. And, for simplicity, it is assumed 

that each qi and ri have zero mean vectors and finite 

variance matrices written as ~ and Ri' respectively, and 

the family of all q's and r's is stochastically 

independent. Remark that each Ai' Qi' and ~ may be 

singular and each Hi may be not full rank. Therefore 

elementary properties of generalized inverse of 

matrices are used in the discussion. 

(See, for example, Iri and Kan (6], Chapter 8, or Rao 

[10], Chapter 1.) 

M. Aoki 

estimations 

assumptions 

considers the least squares and 

of the states, xi' i=O, ... , N-l, under 

that all A's & R's are non-singular and 

Bayes 

the 

all 
q's are zero vectors, or that all Q's and R's are non

singular, respectively. He suggests the relation between 

the two methods in general case, (1.1) & (1.2), in vague 

terms (see, Aoki [1], pp.155-161, pp.173-179, p.162, in 

Chapter V). 

In the following the procedures which are derived by 

the two methods for the estimation of XIS are discussed 
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from the view point of the statistical interpretations of 

the procedures in general and rigorous manner. The 

notation, (1.3), is used: 

( 1 • 3) < < a , b> > : = a'Mb, 
M 

where a, b, 

respectively, 

Especially if 

and M are column vectors and matrix, 

assuming the multiplication is well-defined. 

M is symmetric positive definite, then (1.3) 

is identical with the inner product of (a, b) with respect 

to the metric M. In the following discussion, usually, 

M is not positive but nonnegative definite and, then (1.3) 

is only pseudo-inner product of (a, b). If a=b, then 

(1.3) is written as only Ilall~. In this Section, unless 

otherwise stated, all vectors are real valued column 

vectors and all matrices are also real. mn is the n 

dimensional Euclidean space, En is the (n,n) unit matrix, 

and, in general, Im(M) & Ker(M) is the image & kernel of 

(m,n) matrix M, i.e., Im(M):={Mx; xEIRn} & Ker(M):= {x; 

Mx=O} . M- represents any generalized inverse of M. 

The sequence (Yj ~=o is written yi, and put y-l :=0. 

2. Estimation by Least Squares Method 

Consider the estimation problem of the states, xi ' 

i=O, ... , N-1, as the following type; 

N-l 
(2.1) J:= iEO (1Ixi - Ai-lxi-lll~i_l + IIYi - ~xiI15i) 

where all T's and D's are symmetric nonnegative definite 

matrices and T_l :=0, and J is minimized with respect to 

xiElRn, i=O, ... , N-1, and the minimizing values are the 

estimates of x's, i.e., the least squares estimation of xi' 

i=O, ... , N-1, based on the data, Yi' i=O, ... , N-1, is 

considered. It is well-known that this type of 

minimization problem is systematically solved by the 

backward induction or, so-called, DP-algorithm, i.e., the 

functional equation, 
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~ n} where Ji := min {Ji ; xi _1 e: m '~+l :=0, and i=l, ... , N. 

Remark that ~i_1which is minimizing J i is the 

function of xj ' j=O, ... , i-2, and the ~i' i=O, ... , N-l, 
m~n~m~ze j1 by substituting ~j' j=O, ... , i-2, for XIS in 

~i-1 and the minimized J1 is equal to min J and, therefore, 
the reason why the functional equation, (2.2), gives the 
solution of the minimization problem of (2.1) is almost 

clear. (2.2) is solved as the following: If i=N and Xj , 

j=O, ... , N-2, are given, then 

where 

XN_1 : = S;_l (TN_2 AN_2 xN_2 + H~_l DN_1 YN-1 ) , 

SN_1 : = TN_2 + H~_l DN_1 HN_1 ' 

J'=IIA x -z 112 N . -"N-2 N-2 N-2 I N- 2 + ~-1 ' 

I N_2 : = TN_2 - TN_2 S;_l TN_2 ' 

- -, 
zN_2 : = ~-2 TN_2 SN_1 HN_1 DN- 1 YN-1 ' 

... 
RN_1 := II YN-1 I I 2 (N-l) 

DN- 1 
(N-1) - - -, 

DN_1 : = DN_1 - ~-1 HN_1 SN-1 (SN_1 + TN- 2 I N- 2 TN- 2 ) SN-1 HN- 1DN- 1 ' 

and it is easily shown that I N_2 and ~~~1) are symmetric 
nonnegative definite matrices and, excepting ~ & z, these 

quantities are uniquely determined independently of the 

selections of the generalized inverses. (The derivation 
of (#.N) is the work in matrix analysis, using generalized 

inverses, Im(SN_1 )=Im(TN_2 ) + Im(H;_l DN_1 HN_1 ), and comple
tion and combination of quadratic forms.) 

In general, if 
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Ji+l = IIAi-l x i - 1 - zi-111 ii-l + Ri ' 

where zi-l' 1i - 1 ' and Ri are including no terms of x 's, z 

" & R are including y's, and 1i _1 is symmetric nonnegative 

definite, then 

UI. i) Ji = 1 IXi-l - S{. I11s2 + ~ 
~- i-I 

where 

Qi-l . = S~_1 (Ti _2 Ai _2 x i _2 + H~_1 Di - 1 Yi-l + A~_1 1i - 1 Z.i-l ) 

Si-l . = Ti - 2 + H~_1 Di _1 Hi _1 + A~_1 l i - 1 Ai - 1 

1i - 2 : = Ti _2 - Ti _2 S~_1 Ti _2 

zi-2 : = I1-2 Ti - 2 Si-l (H~_1 Di _1 Yi-l + ~-1 l i _1 zi_l) , 

Ri - 1:= Ri+IIYi_lll~(i-l) +ll z i-l Ili~i-1)- 2«zi_l' 4-1Yi-l» E ' 
i-I ~-1 n 

(i-I) - -) - , D 
Di - 1 := Di -l - Di - 1 Hi - 1 Si-l (Si-l + Ti - 2 l i - 2 Ti -2 Si-l Hi - 1 .i - 1 ' 

li~ll) : = l:L-l - l i _1 Ai - 1 Sl-1 (Si-l + 'rt-2 11-2 Ti - 2 ) S~_1 ~-t:i-l ' 

Li - 1 : = l i - 1 Ai -l S1-1 (Si-l + Ti - 2 11-2 Ti - 2 ) S~_1 H~_1 Di - 1 

(i-I) (i-1) 
It is easily shown that l i - 2 ,Di - 1 ,and li-l are 

symmetric nonnegative definite and, excepting ~ & z, these 

quantities are uniquely determined independently of the 

selections of the generalized inverses. (The derivation 

of (#.i) is the work in matrix analysis, using generalized 

inverses,lm(Si_l )=lm(Ti _2 )+lm(H~_1 Di _1 ~_l)+lm(~_l l:L-l ~-1)' 
and combination of quadratic forms, etc .. ) 

Therefore, from (#.N) & (#.i) (i=l, ... , N), (by the 

backward induction), the functional equation, (2.2), is 

recursively solved. 

Remark that the sequential estimates of x's by least 
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squares method are obtained by replacing N-l in (H.N) by 

i=O, ••. , N-l, as 

especially, 

where § .= Ti - l + H~Di ~, because 
.. in (2.3) is depending i . xi 

only on Yi and already determined estimates, xj • j=O, •.•• 

i-I, and, by replacing N-l 
A by j, 

A is identical in ~-l x
N

_
I 

with ~, j=O, .••• i. 

3. Estimation by Bayes Method 

Consider the model, (1. 1) & (1. 2) , under the 

assumption that all q's and r's are Gaussian. (There is 

no assumption such that the variance matrices of the 

noises are non-singular, therefore these Gauss 

distributions may be degenerate.) It is well-known and 

easily proved that, if 

( Xl)} PI 'V N (elll )}} PI (Ell El2 )}} PI ) , 
x2 } P2 Pl + P2 li2 P2 L21 L22 P2 

'-v-' ~ 

PI P2 
then x21 Xl 'V Np2 ()12.1' E22 • l ), where 

)12.1:= ll2 + E21 E;l (Xl - )11)' 

E22 • 1:= L22 - 1:21 Ell L12 

and )12.1 and I: 22.1 are uniquely determined because 

Ker (1:
21

) ::> Ker (E
l1

) (i. e., 1m (1:
11

) .:::> 1m(L
12

) and Xl - )11 £ Im( Ell) 

a.s.). (In the estimation by Bayes method this 

proposition is used to compute the posterior distributions 

of x' s.) 

For Bayes procedure the natural conjugate prior 

distribution of "unknown but fixed parameter" Xc is 

introduced, i.e., 
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where Xo is stochastically independent of all q's and r's 

and £0 is nonnegative definite. (In mathematical manner 

the product probability space of the probability space, on 

which all q's and r's are defined, and the probability 
n n ~ ~ 

space, (IR, topological Borel field of IR , Nn ( llO' l:o », 

is introduced. But the statement as the above is usually 

used in Bayesian analysis. (Of course the 

operator, E, in the following discussion is 

this product probability space.» 

expectation 

defined on 

Consider the sequential estimation of xi' i=O, ... , 

N-l, which is equivalent to the recursive computation of 

p(xi Iyi), i=O, ... , N-l. (The posterior mean of xi is the 

estimate of xi') P (xilyi) 's are derived as the following: 

(Put A_I ll_1 : = Po, i=O, ... , N-l.): From the definition of 

the system 

where 1 i-I lli-l : =E (xi - 1 y ) and 

(3.3) " Ai - 1 l:i_lA~_1 + Qi-l and l: .= i' 

l:i-r = V(xi _11 yi-1), therefore, 

(3.4) II .= .' 
J. 

E (xi 1 yi) = Ai - 1 lli-l + Ki (Yi -Hi Ai -l lli-1 ) 

and 

V (xi 1 yi)= " " ~ ", + Ri f Hifi (3.5) l: .= l:. - l:i Hi (Hi l:i Hi i . J. 

where Ki:= ", " , 
l: i Hi (Hi l: i H i + Ri ) 

Consider the estimation of xi' i=O, ... , N-l, based on 

the data, yN-1 , which is equivalent to the recursive 
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computation of p (xii yN-1 ), i=O, ... , N-l. (E (Xi I yN-1) is 

the estimate of xi.) p(xilyN-1 )'s are derived as the 

following: (Put A_ 111_1 :=C O' i=O, ... , N-l.) From the 

definition of the system 

(3.6) E «(X i - 1) I yi-1 ) = (l1i-1 ) and 
xi Ai - 111i - 1 

(3.7) V«(Xi - 1)I yi-1)= e: i - 1 L1-1 *~-1) 
Xi Ai-1Li-l '"i 

therefore, 

and 

i-1 , ~-
(3.9) V(x i _1 I xi' Y )= Li _1 - L i-1 Ai _1 Li Ai _1 L i-1 ' 

and, using (3.8), (3.9), and "«q., rj »~:::~ is 
J i I J-l 

stochastically independent of (xo ' (qj' rj )j:o ) II , 

(3.10) 11i_1, N-1:= E(xi _1 1 yN-1) 

(3.11) Li - 1,N-1:= V(xi _1 1 yN-1) 

Ai _1 Li _1 A:_ 1 + Qi-1 = L i,N-1 + V( 11 i,N-1 1 yi-1), 

where 11i,N-1: =E (xi I yN-1) and Li,N-1: =V(xi I yN-1) (Remark the 

formulas, E(xly)=E(E(xly, z)ly) and V(xly)=V(E(xIY, z)IY) 

+E(V(xly, z)ly).) 

4. Criticism 

The procedure of least squares method in Subsection 2 

is, of course, applicable to the Gaussian system in 

Section 3. But this procedure is only the mathematical 
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optimization and, hence, seems to be too general to 

propose the reasonable statistical representations for the 

knowledge states of unknown variables. 

In the case of the sequential estimation the two 

methods propose quite similar results, i.e., from (2.3) 

(4.2) .. x = o 

for i=l, ... , N-l. 

" (It is not necessary that the generalized inverses of Si 

in (4.1) are identical.) 

The two procedures, (4.1) and (4.2), are essentially 

" equivalent excepting the initial estimates. In (4,3) ~O 

is specified by the assumption of the prior knowledge, for 

example, if the noninformative case is considered, then 

let £O=~En(~ +(0) (Co is fixed), and in this case, under the 

f ' -1 assumption 0 the positive definiteness of RO and HORO HO' 

when Irt -+ 00 , 

( 4.4) (H'R-1H )-1 H'R-1 
~O + 0 0 0 0 0 yO ' 

(4.4) and (4.5) give a Bayesian justification of (4.2). 
N-1 In the case of the estimation based on y , from 

xi'-l ~nd (4.6), 

(4. 6) ~-1 =xi - 1 + (S~_1 -S~_l ) (~-2 Ai - 2 xi _2 + H~_1Di_1 Yi-1 ) 

and, from (3.10), 
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i=l, ... , N-l, (Remark ].IN-i,N-i= ].IN-i·) 

In (4.7) the relation among the estimate based on ~-i 

].li-i,N-i' the sequential estimate, ].li-i' and the predictor, 
Pi' is represented in a transparent manner, but in (4.6) 
the relation is not clear. And in Bayes method the 

precisions are systematically estimated by using (3.3), 

(3.5), and (3.11), i.e., by using the posterior variance 

matrices. But in least 
the estimates and the 

clear. (For example the 

squares method the precisions of 

predictor of each state is not 
" J's in (2.2) are too complex to 

have statistical interpretations.) 

Section D. A Note on a Multi-Stage Decision Problem with 
Matric-Variate Loss Functions 

1. System and Assumptions 

Formulas and notations in Appendix D are used freely. 

The coefficient field is assumed to be the real or complex 

number field. In general, for the sets of matrices, Mi , M2 , 

and M3 , Mi +M2M3 means the set, {mi+m2m3 ; (m i , m2 , m3 )EMi x 

M2X M3 }. The set of all Hermite and nonnegative definite 

matrices in M(n) is written HNND(n). (In general, M(q, p) 

is the set of all (q, p) matrices with the assumed number 

field elements, and M(p):=M(p, p). See Appendix D for 

other notations.) 

The model is given by the equation, (1.1); 

where X's are the M(n, n') valued state variables, Ai' Bi , 

and Ci are M(n), M(n, p), and M(n, q) valued random 

variables, respectively, W's are M(q, n~) valued 

disturbances, and Ui is the M(p, n;) valued i th stage 

decision for each i=O,l, ... , N. The observation equations 

are given by (1.2); 
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where Y's are the M(m, 
M(r, r') valued random 

of (Xi., Zi) for each 

S. SaNa 

m') valued observations, 

variables, and Fi is the 
i=O.l •... , N. The loss 

th transition, Li , is given by (1.3); 

(1.3) Li= 11~+III~ + Iluill~ • i=O,I, ... , N, 
HI i 

zls are 

function 
for the i 

where Vi+l!:: HNND(n) and Pi!:: HNND(p), i=O,I, ... , N. (In 

general, «A, B»e :=A*CB and IIAI16 :=«A, A»D' See 
Appendix D.) Hence Li is the HNND(n') valued loss for 
each i=O, 1, ... , N. 

DP-algorithm, (1.4), is considered; 

(1. 4) J~:l = IN+1 ° , 
Jf*) := min U

i 
E: M(p, n,)Ji (Ui ), 

Ji(Ui ):= E(Li + Ji:llyi, ~), i=O, 1 •... , N, 

h h U · UC*) were t e minimizing i' wr~tten i is defined by 
(1.5); 

and. in general. the sequence of symbols like (~. i=O, 1, 
...• j) is written Mj. (Hence yi= (Yk' k=O •... , i) and 
Ui=(Uk • k=O •... , i).) (Ui*); i=O.I, ...• N) is the optimal 

policy for the loss function. E~=OLi' Hence. the policy 
also minimizes the trace and the maximum eigenvalue of 

E (Ef=OLi I YO ) . 
The optimal policies are constructed under the 

assumptions. (1.6). (1.7), and (1.8); 

(1.6) XO' «Ai'~' Cit Wi); i=O,l •... , N), and (Zi; i=O.I • 
. .. , N) are stochastically independent. 

(1.7) «Ai' Bi • Ci • Wi);i=O,l, ...• N) is the stochastically 
independent sequence. 
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(1.8) E( Ilxi - E(Xi Iyi) II~ jyi), where Qi 
defined in Subsection 2: is independent 
for each i=O,l, ... , N. 

is recursively 
of values of yi 

2. Construction 
The DP-algorithm, (1.4), is solved by the backward 

induction, and, hence, the optimal policies are 
constructed. (See, for example, Aoki [1] Chapter II.) 
In fact, using the formulas in Appendix D, the fol10wing 
results, (2.1)-(2.18), are derived; 

i=O, ... , N, 

(2 2) J~*) = E(IIX + I-T 112 Iyi) 
• 1. iii Ii + Ri , i=O, ... , N, 

where 

( 2 . 3) 8
N

: = 0, 

8i := Pi + E(ljBill~ +1 ), i=O, ... , N, 
HI HI 

(2.4) IN:= 0, 

Ii := E (I I Ai I I; + I ) - Q. 
HI HI 1. 

= E( II Ai -Bi SiE(B; (VH1 + 1i+1 )Ai)ll~ +1 ) 
. HI HI 

+ I j E(B~(VHl + Ii+1 )Ai)j j~ , i=Q, ... , N, 
i 

(2.5) QN:= 0, 

Q .= I j E(B~ (Vi +1 + 1H1 )Ai ) j I~- , i==O, ••• , N, i' i 
(2.6) TN := ° , 

Ti:= E(A~ (VH1 + (i) 1i+1 )Wi ) 
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i=O, ... , N, 

( 2 . 7) W~N) : = 0, 

( 2 . 8) R~N) : = 0, 

Ri
i

) : = II Ti+l II ii+1 - (vi+l + Ii+l)- + Ri+l ' 

i=O, ... , N, 

(2.9) RN:= 0, 

Ri:= E(llwii)11 ~i+1 + Ii+l) - Di 

+ E (II Xi - E (Xi I yi) II ~i I y ) + Rli ) , i=O, ... , N, 

(2.10) ~:= 0, 

Di:= IIE(B~(Vi+l + 1i+1 )Wfi) )11~i -IITi Ilii ' 

i=O, ... , N, 

* (2.11) Ni:= E(Bi (Vi+l + 1i+l )Ai)Mi 

* (i) + E(Bi (Vi +1 + 1i+l )Wi ), i=O, ..• , N, 

(The optimal policies are obtained from the formulas, 

(2.13)-(2.18).) 

(2.14) vect(Ui*)) = _(S~(l) + S~(2) -+- ... + Si(rf))vect(Ni ), 



ON BAYESIAN'ANALYSIS 85 

i=O, ... ,N, 

where 

" * ( 2 . 16) Ai - Ai: = GIN ( Si ) E (Bi (Vi +1 + IH 1 ) Ai) , 

(2.17) t. i - 2i := GIN(Si )E(B~ (VHl + Ii+l )W{i) ), 

(2.18) ~dMEM(p, n'); Im(M)CKer(Si)}' i=O, ... , N. 

Appendix D. A Note on Generalized Inverses 

1. Notations 
The following notations are used; L(V, W):=L(V, 

W;K):= the set of all linear mappings from the vector 
space, V, to the vector space, W, over the coefficient 

field, K. For each fEL(V, W), the image and the kernel of 

f are written Im(f) and Ker(f), respectively, i.e., 
Im(f):=f(V) and Ker(f):=f- l (0). The set of all (n, m) 

matrices over K is written M(n, m; K) or, simply, M(n, m), 

and if n=m, then put M(n):=M(n, m). Iv is the identity 

mapping on V, and En is the unit matrix in M(n). The 
direct sums of the vector spaces, (V

k
;k=l, 2, ... , L), and 

the matrices, (Mk ; k=l, 2, ... , L), are written Vl + V2 
+ ... + VL • and Ml + M2 + ... + ML , respectively. If V=Vl + V2 , 
then define proj(Vl /V2 )(x):=xl , where x=xl+ X2EV, XIEVI , 
and X2EV2 . The restriction on the mapping, f, to the set, 

H, is written flH, i.e., (fIH)(x)=f(x), xEH. 
For each fEL(V, W), the family of generalized 

inverses of f, GIN(f), is defined by (1.1); 

(1.1) GIN(f):={(fIVlfloproj(Im(f)/WI) + goproj(WI/Im(f»; 

V=Ker(f) + Vl , W=Im(f) + WI' & gEL(WI , Ker(f»}. 
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The element of GIN(f) is called the generalized inverse of 
f, and written f-

From (1.1), (1.2)-(1.4) are easily derived; 

(1.2) GIN(f)= {hEL(W, V); fohof=f}. 

(1.3) {lv-hof; hEGIN(f)}= {proj(Ker(f)/Vi ); V= Ker(f)+ Vi}' 

(1.4) {foh; hEGIN(f)}= {proj(Im(f)/Wi ); W= Im(f) -+ Wi}' 

For elementary properties of generalized inverses see, for 
example, Iri and Kan [6], Chapter 8, or Rao [lO],Chapter 

1. 

In Subsection 2 the coefficient field is assumed to 

be the real or complex number field. In general, the 
elements in GIN(f) are written as f-(1), C(2), r(3: ... etc. 

2. Formulas 

The following symbols, (2.1)-(2.3), are used; 

* (2.1) «A, B))c:= A CB, 

where A* is the conjugate transposed matrix of A, i.e., 
A*:=At, and the product of matrices is assumed to be well

defined. 

(2.2) IIAII~:= «A, A))D' 

( 2 . 3) { X, Y } Z : = ( « X, Y)) Z + « Y, X))z) / 2 . 

The formulas, (2.4)-(2.7), are easily obtained; 

(2.4) II X + YI I ~ = II X II ~ + z.{X, Y} z + II Y II ~ , 

where (X, Y, Z)EM(n, m)xM(n, m)xM(n) 

(2.5) «A, B))c-(i) = «A, B))c-(2) 

where Im(A)cIm(C*), Im(B)clm(C), and (C-(l), C-(2))EGIN(C)2. 
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( 2 . 6 ) I I JX + A I I ~ + I I HX + B I I~ 

II * * -(1) * * 112 X + (J VJ + H WH) (J VA + H WB) J*VJ + H*WH 

- II J*VA + H*WB II~J*VJ + H*WH)-(2) + IIAII~ + II BII~ • 

where V and Ware Hermite nonnegative definite matrices. 

(2.7) IIX + AII~+IIX + BII~= 

IIX + (V+W)-(l) (VA+WB) 11~+w+ «V(A-B). W(A-B» )(V+W)-(2)' 

where V and Ware Hermite nonnegative definite matrices. 
Propositions, 2.1 and 2.2, are also easily obtained. 

Proposition 2.1. Consider the M(m) valued function on 
M(n, m) defined by 

I(X) :=llxll~+ 2'{X, TY}E + IIYII~ , 
n 

where XsM(n, m), SsM(n), TSM(n, 1), YsM(l, m), RsM(l), and 
S is nonnegative definite and S*=S. Put 

MP := {XOsM(n, m); reX) - r(xo) is nonnegative definite 
for any XsM(n, m)}. 

If rm(TY)CIm(S), then (2.8)-(2.10) are derived; 

(2.8) reX)= Ilx + S-O) TYII~ + IIY1Ii-T*s-(2)r 

(2.9) vect(MP)= {(S-(l)+ S-(2)+ ... + S-(m) )vect(TY); 

(8-(1) ; i=1, 2, ... , m)sGrN(S)m} , 

where, in general, vect(M):=emi, mi, 
m2, ... , mp)sM(q, p). 

(2.10) {XsMP; Im(X)nKer(S)= {O}} = {S-TY; S-sGIN(S)} . 

If MP~~, then Im(TY) Im(S). 
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Proposition 2.2. Consider the probability space, (Q, IF, 
F), and the expectation operation with respect to P, E(-). 
Then the formulas, (2.11) and (2.12), are obtained; 

(2.11) E( Ilx II~)= IIE(X)II~ + E( IIX-E(X) ll~ ), 

where X is a M(n, m) valued random variable on (Q,:IF), 

and QeM(n). 

(2.12) E(IIAII~)-IIE(B*VA)II~=E<lIA-BWE(B*VA)II~)+IIE(B*VA)II~, 

where A and Bare M(n, m) and M(n, 1) valued random 
variables on (Q, IF), respectively, and VeM(n) and We M(l) 

are Hermite and nonnegative definite matrices. 
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