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Abstraet: We provide some heuristic two-moment 
approximation formulas for the mean waiting time 
in a GI/G/s queue. These formulas are 
certain combinations of the exact mean waiting 
times for D/M/s, MIDis and M/M/s queues. To see 
the quality of the approximations, they are 
numerically compared with exact solutions and 
other approximations for some particular cases. 
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1. Introduction 

In this paper we provide some heuristic approximation 

formulas for the mean waiting time in a multi-server queue. 

We consider the standard GI/G/s queueing system with s 

homogeneous servers in parallel, unlimited waiting room, 

the first-come first-served discipline and i.i.d 

(independent and identically distributed) service times 

which are independent of a renewal arrival process. We 

approximate the mean waiting time in this GI/G/s queue by 

combining those for analyzable systems such as D/M/s, 

M/D/s and M/M/s queues. 

Let EW(GI/G/s) denote the mean waiting time (until 

beginning service) in the GI/G/s queue, assuming that the 

system is stable. Let u and v be generic interarrival 

times and service times, respectively. Then, among approx­

imation formulas we provide in this paper, the best one in 

an average sense is 
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EW(GI/G/s) ~ 
c2 + c; 

u 2 g EW(M/M/1) x 

s 
x II 

n=2 ( 
1-c~ EW(D/M/n) + 1-~ EW(M/D/n) 
~ + ~ EW(D/M/n-1) c~ + c~ EW(M/D/n-1) 

2(~ + ~ - 1) EW(M/M/n) ), 
+ c~ + ~ EW(M/M/n-1) (1) 

where ~ (~) is the squared coefficient of variation 

(variance devided by the square of mean) of u (v); 

g == g( p,~ ,C;) is defined as 

2(1-P) (1-~ )2 

{ 

exp {- 3 P c~ + ~ } c~ ~ 1 

g(p, ~, c;) (2) 
= 1, 

~ > 1 

with the traffic intensity p == Ev/Eu E (0,1). Of course, 

suppose that both of the mean service time and the traffic 

intensity are common among the mean waiting times appeared 

in (1). The exact mean waiting times for the building­

block systems, i.e., the D/M/n, M/D/n and M/M/n (n = 1, ... , 

s) queues, can be obtained either by computing their 

analytical solutions or by using some queueing tables; see 

Hillier and Yu (1981) and Page (1982). 

We see that the approximation (1) with (2) is exact 

for the M/D/s, M/M/s and M/G/1 queues, but not for the 

D/M/s queue. Hence, the approximation (1) is an incomplete 

interpolation approximation among these systems; cf. 

Page (1972) and Kimura (1986). We also see that the 

approximation (1) is asymptotically exact as 0 -t- 1 from 

below, i.e., it is consistent with the heavy traffic limit 

theorem of Kl:illerstrom (1974). Several other approxima­

tions we provide in this paper also satisfy these 

properties. 

The approximation (1) is a two-moment 

for EW(GI/G/s), i.e., it depends only on the 

moments of u and v. Closely related 

approximation 

first two 

two-moment 

approximations have been developed by Page (1972) and 
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Kimura (1986), in which three exact mean waiting times 

for the D/M/s, M/D/s and M/M/s queues are used as their 

building blocks. This paper shows that our approximations 

including (1) perform as well as Kimura's approximations 

and also that they are sometimes better than these two 

approximations especially for Em/Ek/s (m,k 1 1) queues. 

Two-moment approximations for EW(GI/G/s) are of 

course useful for analyzing an individual GI/G/s queue. 

Moreover, they also are useful for designing and/or 

evaluating an open non-Markovian network of queues: We 

analyze each of nodes in a network as a separate GI/G/s 

queue characterize9. by the first two moments of the 

interarriva1-time and service-time distributions. This 

approach is adopted in a software package called QNA 

(Queueing Network Analyzer) which has been developed to 

calculate approximate congestion measures for networks of 

queues; see Whitt (1983). Our approximation formulas can 

be used in QNA-like softwares to obtain several congestion 

measures for the whole network as wel1.as each node·. 

This paper is organized as follows: In Section 2, we 

focus on the ratio EW(GI/G/m) /EW(GI/G/n) (m > n) instead of 

EW(GI/G/s). We approximate this ratio by combining the 

corresponding ratios for the D/M/s, M/D/s and M/M/s 

queues. Some approximation formulas for EW(GI/G/s) can be 

derived from this approximation, using appropriate 

weights in the combination. In Section 3, we discuss the 

quality of the approximations by numerical comparisons 

for some particular cases. 

2. Approximations for EW(GI/G/s) 

For the M/G/s and GI/M/s queues, Cosmetatos (1974, 

1976) derived the following approximate relations, taking 

into account the heavy traffic behavior of the mean 

waiting times for these systems: For m > n ~ 1, 

EW(M/G/m) 
EW(M/G/n) 

_ 1-~ EW(M/D/m) + 2~ EW(M/M/m) 
1+~ EW(M/D/n) 1+~ EW(M/M/n) , 

(3) 
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EW(GI/M/m) 
EW(GI/M/n) 
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1-~ EW(D/M/m) + 2~ EW(M/M/m) 
- 1+~ EW(D/M/n) l+~ EW(M/M/n) 

(4) 

Using these relations, Cosmetatos suggested some 

matiort formulas for EW(M/G/s) and EW(GI/M/s). 

approxi­

In this 

section we generalize the approximate relations (3) and 

(4) to the case of the GI/G/s queue. 

A basic idea in the approximate relation (3) is that 

the ratio EW(M/G/m)/EW(M/G/n) (m > n ~ 1) can be 

approximately 

the M/D/s 

relation (4) 

represented as a weighted sum of those for 

and M/M/s queues. Also, the approximate 

is based on the same heuristic idea as (3). 

Applying this idea extensively to the GI/G/s queue, we 

propose the generalized approximate relation 

EW(GI/G/m) _ w. EW(D/M/m) + w EW(M/D/m) + w
ll 

EW(M/M/m) 
EW(GI/G/n) =- 01 EW(D/M/n) 10 EW(M/D/n) EW(M/M/n) , 

m>n~l, (5) 

where wij = wij (c~,~) (i,j = 0,1) is a weighting factor 

with W01 + w10 + wll = 1. Since the approximate relation (5) 

includes (3) and (4) as its particular cases, the weights 

{w~} need to satisfy the conditions 

W01 ( 1 , ~) = 0, w10 ( 1 , c~ ) 

0, wll (~ ,1) 

2~ 
1+~ , 

(6) 

(7) 

To obtain appropriate weights satisfying these condi­

tions, we will make use of Kimura's (1986) approximation 

for EW(GI/G/s): Kimura has recently developed a heuristic 

two-moment approximation for EW(GI/G/s) which is just a 

weighted harmonia mean of the exact mean waiting times 

EW(D/M/s), EW(M/D/s) and EW(M/M/s), i.e., 
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1 1-~ 1 1-c~ 1 
EW(GIjGjs) -

~+ < EW(DjMjs) 
+ 
~+ c; EW(MjDjs) 

+ 
2(~+ c;-l) 1 (8) 
~+ ~ EW(MjMjs), 

It is easy to check that the weights used in Kimura's 

approximation certainly satisfy the conditions (6) and 

(7) which are desired in (5). Hence, as a candidate of 

the weights, we choose 

Case A: WOI 

1-~ 

~+ ~' 
1-~ 

~+ ~' 
2(~+ ~-1) 

~+ ~ 
(9) 

However, as noted in Remark 3.1 of Kimura (1986), the way 

of generalization is not unique. In fact, there is a 

simple alternative of (9): 

Case B: 
(1-~ )~ ~ (l-~) 2c~~ 

(10) W
OI 

= 
c~+ ~ 

, wIO = 
~+ ~ 

, W11 = 
ct+ 

2 • 
cv 

In this paper we restrict our attention to these two cases 

as the weights in (5) because of their simp1icies. 

From (5) with the weights (9) or (10), we now derive 

two different-type approximations for EW(GIjGjs): (i) if 

we let n = 1 and m = s in (5), then we obtain 

EW(GIjGjS) ~ EW(GIjG/l) (w EW(DjMjs) + w
10 

EW(MjDjs) 
01 EW(DjM/l) EW(MjDj1) 

+ EW(MjMjs) ) 
Wu EW(MjMj1) ; (11 ) 

(ii) if we let n = m-1 and m = s in (5),then (5) can be 

regarded as a recursion formula for EW(GIjGjs), so that we 

obtain 

EW(GIjGjs) ~ EW(GIjG/l) S ( II w 
n=2 01 

EW(DjMjn) EW(MjDjn) 
EW(DjMjn-1) + w10 EW(MjDjn-1) 
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EW(M/M/n) ) 
+ wll EW(M/M/n.,.l) . (12) 

To derive tractable approximations for EW(GI/G/s), 
(11) and (12), we need a certain simple approximation 
EW(Gl/G/l). Following Whitt (1983), we will approxi.,. 
EW(Gl/G/1) using 

ca+ 4 
EW(Gl/G/l)~ 2 g EW(M/M/1) (13) 

with the correction factor g defined in (2). The approxi­
mation (13) is the Kraemer and Langenbach-Belz (1976) 
approximation for c~ ;;;; 1. 

Thus we obtain four different two-moment approxima­
tions by combining (9) and (19) with (11) and (12). For 
convenience, we call (11) «12» with (13) the approxima­
tion formula of Type I (II). In addition, if the approxi­
mation formula is, e.g., Type I with the weights of Case 
A, we call it the approximation lA, and so forth. For 
s = 2, the approximation IA (IB) coincides with IIA (lIB). 
For the M/G/s and GI/M/s queues, the approximation IA 
(IlA) coincides with IB (lIB). Hence, it is apparent that 
all of these four approximations are equal for the M/G/2 
and GI/M/2 queues. Since the Kraemer and Langenbach-Belz 
approximation is exact for the M/G/I queue, the approxima­
tions IA and IB for the M/G/s queue are equivalent to 
Page's approximation for EW(M/G/s): 

EW(M/G/s) ~ (1-~)EW(M/D/s) + ~EW(M/M/s). (14) 

Remark. For n > m ;;: 1, is it appropriate to use (5.) as 
another approximate relation? We solve this problem by 
the use of the normed aooperation aoeffiaient introduced 
in Boxma et il. (1979): Assume that the arrival process is 
a Poisson process, i.e., c~= 1. Then, if we let m = 1 and 
n = s in (5), we have 
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EW(M/G/l) !i 1-~ EM(M/D/l) + ~ EW(M/M/1) 
EW(M/G/s) 1+~ EW(M/D/s) l+c; EW(M/M/s) . 
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(15) 

As in Boxma et al. (1979), we define the normalized 
quantity 

_ EW(M/M/s) EW(M/G/l) 
NGs = EW(M/M/l) EW(M/G/s) . 

From (15) and (16), we obtain 

N ~ 1 1-~ EW(M/M/s) + 2~ _-
G NGs s 2 1+<. EW(M/D/s) l+~ 

Letting s + 00 in (17), we have 

3~+1 
2(l+c~) , 

(16) 

(17) 

(18) 

which is not consistent with the exact result limstooNGs= 
'(l +c; ) /2 except that <- = 1; see Remark 1 of Boxma et al. 
(1979). It is easy to check that the consistency holds for 
the case m > n s;: 1. Hence, the. answer of the problem is in 
the negative. 

3. Numerical Comparisons 
To see the quality of the approximations provided in 

this paper, we compare them with exact solutions and other 
approximations for some particular cases. 

Table 1 compares the approximations for the mean 
queue length in some M/PH/s queues. Approximations for the 
mean queue length can be derived from those of the mean 
waiting time by using Little's formula. Since there is no 
difference between the weights of . Cases A and B for 
systems with Poisson arrivals, we simply denote our 
approximations by 1(= (14» and II in the table. The 
exact values are quoted for comparisons from Table 
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4.6 of Tijms et al. (1981). In Table 1, E1Z denotes a • 
mixture of M and Ez ' and Hz(H~) denotes a mixture of two 
exponentials (Hz with balanced means); see Tijms et al. 
(1981) for their detailed definitions. 

Table 1 shows that all of the approximations performs 
well, providing accuracy adequate for most 
applications. The table also shows that the 

practical 
application 

(8) is much better than the other approximations for 
highly variable service-time distributions; see Table 4 

of Kimura (1986) for further comparisons with various 
distribution-dependent approximations for EW(M/PH/~) such 
as the Boxma et al. (1979) approximation. 

Table 1. A Comparison of Approximations for the Mean 
Queue Length in M/PH/s Queues. 

System 

M/H~ /5 

M/lt~ /10 

M/H~/5 

M/Hb /10 z 

0.5 0.7 
0.9 

0.5 0.7 
0.9 

2.0 0.7 
0.9 

3.0 0.7 
0.9 

2.0 0.8 

2.0 0.8 

5.0 0.8 

5.0 0.8 
0.9 

Exact I II (8) 

1.020 1.018 1.018 1.023 
5.773 5.769 5.769 5.776 

0.4076 0.4052 0.4046 0.4122 
4.576 4.560 4.559 4.582 

1.660 1.696 1.697 1.650 
10.92 10.99 10.99 10.90 

1.933 2.244 2.245 2.111 
14.05 14.62 14.62 14.37 

3.170 3.277 3.278 3.192 

2.267 2.395 2.397 2.298 

5.923 6.457 6.462 5.703 

4.036 4.669 4.681 3.853 
16.53 17.69 17.70 16.14 

Tables 2-4 give the relative percentage errors of the 

approximations for some Em/Ek/s (m,k f 1) queues. Table 2 
deals with the EI+/Ez/5 queue; Table 3 deals with 7 Em/Ek/2 
queues; Table 4 deals with 6 Em/Ez/s (s = 4,8) queues. In 
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Table 2. Relative Percentage Errors of Approximations for 
EW(E .. /E2 /5) • 

P IA IB IIA IIB (8) (19) 

0.3 112.04 337.27 -37.19 144.92 -64.02 1249.78 
0.5 2.67 51.59 -10.61 36.99 -16.47 118.52 
0.7 -1. 25 l3.19 -2.81 11.68 -0.73 26.02 
0.8 -0.81 6.49 -1.25 6.08 0.90 12.32 
0.9 -0.33 2.52 -0.40 2.46 0.84 4.67 
0.95 -0.14 1.l3 -0.16 1.12 0.48 2.07 

the approximation IA (IB) coincides IIA (lIB) for s = 2. 

The exact values of the mean waiting times for these 

systems can be derived from the Hillier and Yu (1981) 

tables. In Tables 2-4, our approximations are compared 

with the two-moment approximations of Kimura (1986) and 

Page (1972), where Page's approximation for EW(GI/G/s) is 

EW(GI/G/s) ;: (l-c~ )<-EW(D/M/s) + ~ (l-~ )EW(M/D/s) 

+ ~ c;EW(M/M/s). (19) 

Tables 2-4 show that the approximation IIA; see (1), 

is much better than the others not only in heavy traffic 

but also in moderate traffic. In heavy traffic, the 

approximations IA and (8) perform as well as IIA. The 

approximations IB and lIB are less accurate than IA and 

IIA in the average sense, but the formers are better than 

the latters for small~. Page's approximation performs 

very poorly for Em/Ek/s queues in moderate traffic. 

It is sometimes observed that IA and IIA become nega­

tive in light traffic, especially when both ~ and c;. are 

extremely smaller than one. In practical applications, 

however, the mean waiting time in light traffic could be 

almost ignored. Hence, it does not matter so much in light 

traffic situations whether approximate values are positive 

or negative. 
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Table 3. Relative Percentage Errors of Approximations 
for EW(Em!Ek!2) ( p= 0.5,0.9). 

P m k A B (8) (19) 

0.5 2 2 8.99 14.25 -19.57 21. 76 
3 2 4.19 12.84 -12.97 34.76 
4 2 -0.99 9.84 -5.44 43.10 
9 2 -15.13 0.25 20.41 59.88 
2 3 7.42 15.76 -17.10 30.56 
3 3 -1.34 12.70 -6.97 52.47 
4 3 -10.19 ·7.50 4.41 68.66 

-------------------------------------------------------
Average -1.01 10.45 -5.32 44.46 

(6.89) (12.41) 

0.9 2 2 1.35 1.77 -0.66 1.85 
3 2 0.95 1.62 0.06 2.74 
4 2 0.40 1.23 0.75 3.25 
9 2 -1. 40 -0.20 2.65 4.17 
2 3 1. 25 1. 91 -0.26 2.75 
3 3 0.45 1.56 0.85 4.20 
4 3 -0.54 0.88 1. 85 5.08 

-------------------------------------------------------
Average 0.35 1.25 0.75 3.43 

(0.91) (1.31) (1. 01) 

Note: The average absolute relative percentage error is 
in parentheses below the average. 
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Table 4. Relative Percentage Errors of Approximations for 
EW(Em/E2 /s)(P= 0.5,0.9). 

p m s IA IB IIA IIB (8) 

0.5 2 4 14.80 28.88 7.65 24.47 -33.78 
3 4 8.24 34.23 0.05 27.88 -23.80 
4 4 -0.74 34.25 -7.51 27.22 -12.74 
9 4 -31.47 26.85 -27.54 20.62 26.68 
2 8 46.69 75.00 3.79 46.44 -58.86 
3 8 57.46 127.36 -2.13 74.96 -40.19 
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(19) 

42.65 
70.13 
88.04 

120.64 
101. 43 
208.63 

--------------------------------------------------------------------
Average 15.83 54.42 -4.28 36.93 -23.78 105.25 

(26.57) (8.11) (32.68) 

0.9 2 4 1.28 2.39 1. 24 2.36 -0.92 2.53 
3 4 0.66 2.44 0.61 2.41 -0.03 3.65 
4 4 -0.12 2.12 -0.16 2.08 0.82 4.23 
9 4 -2.62 0.64 -2.61 0.61 3.11 5.10 
2 8 1.22 3.40 1.01 3.27 -1.45 3.62 
3 8 1.95 5.57 1.72 5.41 1.41 6.92 

--------------------------------------------------------------------
Average 0.40 2.76 0.30 2.69 0.49 4.34 

(1.31) (1. 23) (1.29) 

Note: The average absolute relative percentage error is in parentheses 
below the average. 
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