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Notes on Order Statistics and Barankin's Structures 

Shintaro SaNa 
Associate Professor 

Faculty of Economics 
Hokkaido University 

(These notes are based on Chapters 9 and 10 in Sono [5] . 
The writer wishes to thank Prof. Y. Suzuki and Prof. E.W. 
Barankin for their critical suggestions.) 

Note A. An Application of Order Statistics to a combi­
natorial Problem 

1. Simple Case 

To clarify the idea a simple case i~ considered. Let 
Xj • j~l, ... ,N. be independently identically distributed 
real valued random variables on some fixed probability 
space, (Q, IF , P), satisfying 

(1.1) Xj'V uniform distribution on I: lO, 1 [, j~l, ... ,N. 

Then the usual order statistics, 0 < X(l) <... < X(N) < 1, a. s. 

(P), are defined by Xj , j~l •... ,N. It is well-known and 
easily obtained that 

(1 2) P(X <) N! LX t n- 1 (1_t)N-n dt, x e 1. 
. (n) = x~ (n-l)! (N-n) ! 0 

On the other hand, 
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where ID is the set of all d c {t, ... ,N} such that I1d=n, 

i. e. , 

(1.4) ID:= {d;d c {t, ...• N} &#d=n} . 

The right hand side of (1.3) is equal to 

where 2:{ d } runs over all {d1""'~} c ID d1 , .. ·, r cID 
satisfying II {d1 , ...• ~}=r. Therefore, from (1.1) and 
independence of XIS, 

(1.6) (1.5)= Q(x), x e I, 

where 

00 r-1 (1. 7) Q(Z):= Er=l (-1) 2:{ d d} ID 
1"'" r c 

(From (1.4), Q(Z) is a polynomial of Z.) 
From (1.2) and (1.6), using binomial theorem and termwise 

integration to (1.2), 

Q(x)= the right hand side of (1.2) 

NI 
(n-i)1 kl (N-n-k) ! 

Therefore. as polynomials of Z, 

N! 
(1.8) Q(Z)= (n-l)! 

N-n (_l}k 

2:k=O k! (N-n-k) I 

x n+k 

n+k 
WI!!, I . 

It should be noted that the similar terms of (1.7) 



ORDER STATISTICS AND BARANKIN'S STRUCTURES 101 

are arranged in (1.8). And this rearrangement from (1.7) 

to (1.8) solves the following problem: 

Problem (1): " For any nonnegative integer, m, let Wm be 

the set of all {d1 , ... ,dr }cID, r=1,2,3, ... , such that /1(d1U 

••• U dr )=m, and define S({d1 , ... ,dr }):=' If r is odd, 

then +1, and if r is even, then -1.' Then compute LW€WmS(w)." 

The answer is LW€W S(w)= (-l)k N!/«n-l)!k!(N-n-k)l(n+k», 
m 

if m=n+k, k=O, ... ,N-n. 

The polynomial, (1.7), was used in Sono [4]. In this 

Note (1.1)-(1.8), Problem(l), and its answer are 

generalized. 

2. Generalization 

For given positive integers, M, N, n i , i=l, ... ,M, 
satisfying 

the polynomial, Q(Zl'" "ZM)' is defined: 

1 r 
00 1 (II) M Z//(di U ••• U di ) 

Lr=l (_l)r- L { d1 dr} ID IIi=1 i ' 
, ••• , C M 

where ~ is the set of all ordered pairs, (d1 , ... , dM ), 

such that /Idi =ni' d
f 

C il, ... ,N} and di n dj =0 (i;fj) , for 

all i,j=l, ... ,M. L(# in (2.1) is the summation of all {d1 ; 

... , d
r

} C ]1\ satisfying 

(If) fl{d1 , ... ,d
r

}=r and di n~=QJ (i;fj), i, j=l, ... , M, 

-e, k=l, ... ,r. 

(I 1 dl -Cd! rl!) die: ID
M

, & ,,~/I) '.=0.) n genera, put :- l""'IM' 6
p 
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Then consider the following problem: 

Problem(M): " For any ordered pair of nonnegative integers, 
1 r 

m=(m1 , ... ,mM), let Wm be the set of all {d , ... ,d} c IDM 

r=1,2,3, ... , such that 

r 1. II u.Q. =1 di =mi , i = 1, ... , M, under the condit ion, (If). 

Define S({d1 , ... ,dr }):= I If r is odd, then +1, and if r 
is even, -1. I Then compute ~ S (w) • " 

WE Wm 

It is clear that the collection of similar terms in (2.1) 

solves Problem(M). 

Let 1S ' j=l, ... ,N, be independently identically 

distributed random variables on some probability space, 

(r.!, IF , P), such that 

P (Xj E {i} x ] 0, x]) = Pi' x, X E I, i = 1, .•. , M, 

where p. I S are fixed positive 
l. 

(Of course, for any such p'S, 

P) satisfying (2.2).) 

M 
numbers satisfying ~i=lPi =1-
there exist X's and (r.!, W , 

Then the order statistics, X ( w ), i=l, ... ,M, n=l, .. 
(i,n) 

. ,N, w € r.! are defined: 

(2.3) If there exists {j1"" ,jN(i) } c {l, ... ,N} 

such that N(i);;;n, {j1"" ,jN(i)} = {j E n, ... ,N}; 

Xj (w) E ~ }, and Xj ( w) < • •• < X . ( w) , 
1 IN(i) 

then X( (w):= X. (w), otherwise :=1-i,n) I n 

Informally X(i,n) is the n..,.th order statistic in Ii if 
exists. Like (1.2), for M, N, n i , i=l, ... ,M, in (2.]), it 

is easily obtained that 
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(2.4) P( u~_l{X(, ) € {i} x ]0, xd})= 
1.- 1.,ni 

N! 
M M 

M! (N- L i=l n i )! ITi=l (Ni -1) ! 

Ii Xl 
f dt1 ··· o 

for xi€Ii , i=l, ... ,M. 

On the other hand, 

(2.5) the left hand side of (2.4) 

P ( u 
(d1 ,··· ,dM) € IDM 

{Xj € {i}x ]0, xi]}) 

Therefore, using multinomial theorem and termwise integra­

tion, from (2.4) and (2.5), 

N! 
M 

M! ITi=l (ni -1) I 
M 

(N-k- Li=l ~ ) ! 
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as polynomials of Z's. The answer to Problem(M) is given 
M M 

by (2.6): If m=(ni+ls.;i=l, ... ,M), where ~i=lki;;; N-~i=l ~, 

ki~O, i=l, ... ,M, then 

~WEW S(w)= 
m 

otherwise=O. 

Note B. On Barankin's Formulation for Stochastic Phenomena 

1. Notations 

It is shown that the Barankin's structures in [1], [2], 

and [3] are special cases which are mathematically derived 

by elementary considerations of some topological space. 

Usual notations in set theory are used: a set, S, is 

called a topological space if the class of all open sets 

in S is defined, the power set of S, i.e., the set of all 

subsets in S, is denoted P(S), i.e., P(S):= {X; XeS}, the 

closure and interior (or open kernel) of a subset, X, in a 

topological space, S, are written as X- and XO 

respectively; (X-)o, XU (Y-), etc. are written as X-~ X u Y- , 

etc .. 

2. P.o.s. As a Topological Space 

A p.o.s. (:=partially ordered structure), (S,;;;), is 

considered under some topology. This topological space is 

used freely in the following sections. 

2.1. Definition 

The sets of all the upper elements and all the lower 

elements for any pES are denoted U(p) and L(p), 

respectively,Le. ,U(p) :={q E S; q ~ p} and L(p) :={q E S;q;;; p}. 

The open sets in (S, ;;;) are defined by U(p) (p E S): "A 

subset, XeS, is open if and only if U(p) e X for all p EX." 
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This topology is well-defined because the axioms of open 

sets are easily established. Therefore the closed sets in 

(S, ~) are also well-defined, L e., XeS is closed if and 

only if S-X is open. From the definition it is clear that 

Xo= {p EX; U(p) c X} and X-= U {L(p); p EX} . 

2.2. Filter, Strong Filter, and Minimal Elements 

The filter on (S, ~), which is called p.o.s. - filter 

to exclude confusion with usual topological filters, is 

defined: " A subset X eS is a p.o.s. - filter if and only 

if Xf(), for any(p, q) E X x X there exists rES such that r~p 

& r~q, and for any (p,q) EXXS p~q~qEX, Le., U(p) eX 

for all p EX." The strong filter on (S, ~) is defined: "A 

subset XeS is a strong filter if and only if X is a 

p.o.s. filter on (S, ~) and for any (p,q) E X x X there 

exists rEX such that r ~ p & r ~ q." Clearly any p.o. s. 

filter on S is an open set in Sand U(p) is a strong 

filter on S for all pES. For any subset XeS the sets of 

all the minimal elements and the minimum element in X are 

denoted ML(X) and M(X), respectively, L e., ML(X): = {p EX; 

L(p) nX={p}} and M(X):={p EX;q~p for all qEX}. Of course 

M(X)=() or #M(X)=l and M(X) e ML(X). The following 

propositions are obtained: 

Proposition 2.1. If X Co Y c S and X is closed, then ML(X) c 

ML(Y). (The proof is clear.) 

Proposition 2.2. If X e Y c s, X'!(), and X is closed and Y is 

a p.o.s. - filter, then Y is a strong filter and M(X)= 

ML(X)= ML(Y)= M(Y). 

Proof: Take any (p, q) E Y x Y. From Xf0 there exists rO E X. 

Since Y is a p.o.s. - filter on S, there exists (r1 , r z )€ 

SxS such that r 1 ~ p, r1 ~ r O ' r z ~ q, and rz ~ rO. From the 

closedness of X, {r
1

, r z} e L(rO)= {ro}- c X- = X e Y. Since 

Y is a p.o.s. -filter, there exists r3 ES such that r3€ 

L(r1 ) n L(rz ) e L(ro ) c Xc Y. Therefore, r3 E Y, r3 ~ r1 ~ p, 

and r3 ~ r z ~ q. Hence Y is a strong filter. The latter 
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half of the proposition is almost clear from the former 

half and Proposition 2.1. (From the latter half, M(Y)=0 is 

equivalent to ML(X)=0.) 

3. Relation to Barankin's Structures 

For a consideration of the relation between the 

topological space in Section 2 and Barankin's structures, 

"*-operator" is defined: A mapping, *, from P(S) to P(S), 

is called *- operator (star operator), if and only if 

(3.1) for any (X,Y) E P(S)xP(S), Xc Y =l> X*c Y*, and 

(3.2) for any X E P(S), X-*:= (X-)*= X-. 

In this paper the conditions (3.1) and (3.2) are called 

"star conditions". Clearly the closure operator on S, "-", 

satisfies star conditions. From star conditions X* c X-*= 

X- & X*- c X-= X-*, especially, if Xc X*, then X-= X-*= X*-. 

Using star conditions, it is shown that, for any X E P (S), 

(3.3) for any p E X*- X there exists q E X such that p;;; q. 

Because p E X*-X c X* c X-*= X-= u{ L(q); q E X}. (It is noted 

that if X*- X= 0, then (3.3) is trivial.) 

If a *- operator is given, then the following conceptions 

are defined. 

Definition 3.1. A subset, X E P(S), is *-complete if and 

only if 

(3.4) X*=X . 

Therefore, from (3.2) any closed subset in S is *-complete. 

Definition 3.2. A subset, X E P(S), is *-compride if and 
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only if 

(3 . 5 ) ( X* - X) - n X-= 0 . 

Therefore from (3.4) any *-complete subset in S is *­

compride. (In Barankin [3] the word "compride" is used in 

some special sense.)(3.5) is equivalent to 

(3.6) for any (p,q) E X* x X, if p;?; q, then p E X. 

Proof: If (3.5) is assumed, then (3.6) is derived. 

Because if there exists (p, q) E X* x X such that p;?; q & P ¢ X, 

then, for such p E X*, P E X*-X, therefore q E L(p) c (X*-X)- & 

q EX, this is in contradiction to (3.5) . Conversely, 

under the condition (3.6), if there exists q E X such that 

q E(X*-X)-, then, from the definition of "closedness", 

there exists p E X*-X such that p;?; q, therefore, from (3.6), 

p E X, this is a contradiction. 

If a *-operator is given, then the following propositions 

are derived from star conditions and Definition 3.2. 

Proposition 3.1. If Xl and Xz are closed in S, i.e., Xi =X
1 

and Xz=Xz , then X=X1 -Xz is *-compride. 

Proof: (X*-X)- n X=0 is proved. If (X*-X)- n X~0, then 

there exists q EX such that q E (X*-X)-, therefore, there 

exists p E X*-X such that p ;?; q. From star conditions, pE 

X*- Xc X* c Xi= (Xi) *=X:i=X1 and p ¢ Xz (Because if p E Xz ' then 

q E L(p) c {pr c XZ= Xz & q E X= X1 - Xz ' this is a contradic­

tion.). Hence, p EX= X1 - Xz' which is in contradiction to 

p E X*- X. 

Proposition 3.2. For any X E P(S), 

(3.7) X-=(X*- X)- u (X--(X*- X)-), 
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where (X*- X)- is *-complete and ML«X*-X)-) c ML(S) 

(especially, if (X*- X)-10 and S is a p.o.s. -filter, then 

ML«X*-X)- )=ML(S)=M(S), therefore, M(S)=0 is equivalent to 

ML«X'''"-X)- )=0), and X- -(X*-X)- is *-compride, and if X is 

* - compride, then X c X- - (X* - X)- . 

(Proposition 3.2 is clear from Propositions 3.1, 2.1, and 

2.2, and from Definitions 3.1 and 3.2.) 

The writer defined star conditions by (3.1) and 

(3.2), but, of course, other some additive conditions may 

be satisfied by *-operator, for example, 

(3.8) Xc X* for any X E P (S), and 

(3.9) X**= X* for any X E P (S) . 

If star conditions with (3.8) are called "strict star 

conditions" and star conditions with (3.9) are called 

"projective star conditions", then it is almost clear that 

(3.10) under strict star conditions, (X*)-=X-=(X-)* for 

any X E P(S), condition (3.2) is equivalent to condition 

(3.3), and the closure operator on S, "-", satisfies both 

projective star conditions and strict star conditions. 

Therefore, if *-operator satisfies (3.9), then in some 

intuitive sense Proposition 3.2 represents the relation in 

the "projections in P(S)", "-", and "*". 

To clarify the relation between the above results and 

Barankin's structures the conception of the infimum(or 

greatest lower bound) of a subset XeS is used: for any X E 

P(S), an element PES is called "the infimum of X in S" 

if and only if q;;; p for all q E X and, for any rES, if q;;;r 

for all qEX, then r;;;p. Of course, the infimum of X in S 

may not exist or, even if exists, it may not exist in X. 

If the infimum of XE P(S) in S exists, then it is denoted 

hX or inf X. Some sets are defined. 
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Definition 3.3. For any X e: P(S), 

(3.11) p~tl) (X):= {Y; Ye: P(X)- & Yff/J & the infimum of Y in S 

exists} , 

and 

(3.12) p~m) (X):= {Y; Y·e: p?1) (X) & IIY~m} , 

where m is any fixed cardinal number. Clearly, p~m) (X) is 

the set of all the subsets in X which have infimums in S 

and have 

especially 

the cardinalities equal to or smaller than m, 

p~m) (X)= p~t/) (X) for all m ~ IIX. *(/1)- and 

*(m)- operators are defined. 

Definition 3.4. *(11)- and *(m)-operators are the mappings 

from P(S) to P(S) defined by 

(3.13) X*UI) 

(3 . 14) X* (m) 

.= {I\Y; Ye: pUI) (X)} s 

.= {I\Y; Y e: p~m) (X)} 

where m is any cardinal number. Clearly, X*(m) is the set 

of all the infimums of all the subsets in X which have 

infimums in S and have the cardinalities ~ m. The 

following Proposition is almost clear from Definitions 3.3 

and 3.4. 

Proposition 3.3. *(/1)- & *(m)-operators satisfy "strict 

and projective star conditions", i.e., the conditions, 

(3.1), (3.2), (3.8), and (3.9). Therefore, all results 

for *-operator, for example, Propositions 3.1 and 3.2, are 

applicable to *(11)- & * (m)-operators. 

Barankin's structures are the special cases of the 

structures considered above. For example, in [3 ], the 
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p.o.s. structure, (S, ~), is assumed to be "semi-lattice" 

and "M(S)=0", special cases of Proposition 3.2 are 

derived, and in that context the correspondences to X- , 

(X*-X)- , and X- - (X*-X)- are called "universe", "eternal", 

"reach", and so on. Hence, the theory based on Barankin's 

formulation is the theory of *(#)-opertor on a p.o.s. 

structure. 

Remark: The topology introduced in Section 2 is a well-

known topology in set theory, and some authors define the 

open sets by L(p) instead of U(p)(see, for example, 

Takeuti, G. [6], p.83.). In such case the results of 

Section 2 are also valid with obvious modifications by 

replacing inf with sup, etc .• 
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