<table>
<thead>
<tr>
<th>Title</th>
<th>Further Results on the N-Policy for the M/G/l Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KIMURA, Toshikazu</td>
</tr>
<tr>
<td>Citation</td>
<td>HOKUDAI ECONOMIC PAPERS, 17: 71-73</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/30737</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin</td>
</tr>
<tr>
<td>File Information</td>
<td>17_P71-73.pdf</td>
</tr>
</tbody>
</table>
Further Results on the N-Policy for the M/G/1 Queue

Toshikazu KIMURA
Associate Professor
Faculty of Economics
Hokkaido University

ABSTRACT

This note deals with the N-policy for the M/G/1 queue with the following linear cost structure: costs per unit time for keeping the server on or off, fixed costs for turning the server on or off, and a holding cost per customer in the system per unit time.

The N-policy is defined as the control policy which turns the server on when N or more customers are present and off when the system is empty. The average cost rate is used as a criterion for optimality. Some sufficient conditions under which the optimal policy falls into specific forms are provided.

This note deals with the N-policy for operating the M/G/1 queueing system with a linear cost structure. The average cost rate is used as a criterion for optimality. Some sufficient conditions under which the optimal operating policy falls into specific forms are provided.

The M/G/1 system is specified by the following assumptions and notation.

Customers individually arrive at the system according to a Poisson process at rate \(\lambda (>0) \). Their service times are nonnegative i.i.d. random variable with mean \(1/\mu \) and finite variance \(\sigma^2 \). Let \(\rho \equiv \lambda/\mu \) be the traffic intensity and assume \(\rho < 1 \).

The N-policy is defined as the control policy which turns the server on whenever \(N \) or more customers are present and off only when the system is empty. We assume the same linear cost structure as in Heyman [2] and Bell [1]. That is, costs for keeping the server off (\(R_1 \)) or on (\(R_2 \)) are incurred per unit time, where it is assumed that \(r_1 \geq r_2 \). Fixed costs for turning the server on (\(R_1 \)) and turning him off (\(R_2 \)) are incurred. These four costs are assumed to be nonnegative and finite. Moreover, there is a cost per unit time as a penalty for the delay of customers. This cost (\(h \)) is proportional to the number of customers in the system and has finite positive value.

For the M/G/1 system under the N-policy, Heyman [2] showed that the average cost rate over an infinite horizon is given by

\[
C(0) = r_2 + hL(1),
\]

\[
C(N) = r_1 + \rho (r_2 - r_1) + hL(N) + \frac{2}{N} (1 - \rho) (R_1 + R_2), \quad \text{for } N \geq 1,
\]

where

\[
L(N) = \frac{1}{2} (N - 1) + \rho + \frac{\rho^2 + \lambda^2 \sigma^2}{2(1 - \rho)}, \quad N \geq 1,
\]

which denotes the mean number of customers in the M/G/1 system under the N-policy [3]. For \(N = 0 \), the corresponding 0-policy is defined as the policy which always
keeps the server on. A policy is called optimal if it minimizes the average cost rate $C(\ast)$. From (1) and (2), Heyman also showed that the optimal value of $N(= N^\ast)$ can be obtained by

$$C(N^\ast) = \min \{ C(0), C([\tilde{N}]), C([\tilde{N}]) \}$$

where

$$\tilde{N} = \sqrt{\frac{2\lambda(1 - \rho)(R_1 + R_2)}{h}}.$$ \hspace{1cm} (5)

In the following theorems, we shall investigate several effects of the costs and the traffic to the optimal policy.

Theorem 1. If $r_1 = r_2$, then the optimal policy is the 0–policy.

Proof: The proof is executed by distinguishing the following two cases ;

Case 1. $\tilde{N} \leq 1/2$.

For this case, it is clear that $\min_{N \geq 1} C(N) = C(1)$. Hence,

$$\min_{N \geq 1} C(N) - C(0) = C(1) - C(0) = \lambda (1 - \rho) (R_1 + R_2) > 0.$$ \hspace{1cm} (4)

That is, the optimal policy is the 0–policy.

Case 2. $\tilde{N} > 1/2$.

Since $C(\tilde{N})$ must be less than or equal to $\min_{N \geq 1} C(N)$, it follows from (1), (2), (3) and (5) that

$$\min_{N \geq 1} C(N) - C(0) \leq C(\tilde{N}) - C(0)$$

$$= h\{ L(\tilde{N}) - L(1) \} + \frac{1}{2} h\tilde{N}$$

$$= h(\tilde{N} - \frac{1}{2}) > 0.$$ \hspace{1cm} (4)

That is, the optimal policy is the 0–policy.\]

From the result of Theorem 1, suppose hereafter that $r_2 > r_1$.

Theorem 2. Suppose that $R_1 + R_2 > 0$.

(i) If $r_2 - r_1 < \mu(R_1 + R_2)$, then there exists a unique $\lambda^\ast \in (0, \mu)$ such that for any $\lambda \in [\lambda^\ast, \mu)$ the optimal policy is the 0–policy.

(ii) Otherwise there exists a unique $\lambda^\ast \in (0, \mu)$ such that for any $\lambda \in [\lambda^\ast, \mu)$ the optimal policy is the 1–policy.

Proof : From (5), we have

$$\tilde{N}^2 = \frac{2(R_1 + R_2)}{\mu h} \lambda(\mu - \lambda).$$ \hspace{1cm} (6)

That is, \tilde{N}^2 can be regarded as a quadratic function of λ. Therefore \tilde{N}^2 is
Further Results on the N-Policy for the M/G/1 Queue

monotonically decreasing for \(\lambda > \mu/2 \) and gets less than unity as \(\lambda \) increases, i.e.,
\[
2(R_1 + R_1) \lambda (\mu - \lambda) / \mu h \leq 1.
\]
This inequality can be deduced to
\[
(\lambda - \mu/2)^2 \geq \frac{\mu^2}{4} \left(1 - \frac{2h}{\mu(R_1 + R_2)}\right).
\]

Hence, if \(\mu(R_1 + R_2) \leq 2h \), then (7) always holds, that is, \(\bar{N} \leq 1 \) for any \(\lambda \in [0, \mu) \). On the other hand, if \(\mu(R_1 + R_2) > 2h \), then \(\bar{N} \leq 1 \) for \(\lambda \geq \lambda_1 \) with
\[
\lambda_1 = \frac{\mu}{2} \left(1 + \sqrt{1 - \frac{2h}{\mu(R_1 + R_2)}}\right).
\]

It is clear that \(\lambda_1 \in (\mu/2, \mu) \). Consequently, a sufficient condition for \(\bar{N} \leq 1 \), which is independent of the costs, is \(\lambda \geq \lambda_1 \). Assume here that \(\lambda \) is sufficiently large so that \(\bar{N} \leq 1 \). Then,
\[
\min_{N \geq 1} C(N) - C(0) = C(1) - C(0)
= (1 - \rho)(\lambda (R_1 + R_2) - (r_2 - r_1)).
\]

Hence, if \(\lambda \geq \lambda_2 \equiv (r_2 - r_1) / (R_1 + R_2) \) and \(0 < \lambda_2 < \mu \), it follows that \(\min_{N \geq 1} C(N) \geq C(0) \) and the optimal policy is the 0-policy. In other words, if \(r_2 - r_1 < \mu (R_1 + R_2) \), then the optimal policy is the 0-policy for \(\lambda \geq \max(\lambda_1, \lambda_2) \in (0, \mu) \). For the case that \(\lambda_2 \geq \mu \), i.e., \(r_2 - r_1 \geq \mu (R_1 + R_2) \), it follows for any \(\lambda \) with \(\bar{N} \leq 1 \) that
\[
\min_{N \geq 1} C(N) = C(1) < C(0),
\]
and so that the optimal policy is the 1-policy for \(\lambda \) satisfying \(\bar{N} \leq 1 \). Such \(\lambda \) is given, for example, by \(\lambda \in [\lambda_1, \mu) \). Thus the proof is completed. \(\square \)

Corollary 2.1. If \(r_2 - r_1 < \mu(R_1 + R_2) \leq 2h \), then the optimal policy is

the 1-policy for \(0 < \lambda < (r_2 - r_1) / (R_1 + R_2) \), and

the 0-policy for \((r_2 - r_1) / (R_1 + R_2) \leq \lambda < \mu \).

Corollary 2.2. If \(r_2 - r_1 \geq \mu(R_1 + R_2) \) and \(2h \geq \mu(R_1 + R_1) \), then the optimal policy is the 1-policy.

The proofs of these corollaries obviously follow that of Theorem 2, and hence are omitted here.

Theorem 2 and its corollaries imply that the optimal policy eventually falls into the 0- or 1-policy as the traffic becomes heavy.

References