Further Results on the N-Policy for the M/G/1 Queue

KIMURA, Toshikazu

HOKUDAI ECONOMIC PAPERS, 17, 71-73

1987

Doc URL: http://hdl.handle.net/2115/30737

Type: bulletin (article)

File Information: 17_P71-73.pdf
Further Results on the N-Policy for the M/G/1 Queue

Toshikazu KIMURA
Associate Professor
Faculty of Economics
Hokkaido University

ABSTRACT

This note deals with the N-policy for the M/G/1 queue with the following linear cost structure: costs per unit time for keeping the server on or off, fixed costs for turning the server on or off, and a holding cost per customer in the system per unit time. The N-policy is defined as the control policy which turns the server on when N or more customers are present and off when the system is empty. The average cost rate is used as a criterion for optimality. Some sufficient conditions under which the optimal policy falls into specific forms are provided.

This note deals with the N-policy for operating the M/G/1 queueing system with a linear cost structure. The average cost rate is used as a criterion for optimality. Some sufficient conditions under which the optimal operating policy falls into specific forms are provided.

The M/G/1 system is specified by the following assumptions and notation. Customers individually arrive at the system according to a Poisson process at rate \(\lambda \) (\(\lambda > 0 \)). Their service times are nonnegative i.i.d. random variable with mean \(1/\mu \) and finite variance \(\sigma^2 \). Let \(\rho = \lambda/\mu \) be the traffic intensity and assume \(\rho < 1 \).

The N-policy is defined as the control policy which turns the server on whenever N or more customers are present and off only when the system is empty. We assume the same linear cost structure as in Heyman [2] and Bell [1]. That is, costs for keeping the server off (\(R_1 \)) or on (\(R_2 \)) are incurred per unit time, where it is assumed that \(r_1 \geq r_2 \). Fixed costs for turning the server on (\(R_1 \)) and turning him off (\(R_2 \)) are incurred. These four costs are assumed to be nonnegative and finite. Moreover, there is a cost per unit time as a penalty for the delay of customers. This cost (\(h \)) is proportional to the number of customers in the system and has finite positive value.

For the M/G/1 system under the N-policy, Heyman [2] showed that the average cost rate over an infinite horizon is given by

\[C(0) = r_2 + hL(1), \] \hspace{1cm} (1)
\[C(N) = r_1 + \rho (r_2 - r_1) + hL(N) + \frac{\lambda}{N} (1 - \rho) (R_1 + R_2), \] for \(N \geq 1 \), \hspace{1cm} (2)

where
\[L(N) = \frac{1}{2} (N - 1) + \rho + \frac{\rho^2 + \lambda^2 \sigma^2}{2(1 - \rho)}, \] \(N \geq 1 \), \hspace{1cm} (3)

which denotes the mean number of customers in the M/G/1 system under the N-policy [3]. For \(N = 0 \), the corresponding 0-policy is defined as the policy which always
keeps the server on. A policy is called optimal if it minimizes the average cost rate $C(\ast)$. From (1) and (2), Heyman also showed that the optimal value of $N(= N^*)$ can be obtained by

$$C(N^*) = \min \{C(0), C(\hat{N}), C(\tilde{N})\},$$

(4)

where

$$\hat{N} = \sqrt{\frac{2\lambda(1-\rho)}{h} (R_1 + R_2)}.$$

(5)

In the following theorems, we shall investigate several effects of the costs and the traffic to the optimal policy.

Theorem 1. If $r_1 = r_2$, then the optimal policy is the O-policy.

Proof: The proof is executed by distinguishing the following two cases:

1. **Case 1.** $\hat{N} \leq 1/2$.

 For this case, it is clear that $\min_{N \geq 1} C(N) = C(1)$. Hence,

 $$\min_{N \geq 1} C(N) - C(0) = \lambda (1 - \rho) (R_1 + R_2) > 0.$$

 That is, the optimal policy is the O-policy.

2. **Case 2.** $\hat{N} > 1/2$.

 Since $C(\tilde{N})$ must be less than or equal to $\min_{N \geq 1} C(N)$, it follows from (1), (2), (3) and (5) that

 $$\min_{N \geq 1} C(N) - C(0) \geq C(\tilde{N}) - C(0)$$

 $$= h(L(\tilde{N}) - L(1)) + \frac{1}{2} h \tilde{N}$$

 $$= h(\tilde{N} - \frac{1}{2}) > 0.$$

 That is, the optimal policy is the O-policy. \[\square \]

From the result of Theorem 1, suppose hereafter that $r_2 > r_1$.

Theorem 2. Suppose that $R_1 + R_2 > 0$.

(i) If $r_2 - r_1 < \mu (R_1 + R_2)$, then there exists a unique $\lambda^* \in (0, \mu)$ such that for any $\lambda \in [\lambda^*, \mu)$ the optimal policy is the O-policy.

(ii) Otherwise there exists a unique $\lambda^* \in (0, \mu)$ such that for any $\lambda \in [\lambda^*, \mu)$ the optimal policy is the I-policy.

Proof: From (5), we have

$$\tilde{N}^2 = \frac{2(R_1 + R_2)}{\mu h} \lambda(\mu - \lambda).$$

(6)

That is, \tilde{N}^2 can be regarded as a quadratic function of λ. Therefore \tilde{N}^2 is
monotonically decreasing for $\lambda > \mu/2$ and gets less than unity as λ increases, i.e., $2(R_1 + R_1) \lambda \frac{\mu - \lambda}{\mu h} \leq 1$. This inequality can be deduced to

$$\lambda - \frac{\mu}{2} \geq \frac{\mu}{4} \left(1 - \frac{2h}{\mu(R_1 + R_2)}\right) \quad (7)$$

Hence, if $\mu(R_1 + R_2) \leq 2h$, then (7) always holds, that is, $\tilde{N} \leq 1$ for any $\lambda \in [0, \mu)$. On the other hand, if $\mu(R_1 + R_2) > 2h$, then $\tilde{N} \leq 1$ for $\lambda \geq \lambda_1$ with

$$\lambda_1 = \frac{\mu}{2} \left(1 + \frac{1}{1 - \frac{2h}{\mu(R_1 + R_2)}}\right). \quad (8)$$

It is clear that $\lambda_1 \in (\mu/2, \mu)$. Consequently, a sufficient condition for $\tilde{N} \leq 1$, which is independent of the costs, is $\lambda \geq \lambda_1$. Assume here that λ is sufficiently large so that $\tilde{N} \leq 1$. Then,

$$\min_{N \geq 1} C(N) - C(0) = C(1) - C(0) = (1 - \rho)\lambda (R_1 + R_2) - (r_2 - r_1).$$

Hence, if $\lambda \geq \lambda_2 \equiv (r_2 - r_1)/(R_1 + R_2)$ and $0 < \lambda_2 < \mu$, it follows that $\min_{N \geq 1} C(N) \geq C(0)$ and the optimal policy is the 0-policy. In other words, if $r_2 - r_1 < \mu(R_1 + R_2)$, then the optimal policy is the 0-policy for $\lambda \geq \max(\lambda_1, \lambda_2) \in (0, \mu)$. For the case that $\lambda_2 \geq \mu$, i.e., $r_2 - r_1 \geq \mu(R_1 + R_2)$, it follows for any λ with $\tilde{N} \leq 1$ that

$$\min_{N \geq 1} C(N) = C(1) < C(0),$$

and so that the optimal policy is the 1-policy for λ satisfying $\tilde{N} \leq 1$. Such λ is given, for example, by $\lambda \in [\lambda_1, \mu]$. Thus the proof is completed. \[\square\]

Corollary 2.1. If $r_2 - r_1 < \mu(R_1 + R_2) \leq 2h$, then the optimal policy is

- the 1-policy for $0 < \lambda < (r_2 - r_1)/(R_1 + R_2)$,
- and the 0-policy for $(r_2 - r_1)/(R_1 + R_2) \leq \lambda < \mu$.

Corollary 2.2. If $r_2 - r_1 \geq \mu(R_1 + R_2)$ and $2h \geq \mu(R_1 + R_3)$, then the optimal policy is the 1-policy.

The proofs of these corollaries obviously follow that of Theorem 2, and hence are omitted here.

Theorem 2 and its corollaries imply that the optimal policy eventually falls into the 0- or 1-policy as the traffic becomes heavy.

References