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Spectrum of Time Operators

Asao Arai∗

Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

E-mail: arai@math.sci.hokudai.ac.jp

Abstract

Let H be a self-adjoint operator on a complex Hilbert space H. A symmetric
operator T on H is called a time operator of H if, for all t ∈ R, e−itHD(T ) ⊂ D(T )
(D(T ) denotes the domain of T ) and Te−itHψ = e−itH(T +t)ψ, ∀t ∈ R,∀ψ ∈ D(T ).
In this paper, spectral properties of T are investigated. The following results are
obtained: (i) If H is bounded below, then σ(T ), the spectrum of T , is either C
(the set of complex numbers) or {z ∈ C|Im z ≥ 0}. (ii) If H is bounded above,
then σ(T ) is either C or {z ∈ C|Im z ≤ 0}. (iii) If H is bounded, then σ(T ) = C.
The spectrum of time operators of free Hamiltonians for both nonrelativistic and
relativistic particles is exactly identified. Moreover spectral analysis is made on a
generalized time operator.
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Mathematics Subject Classification 2000: 81Q10, 47N50

1 Introduction

In the paper [6], Schmüdgen studied a pair (T,H) of a symmetric operator T and a self-
adjoint operator H on a complex Hilbert space H (in the notation there, T = P,H = −Q)
such that, for all t ∈ R, e−itHD(T ) ⊂ D(T ) (D(T ) denotes the domain of T ) and

Te−itHψ = e−itH(T + t)ψ, ∀t ∈ R,∀ψ ∈ D(T ). (1.1)

This is a stronger version of the representation of the canonical commutation relation
(CCR) with one degree of freedom, since (1.1) implies that

⟨Tϕ,Hψ⟩ − ⟨Hϕ, Tψ⟩ = ⟨ϕ, iψ⟩ , ψ, ϕ ∈ D(T ) ∩ D(H), (1.2)

i.e., T and H satisfy the CCR in the sense of sesquilinear form on D(H) ∩ D(T ) and
hence, in particular, TH − HT = i on D(HT ) ∩ D(TH), the CCR in the original sense.
We call (1.1) the weak Weyl relation (WWR).

∗This work is supported by the Grant-in-Aid No.17340032 for Scientific Research from the JSPS.

1



About twenty years later, Miyamoto [3] used the WWR to introduce a proper concept
of time operator in quantum mechanics. Namely a symmetric operator T on H is called
a time operator of H if (T,H) obeys the WWR (1.1) (in [3], (1.1) is called the T -weak
Weyl relation). We remark that, in this terminology, one has in mind the case where, in
application to quantum mechanics, H is the Hamiltonian of a quantum system. Some
fundamental properties of the pair (T,H) were investigated in [3].

The work of Miyamoto [3] was extended by the present author in a previous paper [2],
where a generalized version of the WWR (1.1), called a generalized weak Weyl relation, is
given and, in terms of it, a concept of generalized time operator is introduced. We remark
that a time operator as well as a generalized one of a given self-adjoint operator H is not
unique [2, Proposition 2.6, §11]. Physically the set of generalized time operators associated
with a self-adjoint operator H ( a Hamiltonian) can be regarded as a class of symmetric
operators which play a role in controlling decays (in time) of survival probabilities as well
as time-energy uncertainty relations [2, 3].

In this paper, we investigate spectral properties of (generalized) time operators. We
first recall the definition of the spectrum of a linear operator A on H. The resolvent set
of A, denoted ρ(A), is defined to be the set of complex numbers z satisfying the following
three conditions: (i) A − z is injective ; (ii) Ran(A − z), the range of A − z, is dense in
H ; (iii) (A − z)−1 with D((A − z)−1) = Ran(A − z) is bounded. Then the spectrum of
A, denoted σ(A), is defined by σ(A) := C \ ρ(A), where C is the set of complex numbers.
It follows that, if A is closable, then σ(Ā) = σ(A), where Ā is the closure of A, and
Ran(Ā− z) = H for all z ∈ ρ(Ā) = ρ(A). In particular, for all symmetric operators S on
H, σ(S) = σ(S̄) and Ran(S̄ − z) = H for all z ∈ ρ(S̄) = ρ(S).

One of the motivations for this work comes from the following fact:

Theorem 1.1 ([3], [2, Theorem 2.8]) If H is a self-adjoint operator on H and semi-
bounded (i.e., bounded below or bounded above), then no time operator T of H can be
essentially self-adjoint .

This theorem combined with a general theorem [5, Theorem X.1] implies that, in the
case where H is semi-bounded, the spectrum σ(T ) of T (= σ(T )) is one of the following
three sets:

(i) C.

(ii) Π+, the closure of the upper half-plane Π+ := {z ∈ C|Im z > 0}.

(iii) Π−, the closure of the lower half-plane Π+ := {z ∈ C|Im z < 0}.

Then it is interesting to examine which one is realized, depending on properties of H.
The outline of the present paper is as follows. In Section 2, we prove a theorem on

the spectrum of time operators (Theorem 2.1). In Section 3 we consider time operators
on direct sums of Hilbert spaces. In Section 4, we identify the spectrum of concrete
time operators, including the Aharonov-Bohm time operator [1] and time operators of a
relativistic Schrödinger operator. In Section 5, we prove a theorem similar to Theorem
2.1 in the case where T is a generalized time operator.
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2 Main Result

In this section we prove the following theorem:

Theorem 2.1 Let H be a self-adjoint operator on H and T be a time operator of H.
Then the following (i)—(iii) hold:

(i) If H is bounded below, then σ(T ) is either C or Π+.

(ii) If H is bounded above, then σ(T ) is either C or Π−.

(iii) If H is bounded, then σ(T ) = C.

Remark 2.1 The time operator T has no eigenvalues , i.e., the point spectrum σp(T ) of
T is an empty set [3, Corollary 4.2].

Remark 2.2 In the case where σ(T ) = Π+ or Π−, T is maximally symmetric [5, p.141].

Throughout the rest of this section, T represents a time operator of H. The following
lemma is a key fact to prove Theorem 2.1.

Lemma 2.2 Suppose that H is bounded below. Then, for all β > 0, e−βHD(T ) ⊂ D(T )
and, for all ψ ∈ D(T )

Te−βHψ = e−βH(T − iβ)ψ. (2.1)

Proof. Apply [2, Theorem 6.2].

We denote by T ∗ the adjoint of T .

Lemma 2.3 Suppose that H is bounded below. Then, for all β > 0, e−βHD(T ∗) ⊂ D(T ∗)
and, for all ψ ∈ D(T ∗)

T ∗e−βHψ = e−βH(T ∗ − iβ)ψ. (2.2)

Proof. Lemma 2.2 implies that e−βH(T − iβ) ⊂ Te−βH . We have (T )∗ = T ∗. For each
bounded linear operator A on H with D(A) = H and all densely defined linear operators
B on H, (AB)∗ = B∗A∗. Using these facts, one can show that e−βHT ∗ ⊂ (T ∗ + iβ)e−βH .
Thus the desired result follows.

Proof of Theorem 2.1
(i) By the fact on the spectrum of T mentioned after Theorem 1.1, we need only to

show that the case σ(T ) = Π− is excluded. For this purpose, suppose that σ(T ) = Π−.
Then Π+ = ρ(T ) = ρ(T ).

In general, we have for all z ∈ C \ R the orthogonal decomposition

H = ker(T ∗ − z∗) ⊕ Ran(T − z) (2.3)

Applying this structure with z = i ∈ Π+, we obtain ker(T ∗ + i) = {0}. Since T is not
essentially self-adjoint by Theorem 1.1, it follows that ker(T ∗−i) ̸= {0}. Hence there exists
a non-zero vector ψ ∈ D(T ∗) such that T ∗ψ = iψ. Then, by Lemma 2.3, i(1−β) ∈ σp(T

∗).
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Since β > 0 is arbitrary, we can take it to be 1 < β. Then γ := i(1 − β) ∈ Π−. Taking
z = γ∗ in (2.3), we have the orthogonal decomposition

H = ker(T ∗ − γ) ⊕ Ran(T − γ∗).

Hence Ran(T − γ∗) is not dense in H. Therefore γ∗ ∈ σ(T ) = σ(T ), i.e., i(β − 1) ∈ σ(T ).
But i(β − 1) ∈ Π+. This is a contradiction. Thus σ(T ) ̸= Π−.

(ii) If H is bounded above, then Ĥ := −H is bounded below. It is easy to see that

T̂ := −T is a time operator of Ĥ. Hence, by part (i), σ(T̂ ) = C or Π+. On the other

hand, σ(T ) = {−λ|λ ∈ σ(T̂ )}, which implies that σ(T ) = C or Π−.
(iii) This follows from (i) and (ii).

In the next section we analyze the spectrum of nontrivial examples of time operators.
Here we present only simple examples.

Example 2.1 We denote by r̂ the multiplication operator on L2([0,∞)) by the variable
r ∈ [0,∞): (r̂g)(r) := rg(r), a.e.r ∈ [0,∞), g ∈ D(r̂). The operator r̂ is self-adjoint and
nonnegative.

Let p0 be an operator on L2([0,∞)) defined as follows:

D(p0) := C∞
0 ((0,∞)), (2.4)

(p0g)(r) := −ig′(r), g ∈ D(p0), (2.5)

where, for an open set Ω ⊂ Rn (n ∈ N), C∞
0 (Ω) denotes the set of infinitely differentiable

functions on Ω with compact support in Ω. Then it is easy to see that −p0 is a time
operator of r̂ and that

σ(−p0) = Π+.

Hence this is an example which illustrates one of the case of Theorem 2.1-(i).

Example 2.2 Let L > 0 and VL := (−L/2, L/2) ⊂ R. We denote by x̂L the multipli-
cation operator on L2(VL) by the variable x ∈ VL. Then x̂L is a bounded self-adjoint
operator. We define an operator pL as follows:

D(pL) := C∞
0 (VL),

pLf := −if ′, f ∈ D(pL).

Then it is easy to see that −pL is a time operator of x̂L and

σ(−pL) = C.

Hence this is an example which illustrates Theorem 2.1-(iii). It should be remarked that
pL has uncountably many self-adjoint extensions [4, pp.257–259].
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3 Time Operators on Direct Sum Hilbert Spaces

In applications, time operators on direct sum Hilbert spaces may be useful. We briefly
discuss this aspect here. Let Hj (j = 1, 2) be a self-adjoint operator on a complex Hilbert
space Hj which has a time operator Tj. Let

H := H1 ⊕H2. (3.1)

Then
T := T1 ⊕ T2 (3.2)

is a time operator of H1 ⊕ H2 [2, Proposition 2.14].

Theorem 3.1 Let Hj, Tj and T be as above. Then:

(i) If H1 is bounded below and H2 is bounded above, then σ(T ) = C.

(ii) If one of H1 and H2 is bounded, then σ(T ) = C.

Proof. (i) By Theorem 2.1, σ(T1) = C or Π+, and σ(T2) = C or Π−. By a general
theorem, we have σ(T ) = σ(T1) ∪ σ(T2). Hence, in each case, we have σ(T ) = C.

(ii) In this case, we can apply Theorem 2.1-(iii) to conclude that one of σ(T1) and
σ(T2) is equal to C. Thus the desired result follows.

Remark 3.1 In each case of Theorem 3.1-(i) and (ii), H1 ⊕ H2 can be unbounded both
above and below.

Example 3.1 Let
HL := L2([0,∞)) ⊕ L2(VL),

r̂, p0 be as in Example 2.1 and x̂L, pL be as in Example 2.2. Then HL := r̂ ⊕ x̂L on HL is
self-adjoint and bounded below (but unbounded above). Moreover TL := (−p0) ⊕ (−pL)
is a time operator of HL and σ(TL) = C. Thus this example shows that the spectrum of
a time operator of a self-adjoint operator which is bounded below, but unbounded above,
can be equal to C.

4 Examples

4.1 Time operators of the free Hamiltonian of a nonrelativistic
particle

Let ∆ be the n-dimensional generalized Laplacian acting in L2(Rn
x) (n ∈ N), where

Rn
x := {x = (x1, · · · , xn)|xj ∈ R, j = 1, · · · , n}, and

H0 := − ∆

2m
(4.1)

with a constant m > 0. In the context of quantum mechanics, H0 represents the free
Hamiltonian of a nonrelativistic particle with mass m in the n-dimensional space Rn

x.
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It is well known that H0 is a nonnegative self-adjoint operator. We denote by x̂j the
multiplication operator on L2(Rn

x) by the j-th variable xj ∈ Rn
x and set

p̂j := −iDj (4.2)

with Dj being the generalized partial differential operator in the variable xj on L2(Rn
x).

It is easy to see that x̂j and p̂j are injective.
We introduce

Ωj := {k = (k1, · · · , kn) ∈ Rn
k |kj ̸= 0}, j = 1, · · · , n. (4.3)

For a real-valued, Borel measurable function G on Rn
k which is continuous on Ωj, we define

a linear operator on L2(Rn
x) by

G(p̂) := F−1GF , (4.4)

where F : L2(Rn
x) → L2(Rn

k) is the Fourier transform:

(Ff)(k) :=
1

(2π)n/2

∫
Rn

x

f(x)e−ikxdx, f ∈ L2(Rn
x), k = (k1, · · · , kn) ∈ Rn

k , (4.5)

in the L2-sense, p̂ := (p̂1, · · · , p̂n) and G on the right hand side of (4.4) represents the
multiplication operator on L2(Rn

k) by the function G. Since the Lebesgue measure of the
set Rn

k \ Ωj is zero, it follows that G(p̂) is self-adjoint.
For each j = 1, · · · , n, one can define a linear operator on L2(Rn

x) by

Tj(G) :=
m

2

(
x̂j p̂

−1
j + p̂−1

j x̂j

)
+ G(p̂) (4.6)

with domain
D(Tj(G)) := F−1C∞

0 (Ωj), (4.7)

where C∞
0 (Ωj) denotes the set of infinitely many differentiable functions on Ωj with com-

pact support in Ωj. It is easy to see that Tj(G) is a symmetric operator on L2(Rn
x).

Lemma 4.1 The operator Tj(G) is a time operator of H0.

Proof. We write
Tj(G) = Tj + G(p̂)

with
Tj :=

m

2

(
x̂j p̂

−1
j + p̂−1

j x̂j

)
. (4.8)

The operator Tj is a time operator of H0 ([3], [2, §10]). By using the Fourier transform, one
can show that e−itH0G(p̂) ⊂ G(p̂)e−itH0 for all t ∈ R. Hence, by applying [2, Proposition
2.6], Tj(G) is a time operator of H0.

Remark 4.1 The operator Tj is called the Aharonov-Bohm time operator [1]. Hence
Tj(G) is a perturbed Aharonov-Bohm time operator.

As for the spectrum of Tj(G), we have the following theorem:
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Theorem 4.2 σ(Tj(G)) = Π+, j = 1, · · · , n.

Proof. By Theorem 2.1-(i) and (2.3), we need only to show that ker(Tj(G)∗− i) = {0}.
Let f ∈ ker(Tj(G)∗ − i). Then Tj(G)∗f = if . This implies the equation

Dkj
f̂(k) =

(
1

2kj

+
kj

m
+

i

m
kjG(k)

)
f̂(k)

in the sense of distributions on Ωj, where f̂ := Ff and Dkj
is the generalized partial

differential operator in the variable kj. Hence

f̂(k) = c(k1, · · · , kj−1, kj+1, · · · , kn)
√

|kj|ek2
j /(2m)eiGj(k)/m, k ∈ Ωj

where c(k1, · · · , kj−1, kj+1, · · · , kn) ∈ C is independent of kj and Gj is a differentiable

function on Ωj such that ∂Gj(k)/∂kj = kjG(k), k ∈ Ωj. Since f̂ is in L2(Rn
k), it follows

that c(k1, · · · , kj−1, kj+1, · · · , kn) = 0 (a.e.). Hence f = 0. Thus ker(Tj(G)∗ − i) = {0}.

4.2 Time operators of the free Hamiltonian of a relativistic par-
ticle

A Hamiltonian of a free relativistic particle with mass m ≥ 0 moving in Rn
x is given by

Hrel :=
√
−∆ + m2 (4.9)

acting in L2(Rn
x). It is shown that the operator

T rel
j (G) :=

√
−∆ + m2 p̂−1

j x̂j + x̂j

√
−∆ + m2 p̂−1

j + G(p̂) (4.10)

with D(T rel
j (G)) := F−1C∞

0 (Ωj) is a time operator of Hrel [2, Example 11.4].

Theorem 4.3 σ(T rel
j (G)) = Π+, j = 1, · · · , n.

Proof. As in Theorem 4.2, we need only to show that ker(T rel
j (G)∗ − i) = {0}. Let

f ∈ ker(T rel
j (G)∗ − i) and ω(k) :=

√
k2 + m2, k ∈ Rn

k . Then

Dkj
f̂(k) =

1

2

(
kj

ω(k)
− kj

ω(k)

(
∂

∂kj

ω(k)

kj

)
− kjG(k)

ω(k)i

)
f̂(k)

in the sense of distributions on Ωj. Hence

f̂(k) = c(k1, · · · , kj−1, kj+1, · · · , kn)

√
|kj|
ω(k)

eω(k)/2eiFj(k)/2, k ∈ Ωj

where c(k1, · · · , kj−1, kj+1, · · · , kn) ∈ C is independent of kj and Fj is a differentiable

function on Ωj such that ∂Fj(k)/∂kj = kjG(k)/ω(k), k ∈ Ωj. Since f̂ is in L2(Rn
k), it

follows that c(k1, · · · , kj−1, kj+1, · · · , kn) = 0 (a.e.). Hence f = 0. Thus ker(T rel
j (G)∗−i) =

{0}.
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5 A Class of Generalized Time Operators

In this section we consider spectral properties of a class of generalized time operators.
Let H be a self-adjoint operator on a complex Hilbert space H and T be a symmetric
operator on H.

We call the operator T a generalized time operator of H if e−itHD(T ) ⊂ D(T ) for all
t ∈ R and there exists a bounded self-adjoint operator C ̸= 0 on H with D(C) = H such
that

Te−itHψ = e−itH(T + tC)ψ, ψ ∈ D(T ). (5.1)

We call C the noncommutative factor for (H,T ).
The following facts are known:

Theorem 5.1 Let T be a generalized time operator of H with noncommutative factor C.

(i)([2, Theorem 2.8]) Let H be semi-bounded and

CT ⊂ TC. (5.2)

Then T is not essentially self-adjoint .

(ii)([2, Corollary 5.3-(ii)]) If C ≥ 0 or C ≤ 0, then σp(T |[D(T ) ∩ (ker C)⊥]) = ∅.

(iii)([2, Theorem 6.2-(ii)]) Let H be bounded below. Then, for all β > 0, e−βHD(T ) ⊂
D(T ) and

Te−βHψ − e−βHTψ = −iβe−βHCψ, ψ ∈ D(T ). (5.3)

(iv)([2, Proposition 6.4, Corollary 6.6]) The operators H and C strongly commute
(i.e., their spectral measures commute) and H is reduced by Ran(C).

In what follows, T is a generalized time operator of H with noncommutative factor C
satisfying (5.2).

5.1 The case where C has a non-zero eigenvalue

We first consider the case where C has a non-zero eigenavlue a ∈ R \ {0}, i.e.,

Ka := ker(C − a) ̸= {0}. (5.4)

We have the orthogonal decomposition

H = Ka ⊕K⊥
a . (5.5)

Relation (5.2) implies that
CT ⊂ TC. (5.6)

Then it follows that T is reduced by Ka and hence by K⊥
a . We denote the reduced part

of T to Ka and K⊥
a by T a and T

⊥
a respectively. Hence we have

T = T a ⊕ T
⊥
a (5.7)
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relative to the orthogonal decomposition (5.5). Therefore

σ(T ) = σ(T ) = σ(T a) ∪ σ(T
⊥
a ). (5.8)

By the strong commutativity of H and C (Theorem 5.1-(iv)), H also is reduced by
Ka. We denote the reduced part of H to Ka by Ha.

Lemma 5.2 The operator T a is a time operator of Ha/a.

Proof. Let ψ ∈ D(T a) = D(T ) ∩ Ka. Then, for all t ∈ R, e−itHaψ = e−itHψ ∈
D(T ) ∩ Ka = D(T a) and, by (5.1),

T ae
−itHaψ = e−itHa(T a + ta)ψ.

Thus the desired result follows.

Theorem 5.3 Let T be a generalized time operator of H with noncommutative factor C
satisfying (5.2). Then the following (i)—(v) hold:

(i) If Ha is bounded below and a > 0, then σ(T a) is either C or Π+.

(ii) If Ha is bounded above and a < 0, then σ(T a) is either C or Π+.

(iii) If Ha is bounded above and a > 0, then σ(T a) is either C or Π−.

(iv) If Ha is bounded below and a < 0, then σ(T a) = C or Π−.

(v) If Ha is bounded, then σ(T a) = C.

Proof. In (i) and (ii), Ha/a is bounded below. Hence, Lemma 5.2 and Theorem 2.1-(i)
yield the results stated in (i) and (ii). Similarly other cases follow.

5.2 The case where Ran(C) is closed

We next consider the case where Ran(C) is closed. Then H is decomposed as

H = ker C ⊕ Ran(C). (5.9)

By the closed graph theorem, there exists a constant M > 0 such that

∥Cψ∥ ≥ M∥ψ∥, ψ ∈ (ker C)⊥ = Ran(C). (5.10)

The operators T and C are reduced by Ran(C). We denote by T̃ and C̃ the reduced part

of T and C to Ran(C) respectively. The operator T̃ is symmetric and C̃ is a bounded

self-adjoint operator on Ran(C) which is bijective with C̃−1 bounded. It follows from
(5.2) that

C̃T̃ ⊂ T̃ C̃. (5.11)
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Lemma 5.4 The operator

TC := C̃−1T̃ = T̃ C̃−1|D(T̃ ) (5.12)

on Ran(C) is a symmetric operator.

Proof. We have D(TC) = D(T )∩Ran(C). Hence D(TC) is dense in Ran(C). Relation
(5.11) implies that

C̃−1T̃ ⊂ T̃ C̃−1. (5.13)

Hence T ∗
C = T̃ ∗C̃−1 ⊃ T̃ C̃−1 ⊃ TC . Thus the desired result follows.

By Theorem 5.1-(iv), H is reduced by Ran(C). We denote the reduced part of H to

Ran(C) by H̃.

Theorem 5.5 The operator TC is a time operator of H̃ and the following (i)—(iii) hold:

(i) If H̃ is bounded below, then σ(TC) is either C or Π+.

(ii) If H̃ is bounded above, then σ(TC) is either C or Π−.

(iii) If H̃ is bounded, then σ(TC) = C.

Proof Since D(TC) = D(T ) ∩ Ran(C), it follows that e−it eHD(TC) ⊂ D(TC) for all
t ∈ R. Using (5.1), one can see that TC satisfies

TCe−it eHψ = e−it eH(TC + t)ψ, ψ ∈ D(TC).

These facts and Lemma 5.4 imply that TC is a time operator of H̃. Then (i)—(iii) follow
from application of Theorem 2.1.

Example 5.1 A simple example is given by the case where C ̸= 0 is an orthogonal
projection. Then TC = T̃ . To construct such examples, see [2, §11].
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