

Title	Spectrum of Time Operators
Author(s)	Arai, Asao
Citation	Letters in Mathematical Physics, 80(3), 211-221 https://doi.org/10.1007/s11005-007-0158-y
Issue Date	2007-06
Doc URL	http://hdl.handle.net/2115/32292
Rights	The original publication is available at www.springerlink.com
Туре	article (author version)
File Information	spectrum.pdf

Spectrum of Time Operators

Asao Arai*

Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan E-mail: arai@math.sci.hokudai.ac.jp

Abstract

Let H be a self-adjoint operator on a complex Hilbert space \mathcal{H} . A symmetric operator T on \mathcal{H} is called a time operator of H if, for all $t \in \mathbb{R}$, $e^{-itH}D(T) \subset D(T)$ (D(T) denotes the domain of T) and $Te^{-itH}\psi = e^{-itH}(T+t)\psi$, $\forall t \in \mathbb{R}, \forall \psi \in D(T)$. In this paper, spectral properties of T are investigated. The following results are obtained: (i) If H is bounded below, then $\sigma(T)$, the spectrum of T, is either \mathbb{C} (the set of complex numbers) or $\{z \in \mathbb{C} | \operatorname{Im} z \geq 0\}$. (ii) If H is bounded above, then $\sigma(T)$ is either \mathbb{C} or $\{z \in \mathbb{C} | \operatorname{Im} z \leq 0\}$. (iii) If H is bounded, then $\sigma(T) = \mathbb{C}$. The spectrum of time operators of free Hamiltonians for both nonrelativistic and relativistic particles is exactly identified. Moreover spectral analysis is made on a generalized time operator.

Keywords: Spectrum; time operator; Hamiltonian; weak Weyl relation; quantum theory. Mathematics Subject Classification 2000: 81Q10, 47N50

1 Introduction

In the paper [6], Schmüdgen studied a pair (T, H) of a symmetric operator T and a selfadjoint operator H on a complex Hilbert space \mathcal{H} (in the notation there, T = P, H = -Q) such that, for all $t \in \mathbb{R}$, $e^{-itH}D(T) \subset D(T)$ (D(T) denotes the domain of T) and

$$Te^{-itH}\psi = e^{-itH}(T+t)\psi, \ \forall t \in \mathbb{R}, \forall \psi \in D(T).$$
(1.1)

This is a stronger version of the representation of the canonical commutation relation (CCR) with one degree of freedom, since (1.1) implies that

$$\langle T\phi, H\psi \rangle - \langle H\phi, T\psi \rangle = \langle \phi, i\psi \rangle, \quad \psi, \phi \in D(T) \cap D(H),$$
(1.2)

i.e., T and H satisfy the CCR in the sense of sesquilinear form on $D(H) \cap D(T)$ and hence, in particular, TH - HT = i on $D(HT) \cap D(TH)$, the CCR in the original sense. We call (1.1) the *weak Weyl relation* (WWR).

^{*}This work is supported by the Grant-in-Aid No.17340032 for Scientific Research from the JSPS.

About twenty years later, Miyamoto [3] used the WWR to introduce a proper concept of time operator in quantum mechanics. Namely a symmetric operator T on \mathcal{H} is called a *time operator* of H if (T, H) obeys the WWR (1.1) (in [3], (1.1) is called the *T*-weak Weyl relation). We remark that, in this terminology, one has in mind the case where, in application to quantum mechanics, H is the Hamiltonian of a quantum system. Some fundamental properties of the pair (T, H) were investigated in [3].

The work of Miyamoto [3] was extended by the present author in a previous paper [2], where a generalized version of the WWR (1.1), called a *generalized weak Weyl relation*, is given and, in terms of it, a concept of *generalized time operator* is introduced. We remark that a time operator as well as a generalized one of a given self-adjoint operator H is not unique [2, Proposition 2.6, §11]. Physically the set of generalized time operators associated with a self-adjoint operator H (a Hamiltonian) can be regarded as a class of symmetric operators which play a role in controlling decays (in time) of survival probabilities as well as time-energy uncertainty relations [2, 3].

In this paper, we investigate spectral properties of (generalized) time operators. We first recall the definition of the spectrum of a linear operator A on \mathcal{H} . The resolvent set of A, denoted $\rho(A)$, is defined to be the set of complex numbers z satisfying the following three conditions: (i) A - z is injective ; (ii) $\operatorname{Ran}(A - z)$, the range of A - z, is dense in \mathcal{H} ; (iii) $(A - z)^{-1}$ with $D((A - z)^{-1}) = \operatorname{Ran}(A - z)$ is bounded. Then the spectrum of A, denoted $\sigma(A)$, is defined by $\sigma(A) := \mathbb{C} \setminus \rho(A)$, where \mathbb{C} is the set of complex numbers. It follows that, if A is closable, then $\sigma(\bar{A}) = \sigma(A)$, where \bar{A} is the closure of A, and $\operatorname{Ran}(\bar{A} - z) = \mathcal{H}$ for all $z \in \rho(\bar{A}) = \rho(A)$. In particular, for all symmetric operators S on \mathcal{H} , $\sigma(S) = \sigma(\bar{S})$ and $\operatorname{Ran}(\bar{S} - z) = \mathcal{H}$ for all $z \in \rho(\bar{S}) = \rho(S)$.

One of the motivations for this work comes from the following fact:

Theorem 1.1 ([3], [2, Theorem 2.8]) If H is a self-adjoint operator on \mathcal{H} and semibounded (i.e., bounded below or bounded above), then no time operator T of H can be essentially self-adjoint.

This theorem combined with a general theorem [5, Theorem X.1] implies that, in the case where H is semi-bounded, the spectrum $\sigma(T)$ of $T (= \sigma(\overline{T}))$ is one of the following three sets:

(i) C.

- (ii) Π_+ , the closure of the upper half-plane $\Pi_+ := \{z \in \mathbb{C} | \text{Im } z > 0\}.$
- (iii) $\overline{\Pi}_{-}$, the closure of the lower half-plane $\Pi_{+} := \{z \in \mathbb{C} | \text{Im } z < 0\}.$

Then it is interesting to examine which one is realized, depending on properties of H.

The outline of the present paper is as follows. In Section 2, we prove a theorem on the spectrum of time operators (Theorem 2.1). In Section 3 we consider time operators on direct sums of Hilbert spaces. In Section 4, we identify the spectrum of concrete time operators, including the Aharonov-Bohm time operator [1] and time operators of a relativistic Schrödinger operator. In Section 5, we prove a theorem similar to Theorem 2.1 in the case where T is a generalized time operator.

2 Main Result

In this section we prove the following theorem:

Theorem 2.1 Let H be a self-adjoint operator on \mathcal{H} and T be a time operator of H. Then the following (i)—(iii) hold:

- (i) If H is bounded below, then $\sigma(T)$ is either \mathbb{C} or Π_+ .
- (ii) If H is bounded above, then $\sigma(T)$ is either \mathbb{C} or $\overline{\Pi}_{-}$.
- (iii) If H is bounded, then $\sigma(T) = \mathbb{C}$.

Remark 2.1 The time operator T has no eigenvalues, i.e., the point spectrum $\sigma_{\rm p}(T)$ of T is an empty set [3, Corollary 4.2].

Remark 2.2 In the case where $\sigma(T) = \overline{\Pi}_+$ or $\overline{\Pi}_-$, \overline{T} is maximally symmetric [5, p.141].

Throughout the rest of this section, T represents a time operator of H. The following lemma is a key fact to prove Theorem 2.1.

Lemma 2.2 Suppose that H is bounded below. Then, for all $\beta > 0$, $e^{-\beta H}D(\overline{T}) \subset D(\overline{T})$ and, for all $\psi \in D(\overline{T})$

$$\overline{T}e^{-\beta H}\psi = e^{-\beta H}(\overline{T} - i\beta)\psi.$$
(2.1)

Proof. Apply [2, Theorem 6.2].

We denote by T^* the adjoint of T.

Lemma 2.3 Suppose that H is bounded below. Then, for all $\beta > 0$, $e^{-\beta H}D(T^*) \subset D(T^*)$ and, for all $\psi \in D(T^*)$

$$T^* e^{-\beta H} \psi = e^{-\beta H} (T^* - i\beta) \psi.$$
(2.2)

Proof. Lemma 2.2 implies that $e^{-\beta H}(\overline{T} - i\beta) \subset \overline{T}e^{-\beta H}$. We have $(\overline{T})^* = T^*$. For each bounded linear operator A on \mathcal{H} with $D(A) = \mathcal{H}$ and all densely defined linear operators B on \mathcal{H} , $(AB)^* = B^*A^*$. Using these facts, one can show that $e^{-\beta H}T^* \subset (T^* + i\beta)e^{-\beta H}$. Thus the desired result follows.

Proof of Theorem 2.1

(i) By the fact on the spectrum of T mentioned after Theorem 1.1, we need only to show that the case $\sigma(T) = \overline{\Pi}_{-}$ is excluded. For this purpose, suppose that $\sigma(T) = \overline{\Pi}_{-}$. Then $\Pi_{+} = \rho(T) = \rho(\overline{T})$.

In general, we have for all $z \in \mathbb{C} \setminus \mathbb{R}$ the orthogonal decomposition

$$\mathcal{H} = \ker(T^* - z^*) \oplus \operatorname{Ran}(\overline{T} - z) \tag{2.3}$$

Applying this structure with $z = i \in \Pi_+$, we obtain ker $(T^* + i) = \{0\}$. Since T is not essentially self-adjoint by Theorem 1.1, it follows that ker $(T^*-i) \neq \{0\}$. Hence there exists a non-zero vector $\psi \in D(T^*)$ such that $T^*\psi = i\psi$. Then, by Lemma 2.3, $i(1-\beta) \in \sigma_p(T^*)$.

Since $\beta > 0$ is arbitrary, we can take it to be $1 < \beta$. Then $\gamma := i(1 - \beta) \in \Pi_-$. Taking $z = \gamma^*$ in (2.3), we have the orthogonal decomposition

$$\mathcal{H} = \ker(T^* - \gamma) \oplus \operatorname{Ran}(\overline{T} - \gamma^*).$$

Hence $\operatorname{Ran}(\overline{T} - \gamma^*)$ is not dense in \mathcal{H} . Therefore $\gamma^* \in \sigma(\overline{T}) = \sigma(T)$, i.e., $i(\beta - 1) \in \sigma(T)$. But $i(\beta - 1) \in \Pi_+$. This is a contradiction. Thus $\sigma(T) \neq \overline{\Pi}_-$.

(ii) If H is bounded above, then $\hat{H} := -H$ is bounded below. It is easy to see that $\hat{T} := -T$ is a time operator of \hat{H} . Hence, by part (i), $\sigma(\hat{T}) = \mathbb{C}$ or $\overline{\Pi}_+$. On the other hand, $\sigma(T) = \{-\lambda | \lambda \in \sigma(\hat{T})\}$, which implies that $\sigma(T) = \mathbb{C}$ or $\overline{\Pi}_-$.

(iii) This follows from (i) and (ii).

In the next section we analyze the spectrum of nontrivial examples of time operators. Here we present only simple examples.

Example 2.1 We denote by \hat{r} the multiplication operator on $L^2([0,\infty))$ by the variable $r \in [0,\infty)$: $(\hat{r}g)(r) := rg(r)$, a.e. $r \in [0,\infty)$, $g \in D(\hat{r})$. The operator \hat{r} is self-adjoint and nonnegative.

Let p_0 be an operator on $L^2([0,\infty))$ defined as follows:

$$D(p_0) := C_0^{\infty}((0,\infty)), \tag{2.4}$$

$$(p_0g)(r) := -ig'(r), \quad g \in D(p_0),$$
(2.5)

where, for an open set $\Omega \subset \mathbb{R}^n$ $(n \in \mathbb{N})$, $C_0^{\infty}(\Omega)$ denotes the set of infinitely differentiable functions on Ω with compact support in Ω . Then it is easy to see that $-p_0$ is a time operator of \hat{r} and that

$$\sigma(-p_0) = \overline{\Pi}_+$$

Hence this is an example which illustrates one of the case of Theorem 2.1-(i).

Example 2.2 Let L > 0 and $V_L := (-L/2, L/2) \subset \mathbb{R}$. We denote by \hat{x}_L the multiplication operator on $L^2(V_L)$ by the variable $x \in V_L$. Then \hat{x}_L is a bounded self-adjoint operator. We define an operator p_L as follows:

$$D(p_L) := C_0^{\infty}(V_L),$$

$$p_L f := -if', \quad f \in D(p_L).$$

Then it is easy to see that $-p_L$ is a time operator of \hat{x}_L and

$$\sigma(-p_L) = \mathbb{C}$$

Hence this is an example which illustrates Theorem 2.1-(iii). It should be remarked that p_L has uncountably many self-adjoint extensions [4, pp.257–259].

3 Time Operators on Direct Sum Hilbert Spaces

In applications, time operators on direct sum Hilbert spaces may be useful. We briefly discuss this aspect here. Let H_j (j = 1, 2) be a self-adjoint operator on a complex Hilbert space \mathcal{H}_j which has a time operator T_j . Let

$$\mathcal{H} := \mathcal{H}_1 \oplus \mathcal{H}_2. \tag{3.1}$$

Then

$$T := T_1 \oplus T_2 \tag{3.2}$$

is a time operator of $H_1 \oplus H_2$ [2, Proposition 2.14].

Theorem 3.1 Let H_i , T_i and T be as above. Then:

(i) If H_1 is bounded below and H_2 is bounded above, then $\sigma(T) = \mathbb{C}$.

(ii) If one of H_1 and H_2 is bounded, then $\sigma(T) = \mathbb{C}$.

Proof. (i) By Theorem 2.1, $\sigma(T_1) = \mathbb{C}$ or $\overline{\Pi}_+$, and $\sigma(T_2) = \mathbb{C}$ or $\overline{\Pi}_-$. By a general theorem, we have $\sigma(T) = \sigma(T_1) \cup \sigma(T_2)$. Hence, in each case, we have $\sigma(T) = \mathbb{C}$.

(ii) In this case, we can apply Theorem 2.1-(iii) to conclude that one of $\sigma(T_1)$ and $\sigma(T_2)$ is equal to \mathbb{C} . Thus the desired result follows.

Remark 3.1 In each case of Theorem 3.1-(i) and (ii), $H_1 \oplus H_2$ can be unbounded both above and below.

Example 3.1 Let

$$\mathcal{H}_L := L^2([0,\infty)) \oplus L^2(V_L),$$

 \hat{r}, p_0 be as in Example 2.1 and \hat{x}_L, p_L be as in Example 2.2. Then $H_L := \hat{r} \oplus \hat{x}_L$ on \mathcal{H}_L is self-adjoint and bounded below (but unbounded above). Moreover $T_L := (-p_0) \oplus (-p_L)$ is a time operator of H_L and $\sigma(T_L) = \mathbb{C}$. Thus this example shows that the spectrum of a time operator of a self-adjoint operator which is bounded below, but unbounded above, can be equal to \mathbb{C} .

4 Examples

4.1 Time operators of the free Hamiltonian of a nonrelativistic particle

Let Δ be the *n*-dimensional generalized Laplacian acting in $L^2(\mathbb{R}^n_x)$ $(n \in \mathbb{N})$, where $\mathbb{R}^n_x := \{x = (x_1, \cdots, x_n) | x_j \in \mathbb{R}, j = 1, \cdots, n\}$, and

$$H_0 := -\frac{\Delta}{2m} \tag{4.1}$$

with a constant m > 0. In the context of quantum mechanics, H_0 represents the free Hamiltonian of a nonrelativistic particle with mass m in the *n*-dimensional space \mathbb{R}_x^n .

It is well known that H_0 is a nonnegative self-adjoint operator. We denote by \hat{x}_j the multiplication operator on $L^2(\mathbb{R}^n_x)$ by the *j*-th variable $x_j \in \mathbb{R}^n_x$ and set

$$\hat{p}_j := -iD_j \tag{4.2}$$

with D_j being the generalized partial differential operator in the variable x_j on $L^2(\mathbb{R}^n_x)$. It is easy to see that \hat{x}_j and \hat{p}_j are injective.

We introduce

$$\Omega_j := \{k = (k_1, \cdots, k_n) \in \mathbb{R}^n_k | k_j \neq 0\}, \quad j = 1, \cdots, n.$$
(4.3)

For a real-valued, Borel measurable function G on \mathbb{R}^n_k which is continuous on Ω_j , we define a linear operator on $L^2(\mathbb{R}^n_x)$ by

$$G(\hat{p}) := \mathcal{F}^{-1}G\mathcal{F},\tag{4.4}$$

where $\mathcal{F}: L^2(\mathbb{R}^n_x) \to L^2(\mathbb{R}^n_k)$ is the Fourier transform:

$$(\mathcal{F}f)(k) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n_x} f(x) e^{-ikx} dx, \quad f \in L^2(\mathbb{R}^n_x), \, k = (k_1, \cdots, k_n) \in \mathbb{R}^n_k, \tag{4.5}$$

in the L^2 -sense, $\hat{p} := (\hat{p}_1, \dots, \hat{p}_n)$ and G on the right hand side of (4.4) represents the multiplication operator on $L^2(\mathbb{R}^n_k)$ by the function G. Since the Lebesgue measure of the set $\mathbb{R}^n_k \setminus \Omega_j$ is zero, it follows that $G(\hat{p})$ is self-adjoint.

For each $j = 1, \dots, n$, one can define a linear operator on $L^2(\mathbb{R}^n_x)$ by

$$T_j(G) := \frac{m}{2} \left(\hat{x}_j \hat{p}_j^{-1} + \hat{p}_j^{-1} \hat{x}_j \right) + G(\hat{p})$$
(4.6)

with domain

$$D(T_j(G)) := \mathcal{F}^{-1}C_0^{\infty}(\Omega_j), \qquad (4.7)$$

where $C_0^{\infty}(\Omega_j)$ denotes the set of infinitely many differentiable functions on Ω_j with compact support in Ω_j . It is easy to see that $T_i(G)$ is a symmetric operator on $L^2(\mathbb{R}^n_x)$.

Lemma 4.1 The operator $T_j(G)$ is a time operator of H_0 .

Proof. We write

$$T_{j}(G) = T_{j} + G(\hat{p})$$
$$T_{j} := \frac{m}{2} \left(\hat{x}_{j} \hat{p}_{j}^{-1} + \hat{p}_{j}^{-1} \hat{x}_{j} \right).$$
(4.8)

with

The operator
$$T_j$$
 is a time operator of H_0 ([3], [2, §10]). By using the Fourier transform, one can show that $e^{-itH_0}G(\hat{p}) \subset G(\hat{p})e^{-itH_0}$ for all $t \in \mathbb{R}$. Hence, by applying [2, Proposition 2.6], $T_j(G)$ is a time operator of H_0 .

Remark 4.1 The operator T_j is called the Aharonov-Bohm time operator [1]. Hence $T_j(G)$ is a perturbed Aharonov-Bohm time operator.

As for the spectrum of $T_i(G)$, we have the following theorem:

Theorem 4.2 $\sigma(T_j(G)) = \overline{\Pi}_+, \ j = 1, \cdots, n.$

Proof. By Theorem 2.1-(i) and (2.3), we need only to show that $\ker(T_j(G)^* - i) = \{0\}$. Let $f \in \ker(T_j(G)^* - i)$. Then $T_j(G)^* f = if$. This implies the equation

$$D_{k_j}\hat{f}(k) = \left(\frac{1}{2k_j} + \frac{k_j}{m} + \frac{i}{m}k_jG(k)\right)\hat{f}(k)$$

in the sense of distributions on Ω_j , where $\hat{f} := \mathcal{F}f$ and D_{k_j} is the generalized partial differential operator in the variable k_j . Hence

$$\hat{f}(k) = c(k_1, \cdots, k_{j-1}, k_{j+1}, \cdots, k_n) \sqrt{|k_j|} e^{k_j^2/(2m)} e^{iG_j(k)/m}, \quad k \in \Omega_j$$

where $c(k_1, \dots, k_{j-1}, k_{j+1}, \dots, k_n) \in \mathbb{C}$ is independent of k_j and G_j is a differentiable function on Ω_j such that $\partial G_j(k)/\partial k_j = k_j G(k), \ k \in \Omega_j$. Since \hat{f} is in $L^2(\mathbb{R}^n_k)$, it follows that $c(k_1, \dots, k_{j-1}, k_{j+1}, \dots, k_n) = 0$ (a.e.). Hence f = 0. Thus $\ker(T_j(G)^* - i) = \{0\}$.

4.2 Time operators of the free Hamiltonian of a relativistic particle

A Hamiltonian of a free relativistic particle with mass $m \ge 0$ moving in \mathbb{R}^n_x is given by

$$H_{\rm rel} := \sqrt{-\Delta + m^2} \tag{4.9}$$

acting in $L^2(\mathbb{R}^n_x)$. It is shown that the operator

$$T_j^{\text{rel}}(G) := \sqrt{-\Delta + m^2} \, \hat{p}_j^{-1} \hat{x}_j + \hat{x}_j \sqrt{-\Delta + m^2} \, \hat{p}_j^{-1} + G(\hat{p}) \tag{4.10}$$

with $D(T_j^{\text{rel}}(G)) := \mathcal{F}^{-1}C_0^{\infty}(\Omega_j)$ is a time operator of H_{rel} [2, Example 11.4].

Theorem 4.3 $\sigma(T_j^{\text{rel}}(G)) = \overline{\Pi}_+, \ j = 1, \cdots, n.$

Proof. As in Theorem 4.2, we need only to show that $\ker(T_j^{\text{rel}}(G)^* - i) = \{0\}$. Let $f \in \ker(T_j^{\text{rel}}(G)^* - i)$ and $\omega(k) := \sqrt{k^2 + m^2}, k \in \mathbb{R}^n_k$. Then

$$D_{k_j}\hat{f}(k) = \frac{1}{2} \left(\frac{k_j}{\omega(k)} - \frac{k_j}{\omega(k)} \left(\frac{\partial}{\partial k_j} \frac{\omega(k)}{k_j} \right) - \frac{k_j G(k)}{\omega(k)i} \right) \hat{f}(k)$$

in the sense of distributions on Ω_i . Hence

$$\hat{f}(k) = c(k_1, \cdots, k_{j-1}, k_{j+1}, \cdots, k_n) \sqrt{\frac{|k_j|}{\omega(k)}} e^{\omega(k)/2} e^{iF_j(k)/2}, \quad k \in \Omega_j$$

where $c(k_1, \dots, k_{j-1}, k_{j+1}, \dots, k_n) \in \mathbb{C}$ is independent of k_j and F_j is a differentiable function on Ω_j such that $\partial F_j(k)/\partial k_j = k_j G(k)/\omega(k), \ k \in \Omega_j$. Since \hat{f} is in $L^2(\mathbb{R}^n_k)$, it follows that $c(k_1, \dots, k_{j-1}, k_{j+1}, \dots, k_n) = 0$ (a.e.). Hence f = 0. Thus $\ker(T_j^{\text{rel}}(G)^* - i) = \{0\}$.

5 A Class of Generalized Time Operators

In this section we consider spectral properties of a class of generalized time operators. Let H be a self-adjoint operator on a complex Hilbert space \mathcal{H} and T be a symmetric operator on \mathcal{H} .

We call the operator T a generalized time operator of H if $e^{-itH}D(T) \subset D(T)$ for all $t \in \mathbb{R}$ and there exists a bounded self-adjoint operator $C \neq 0$ on \mathcal{H} with $D(C) = \mathcal{H}$ such that

$$Te^{-itH}\psi = e^{-itH}(T+tC)\psi, \quad \psi \in D(T).$$
(5.1)

We call C the noncommutative factor for (H, T).

The following facts are known:

Theorem 5.1 Let T be a generalized time operator of H with noncommutative factor C.

(i)([2, Theorem 2.8]) Let H be semi-bounded and

$$CT \subset TC.$$
 (5.2)

Then T is not essentially self-adjoint.

(ii)([2, Corollary 5.3-(ii)]) If $C \ge 0$ or $C \le 0$, then $\sigma_p(\overline{T}|[D(\overline{T}) \cap (\ker C)^{\perp}]) = \emptyset$.

(iii)([2, Theorem 6.2-(ii)]) Let H be bounded below. Then, for all $\beta > 0$, $e^{-\beta H}D(\overline{T}) \subset D(\overline{T})$ and

$$\overline{T}e^{-\beta H}\psi - e^{-\beta H}\overline{T}\psi = -i\beta e^{-\beta H}C\psi, \quad \psi \in D(\overline{T}).$$
(5.3)

(iv)([2, Proposition 6.4, Corollary 6.6]) The operators H and C strongly commute (i.e., their spectral measures commute) and H is reduced by $\overline{\text{Ran}(C)}$.

In what follows, T is a generalized time operator of H with noncommutative factor C satisfying (5.2).

5.1 The case where C has a non-zero eigenvalue

We first consider the case where C has a non-zero eigenavlue $a \in \mathbb{R} \setminus \{0\}$, i.e.,

$$\mathcal{K}_a := \ker(C - a) \neq \{0\}. \tag{5.4}$$

We have the orthogonal decomposition

$$\mathcal{H} = \mathcal{K}_a \oplus \mathcal{K}_a^{\perp}. \tag{5.5}$$

Relation (5.2) implies that

$$C\overline{T} \subset \overline{T}C. \tag{5.6}$$

Then it follows that \overline{T} is reduced by \mathcal{K}_a and hence by \mathcal{K}_a^{\perp} . We denote the reduced part of \overline{T} to \mathcal{K}_a and \mathcal{K}_a^{\perp} by \overline{T}_a and \overline{T}_a^{\perp} respectively. Hence we have

$$\overline{T} = \overline{T}_a \oplus \overline{T}_a^{\perp} \tag{5.7}$$

relative to the orthogonal decomposition (5.5). Therefore

$$\sigma(T) = \sigma(\overline{T}) = \sigma(\overline{T}_a) \cup \sigma(\overline{T}_a^{\perp}).$$
(5.8)

By the strong commutativity of H and C (Theorem 5.1-(iv)), H also is reduced by \mathcal{K}_a . We denote the reduced part of H to \mathcal{K}_a by H_a .

Lemma 5.2 The operator \overline{T}_a is a time operator of H_a/a .

Proof. Let $\psi \in D(\overline{T}_a) = D(\overline{T}) \cap \mathcal{K}_a$. Then, for all $t \in \mathbb{R}$, $e^{-itH_a}\psi = e^{-itH}\psi \in D(\overline{T}) \cap \mathcal{K}_a = D(\overline{T}_a)$ and, by (5.1),

$$\overline{T}_a e^{-itH_a} \psi = e^{-itH_a} (\overline{T}_a + ta) \psi.$$

Thus the desired result follows.

Theorem 5.3 Let T be a generalized time operator of H with noncommutative factor C satisfying (5.2). Then the following (i)—(v) hold:

- (i) If H_a is bounded below and a > 0, then $\sigma(\overline{T}_a)$ is either \mathbb{C} or $\overline{\Pi}_+$.
- (ii) If H_a is bounded above and a < 0, then $\sigma(\overline{T}_a)$ is either \mathbb{C} or $\overline{\Pi}_+$.
- (iii) If H_a is bounded above and a > 0, then $\sigma(\overline{T}_a)$ is either \mathbb{C} or $\overline{\Pi}_{-}$.
- (iv) If H_a is bounded below and a < 0, then $\sigma(\overline{T}_a) = \mathbb{C}$ or $\overline{\Pi}_{-}$.
- (v) If H_a is bounded, then $\sigma(\overline{T}_a) = \mathbb{C}$.

Proof. In (i) and (ii), H_a/a is bounded below. Hence, Lemma 5.2 and Theorem 2.1-(i) yield the results stated in (i) and (ii). Similarly other cases follow.

5.2 The case where $\operatorname{Ran}(C)$ is closed

We next consider the case where $\operatorname{Ran}(C)$ is closed. Then \mathcal{H} is decomposed as

$$\mathcal{H} = \ker C \oplus \operatorname{Ran}(C). \tag{5.9}$$

By the closed graph theorem, there exists a constant M > 0 such that

$$||C\psi|| \ge M ||\psi||, \quad \psi \in (\ker C)^{\perp} = \operatorname{Ran}(C).$$
(5.10)

The operators T and C are reduced by $\operatorname{Ran}(C)$. We denote by \widetilde{T} and \widetilde{C} the reduced part of T and C to $\operatorname{Ran}(C)$ respectively. The operator \widetilde{T} is symmetric and \widetilde{C} is a bounded self-adjoint operator on $\operatorname{Ran}(C)$ which is bijective with \widetilde{C}^{-1} bounded. It follows from (5.2) that

$$\widetilde{C}\widetilde{T} \subset \widetilde{T}\widetilde{C}.\tag{5.11}$$

Lemma 5.4 The operator

$$T_C := \widetilde{C}^{-1}\widetilde{T} = \widetilde{T}\widetilde{C}^{-1}|D(\widetilde{T})$$
(5.12)

on $\operatorname{Ran}(C)$ is a symmetric operator.

Proof. We have $D(T_C) = D(T) \cap \text{Ran}(C)$. Hence $D(T_C)$ is dense in Ran(C). Relation (5.11) implies that

$$\widetilde{C}^{-1}\widetilde{T} \subset \widetilde{T}\widetilde{C}^{-1}.$$
(5.13)

Hence $T_C^* = \widetilde{T}^* \widetilde{C}^{-1} \supset \widetilde{T} \widetilde{C}^{-1} \supset T_C$. Thus the desired result follows.

By Theorem 5.1-(iv), H is reduced by $\operatorname{Ran}(C)$. We denote the reduced part of H to $\operatorname{Ran}(C)$ by \widetilde{H} .

Theorem 5.5 The operator T_C is a time operator of \widetilde{H} and the following (i)—(iii) hold:

- (i) If \widetilde{H} is bounded below, then $\sigma(T_C)$ is either \mathbb{C} or $\overline{\Pi}_+$.
- (ii) If \widetilde{H} is bounded above, then $\sigma(T_C)$ is either \mathbb{C} or $\overline{\Pi}_{-}$.
- (iii) If \widetilde{H} is bounded, then $\sigma(T_C) = \mathbb{C}$.

Proof Since $D(T_C) = D(T) \cap \operatorname{Ran}(C)$, it follows that $e^{-it\tilde{H}}D(T_C) \subset D(T_C)$ for all $t \in \mathbb{R}$. Using (5.1), one can see that T_C satisfies

$$T_C e^{-it\tilde{H}}\psi = e^{-it\tilde{H}}(T_C + t)\psi, \quad \psi \in D(T_C).$$

These facts and Lemma 5.4 imply that T_C is a time operator of \tilde{H} . Then (i)—(iii) follow from application of Theorem 2.1.

Example 5.1 A simple example is given by the case where $C \neq 0$ is an orthogonal projection. Then $T_C = \tilde{T}$. To construct such examples, see [2, §11].

References

- Y. Aharonov and D. Bohm, Time in the quantum theory and the uncertainty relation for time and energy, *Phys. Rev.* 122, 1649–1658(1961).
- [2] A. Arai, Generalized weak Weyl relation and decay of quantum dynamics, *Rev. Math. Phys.* 17 (2005), 1071–1109.
- [3] M. Miyamoto, A generalized Weyl relation approach to the time operator and its connection to the survival probability, J. Math. Phys. 42 (2001), 1038–1052.
- [4] M. Reed and B. Simon, *Methods of Modern Mathematical Physics I: Functional Analysis*, Academic Press, New York, 1972.
- [5] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- [6] K. Schmüdgen, On the Heisenberg commutation relation. I, J. Funct. Anal. 50 (1983), 8–49.