<table>
<thead>
<tr>
<th>Title</th>
<th>THE NUCLEOTIDE SEQUENCE OF THE GENES, fanE AND fanF, OF Escherichia coli K99 FIMBRIAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ONO, Eriko; LAVIN, Martin F.; NAIKI, Masaharu</td>
</tr>
<tr>
<td>Citation</td>
<td>Japanese Journal of Veterinary Research, 39(1), 1-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-05-30</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/jjvr.39.1.1</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/3237</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>KJ00002377463.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY

Erika ONO1, Martin F. LAVIN2, Masaharu NAIKI1,3,4 (Accepted for Publication: January 7, 1991)

K99 fimbriae of enterotoxigenic \textit{Escherichia coli} consist of eight different subunits. A major subunit called fimbrillin forms fimbrial structure and a minor subunit called adhesin localizes at the tip of fimbriae and recognizes host receptor ganglioside. Within this eight gene cluster, \textit{fanE} and \textit{fanF} have not yet been sequenced. In this study, \textit{fanE} and \textit{fanF} genes were sequenced by analyzing several DNA fragments produced by endonuclease or exonuclease digestion. The \textit{fanE} gene encoded 227 amino acids containing 20 amino acids of signal peptide starting from GTG (valine) and showed a homology to \textit{fanA-fanB}. The \textit{fanF} gene encoded 271 amino acids containing 20 amino acids of signal peptide starting from ATG (methionine) and showed homologies to the \textit{fanD} gene, fimbrillin gene of F41, adhesin gene of P fimbriae (\textit{papG}) and adhesin gene of Type 1 fimbriae (\textit{fimH}). E and F subunits had fifteen and fourteen hydrophobic domains, respectively, which periodically appeared possibly forming a hydrophobic region.

Key words: Enterotoxigenic \textit{Escherichia coli}, K99 fimbriae, \textit{fanE} and \textit{fanF} DNA sequence, hydrophobic domain.

INTRODUCTION

Enterotoxigenic \textit{Escherichia coli} possessing K99 fimbrial antigen are frequently isolated from newborn calves, piglets, and lambs suffering from diarrhea21. It is known that fimbriae are important as an adhesive and colonization factor of bacteria on the mucosal surface of the small intestine in the first stage of infection1,5,6. Fimbriae have been classified by their antigenicity and subunit molecular weight. The fimbriae are composed of fimbrillin which forms main part of fimbriae and adhesin which recognizes carbohydrate receptors on the surface of host cells13,23,24.

1 Department of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060, Japan.
2 Queensland Institute of Medical Research, Herston, Brisbane, Queensland 4006, Australia.
3 Present address; Department of Veterinary Science, National Institute for Health, Kamiosaki 2–10–35, Shinagawa-ku, Tokyo 141, Japan.
4 To whom correspondence should be addressed.
The K99 fimbrial gene cluster named \textit{fanA} to \textit{fanH} encodes eight different subunits15. The nucleotide sequences of \textit{fanA}, \textit{fanB}, \textit{fanC}, \textit{fanD}, \textit{fanG}, and \textit{fanH} have already been published16,17,19. The functions of these subunits were analyzed and it has been established that \textit{fanC} encodes fimbrillin16, \textit{fanA} and \textit{fanB} encode regulatory proteins which control expression of fimbriae17,20, \textit{fanD} encodes platform protein19 and \textit{fanG} and \textit{fanH} encode minor subunits18. However there is no available information about the gene encoding adhesin. Since it is highly possible that either \textit{fanE} or \textit{fanF} encodes this receptor protein, in this study, the complete gene structure of \textit{fanE} and \textit{fanF} were determined.

\textbf{MATERIALS AND METHODS}

\textit{Host cells and plasmid vector:} As a host bacterial strain, JM109 or JPA101 was used, and as a vector, pUC1926 or BLUESCRIPT22 was prepared for isolation of single strand DNA. Isolation of plasmid DNA, agarose gel electrophoresis, and transformation were performed according to conventional methods22. Transformants were cultured in LB media or 2YT media22 with 50 \(\mu \)g/ml of ampicillin.

\textit{Endonuclease and the other enzymes:} AvaI, BamHI, BglII, ClaI, HincII, KpnI, PstI, XbaI, exonuclease III, S1 nuclease, and \textit{E. coli} DNA polymerase I (Klenow fragment) (TAKARA Co. Ltd., Kyoto, Japan) were used to prepare several DNA fragments from an original plasmid pFK99 (pBR322)25 were kindly supplied by Dr. de Graaf, Vrije University, Amsterdam, the Netherlands. BamHI–BamHI fragment encoding the whole K99 gene cluster of pFK99 (pBR322)25 was cloned into pUC19 vector (pFK99(pUC19)) and used for subcloning (Fig. 1).

\textit{Preparation of subclones containing fanE and fanF:} Subclones including \textit{fanE} and \textit{fanF} genes were prepared (Fig. 1). \textit{KpnI–AvaI} fragment isolated after agarose gel electrophoresis using GENECLEANTM Kit (FUNAKOSHI Co. Ltd., Tokyo, Japan) was treated with Klenow enzyme and inserted again into pUC19 cleaved with \textit{KpnI} and \textit{HincII}, to make pFK99KA. pFK99AH (AvaI–HincII, fragment) and pFK99KC (\textit{KpnI–ClaI} fragment) were prepared by using each particular restriction enzyme site. pFK99 (KK3.3R) was prepared from pFK99 (pUC19) by using the \textit{KpnI} site. Digestion of pFK99(KK3.3R) with exonuclease III was performed at 37\(^{\circ}\)C and at 30 sec intervals, samples of partially digested DNA were taken according to Promega protocol. After cloning, DNA length was checked by agarose gel electrophoresis and 15
The nucleotide sequence of the genes.

subclones were selected to sequence completely.

Analysis of hydrophobic character of products: The hydrophobic character of the gene products was analyzed by the method described by Kyte and Doolittle10, using Genetyx software supplied from SDC Software Exproitation Co., Ltd. (Tokyo, Japan).

RESULTS

Primary structure of fanE and fanF: The nucleotide sequences of *fanE* and *fanF* are shown in Fig. 2 with the corresponding amino acid sequences. Each structural gene had -35 and -10 promoter sequences upstream from the ribosome–binding site (S. D.). The *fanE* product had a signal peptide of 20 amino acids and a mature molecule consisted of 207 amino acids. There are 3 restriction enzyme sites for HincII, ClaI and AvaI. The starting codon of *fanE*, GTG (valine) was overlapped by the stopping codon of *fanD*. Comparing fimbrial DNA sequences, *fanE* had homology to *fanA–fanB* (44.5%). The *fanF* product however, had a signal peptide of 20 amino acids and a mature protein consisted of 251 amino acids. There are 2 restriction enzyme sites for Sau3AI and XmnI. The starting region of *fanF* was also overlapped by the terminal region of *fanE* as observed at the *fanD–fanE* region. *fanF* showed homologies to *fanD* (45.7%), *papG* (47.8%) of P fimbriae, *fimH* (44.5%) of Type 1 fimbriae, and F41 fimbriae (45.1%). It is known that *papG* and *fimH* encode adhesin subunits of P and Type 1 fimbriae, respectively.

\textbf{fanE}

\begin{verbatim}
GAG AGA GTC TTT TTT GGA TCA TGT ACC ATA ACG ACT TCG GGA GTA AAT ATT TTA TCA GAA ATT CAG GAG GTA AAC T

\end{verbatim}

\textbf{HincII}

\begin{verbatim}
TAT ATA TAT GAA GGA CAG CAA AGT GTA TCT GTT AAC CAT AAC GAA AGT GAA CAT AAA TAT GGT GGT GAA ATT CAG GTA TOG

\end{verbatim}

\textbf{ClaI}

\begin{verbatim}
CAA ATA GGT GCC ATT GTT ATT AAT GAT AAT GAT TTA GCT AAA GAC AGA GAA TCG ATT TAC TGG TCT ATT AAT GTT CAG GAG ATC

\end{verbatim}
The nucleotide sequence of the genes.

Ava!

CTA AAT GGT CCA GAT GGG GGT AGT CTG TCA CGA ATT AAT GGA GTA AAA TTA ATA TAT GCA GCA ATT GCT
90 95 100 105 110 115

Avai

CTA AAT GGT CCA GAT GGG GCA GAA AAT AAC TAT AGG CTG AAC ATT GAA GTA ATT ACC ACA AGG
Leu Lys Asn Gly Arg Asp Ala Glu Asn Asn Ile Lys Leu Ile Lys Thr Ser Gly Thr Ser Cys Leu Glu Asn Thr Thr
120 125 130 135 140

CCA TAT TAC TTT GCA ATT AGT GAT GTT AAA ATT AGT GCC AAA TCA ATT GAT TTA ATT TCT GAT GCA AAA AAT AGG GGA
Pro Tyr Tyr Phe Ala Ser Asp Val Lys Ile Asn Gly Asn Lys Ser Ile Asp Ala Lys Asn Lys Met Gly
145 150 155 160 165

GTA TIC TCC CCA TGC AAA GTT TGC CGA ATT GTA AAT ACT AGT GCC AAC ATC AGG GCA ACA GCA
Val Phe Ser Pro Phe Ser Lys Ile Cys Leu Gly Asn Val Asn Thr Ser Gly Asn Ile Thr Val Thr Ala Phe Asn Asp Tyr
170 175 180 185 190 195

GTT TIC TCC CCA TGC AAA GTT TGC CGA ATT GTA AAT ACT AGT GCC AAC ATC AGG GCA ACA GCA
Val Phe Ser Pro Phe Ser Lys Ile Cys Leu Gly Asn Val Asn Thr Ser Gly Asn Ile Thr Val Thr Ala Phe Asn Asp Tyr
-35

Val Phe Ser Pro Phe Ser Lys Ile Cys Leu Gly Asn Val Asn Thr Ser Gly Asn Ile Thr Val Thr Ala Phe Asn Asp Tyr
170 175 180 185 190 195

GTT TIC TCC CCA TGC AAA GTT TGC CGA ATT GTA AAT ACT AGT GCC AAC ATC AGG GCA ACA GCA
Val Phe Ser Pro Phe Ser Lys Ile Cys Leu Gly Asn Val Asn Thr Ser Gly Asn Ile Thr Val Thr Ala Phe Asn Asp Tyr
-10 S.D.

GGC GTC ACA ACC AGC TAC ACT GTC GAA AGG AGT AAA TA ATG AAA ATT AAA TAT TAA TTA TTT TTA TTT CTT CCT TGT
Gly Val Ala Thr Ser Tyr Thr Val Gin Arg Ser Lys
200 205

Met Lys Asn Lys Tyr Asn Leu Leu Phe Leu Phe Phe Leu
-20 -15 -10

TGT TAT GGA GAT GGG CTG CCA GAA AGC AAA CTG AAA ATC TCA CCT GCT TAT AGT GCC CAT AGT TAT TCA TTT
Cys Tyr Gly Asp Val Ala Leu Ala Ala Cys Thr Gly Lys Leu Lys Ile Ser Pro Gly Tyr Ser Gly His Thr Tyr Ser Phe
-5 -1 5 10 15 20

GAT TCC AGT ATT CCA AAT AGT AAT ATA GCA AGA AGC TAC TGT GTC GAA ATT GTT TGT GAT GGG GAC CAG
Asp Ser Ser Ile Pro Asn Asn Ser Asn Ile Ala Arg Tyr Leu Val Glu Ile Ser Gly Lys Ile Val Cys Asp Ala Asp Gin
25 30 35 40 45

TCA GGC TGG CAT GGT AAA GGT TAT GCT GAA TTA CAT CTT TAT TCA CCT GGT GCC TTA TGT GCA AGT GTC AGT GCC GAT GGG
Ser Gly Trp Asp Gly Lys Arg Tyr Ala Gin Leu His Leu Tyr Ser Ser Gly Ala Leu Cys Gin Ser Val Ser Gly Asp Gin
50 55 60 65 70 75

ATT ACA TTT AGC TCA GTA GIG TGG TCA TGG CTG TGT GCC AGC AAT GCC ATA CAA TAC CAG TGT GCA GCC GCA AAA ATA
Ile Thr Phe Arg Ser Asn Val Ser Gly Leu Ser Trp Arg Phe Pro Asn Gly Ile Pro Tyr His Cys Ala Ala Gly Gin Ile
80 85 90 95 100

AAT CTT GCC GCT ATA AAA TAT GGC GAT AGA AAT GGT AAA GGT ACC TGG AAT CCT GGT GAA CTA CGA CAT GAA ATA TTT TTA
Asn Leu Gly Ile Lys Tyr Ala Asp Arg Asn Gly Lys Val Thr Trp Asn Pro Gly Leu Arg His Gin Ile Phe Leu
105 110 115 120 125
Fig. 2. Primary sequence of fanE and fanF genes. An arrow shows a position cleaved by digestion with signal peptidase I. —35 and —10 indicate promoter sequences. S. D. means ribosome-binding site. Stopping codon is indicated by ***.

Characterization of E and F subunits: According to computer analysis, the E subunit had partial homologies to the B, C, and D subunits of K99 fimbriae in its amino acid Sequence. The F subunit was partially homologous to the G adhesin subunit of P fimbriae, C and H subunits of K99 fimbriae. The hydrophobic character of these proteins are shown in Fig. 3. Fifteen and fourteen hydrophobic domains appeared in the E and F subunits, respectively. Particularly notable are the hydrophobic peaks of fanE which periodically appeared.

DISCUSSION

Various kinds of fimbrial genes were cloned from Escherichia coli or other bacterial cells. Among them, fimbrial genes of P2,3,4,11,12,14 and Type 17,8,9 were well
Fig. 3. Hydrophobic character of E and F subunits. Signal peptide is removed at a position indicated by an arrow. Hydrophobic peaks are indicated by boxes.
analyzed. It is known that the fimbrial gene and amino acid sequence of the products have some homologies.

Roosendaal et al. have reported on the K99 gene cluster and indicated that \textit{fanC} encodes fimbrillin of K99 antigen (16.5 KDa16). The A subunit (11.0 KDa17), B subunit (10.8 KDa17), D subunit (84.5 KDa19), G subunit (16.9 KDa18), and H subunit (16.3 KDa18) have been reported to be homologous in their nucleotide sequences. In the analysis of hydrophobicity, the periodic appearance of hydrophobic domain was detected.

In this study, \textit{fanE} and \textit{fanF} were sequenced for the first time. The starting codon of \textit{fanE} was GTG, coding for valine. This starting codon is unique among the fimbrial genes of which nucleotide sequences have been reported. It was found that \textit{fanD}, \textit{fanE}, and \textit{fanF} overlapped each other in the structural gene regions. A similar overlapping was reported in \textit{fanG} and \textit{fanH} of K99 fimbriae18). In addition, the \textit{fanF} had homologies to the genes encoding adhesin of P and Type 1 fimbriae. In contrast, \textit{fanE} showed a homology only to the \textit{fana–fanB} connecting region. Thus, the E subunit seems a very unique subunit within the K99 fimbriae. Regarding the hydrophobic character of \textit{fanE} and \textit{fanF}, fifteen and fourteen peaks were detected, respectively. In addition, the peaks of \textit{fanE} appeared periodically, indicating that those formed the hydrophobic part of the E subunit.

At present it is not known which gene encodes K99 adhesin. However, it was found that the \textit{fanF} had some homology to the adhesin gene of other fimbriae. Further analysis using mutants lacking \textit{fanE} and \textit{fanF} is necessary to determine the function of these subunits. Such experiments are now in progress.

\textbf{REFERENCES}

The nucleotide sequence of the genes.

