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On the@discriminants of transformation equations

of modular forms

by

Yoshitaka MAEDA

Introduction.

The purpose of this note is to add some supplementary
results to our previous paper [3]. We have proved there that
the transformation equations of certain modular forms can be
expresséd by special values of the zeta functions of those forms.
At the symposium, we talked about this result. Here we give some
results obtained after that. |

Let £ be a modular form on Po(p) of weight k. We assume that

p is an odd prime throughout the paper. Then the transformation

equation of f is defined by

®(X;f) =1 (x - £|],a) =0,
| a €T, (PN\SL, (2) k

where (£] 7)) (2) = det (v)%/2£ ((az+b) / (cz+d)) (cz+d) ®  for

Y = (i g)éGL;(R) = {yeGL,(R)| det(y) > 0}.

Obviously all coefficients Ou of ¢(X;f) are modular forms on
SLZ(Z). We call that the transformation equation\@(X;f) = 0 is
Z-rational if all coefficients ou'have Z-rational Fourier‘
expansions as‘modular forms (see §1, for the Z-rationality of

Fourier expansions). Then one of our results is
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Theorem 1. If the transformation equation ¢ (X;f) = 0

of £ is Z-rational and if p is an odd prime, then the discriminant

D of ¢(X;f) is expressed as

~(—1)(p—1)/2ppAP+lh2, if £ is a cusp form,

D ={
(-l)(p-l)/zppAp_lhz, otherwise,

where h is 3 modular form on SL,(2) with a Z-rational Fourier

o

n

expansion aﬁd A is Ramanujan's fuhction exp(2miz) Il =1(1—exp(2ﬂinz))24.
Especiallj, when f is the special cusp form discussed in [3],
we even know the divisibility of the above form h by a2
Proposition 9). We will prove this theorem in §2.
In Proposition 4, we will also show under the assumption in

Theorem 1 the following congruence relation:

(X;£)

(X = 0,) (xP - o) mod p.

Here both Ol and op are certain modular forms on SL2(Z). Though

this result follows from the Eicher-Shimura congruence relation
[7,.Theorem 7.9], we will give an elementary proof without using
their result.

In [3], we considered the transformation equation ¢ (X;f) = 0

for £ = gEi o’ where g is a cusp form on Po(p) and E# b is
4

’
a certain Eisenstein series. In §3, we will show that for a certain
choice of g, the transformation equation @(X;gE*’p) = 0 of gE;:,p

is Z-rational. In §4, we will give numerical examples of the
tr;nsformation equations for the above gEK'p and the specialized

equations at several elliptic curves (see [3, §3], for the definition

of the specialized equation ‘at an elliptic curve).
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§1. Congruence relation of transformation equations.

Let p be an odd prime and To(p) be a subgroup of SL2(Z)
defined by

b, .,
Fo(p) = { (2 d)é:SLZ(Z)I c 0 mod pl.

We denote by Mk(Fo(p)) the vector space of modular forms on Fo(p)
of weight k. Hence an element f of Mk(Fo(p)) is a function on
the upper half complex plane H with the following three properties:
(1) f is holomorphic on H;
(ii) f]ky = £ for all yé-FO(p);
(iid) f[ky has the Fourier expansion of the form: Z§=an(n)e(nz/p)
at ie for all ye;SLz(Z) ( e(z) = exp(2wiz) ).
Moreover, if ay(O) = 0 for all ve¢ SL2(Z), then £ is called a
cusp form. The subspace of Mk(FO(p)) consisting of all cusp forms
is denoted by Sk(FO(p)).

Let A be a subring of C and £ be a function on H with a
Fourier expansion of the form: Z;=0a(n)e(nz/N) for some positive
integer N. Then we say that f is A-rational if a(n) belongs to A
for any n. Let g(z) = Z:=ob(n)e(nz/N) be another A-rational
function and m be an ideal of A. Then we write f = g mod m
if a(n) = b(n) mod m for all n. Further, for any field-automorphism

¢ of C, we define an action of ¢ on f by

o L o® o
£ (z) = anoa(n) e (nz/N).
Though the following lemma is a corollary of [8, Theorem 5], we

give an elementary proof.
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Lemma 2. TLet f be an element of M (Ty(pP)). Then for any

field-automorphism o of C, we have that

0 -1,.,0

(£ (G o)) 0 -1

lk 0)'

Proof. It is sufficient to show this for a basis of My (F (p)) .
First let us show the relation for Eisenstein series. We know
from [4, Satz 11] that the subspace of Mk(FO(p)) spanned by all
Eisenstein series has a basis consisting of the following functions:

. - o k-1
k > 2 : Gk(z) = Bk/2k + Zn=1{20<d|nd e (nz)
and Gk(pz)
k=2 : Ep(z) = G2(z) -~ sz(pz),

Here Bk is the k-th Bernoulli number and

Gz(z) = i/{4w(z-2)} - 1/24 + Zn=1{20<d|nd}e(nz),
Put 1 = (g -é)f Since-Gk(z) is an Eisenstein series on SL2(Z)

of_wgight k,‘we have that Gk[kT % Gk r and therefore, Gk(pz)lkT

= p—ka(z/p). Thus both lekT and Gk(pZ)IkT are Q-rational. Then

the desiréd result follows for Gk(z) and Gk(pz). A similar

argument shows that the lemﬁa holds also for Ep. Next let us

show the relation for a basis of cusp forms. The theory of primitive

forms shows that a basis of Sk(TO(p)) is given by fi(z), fi(pz)

and gj(z); Here fi(z) and gj(z) are primitive forms of conductor

1 and p, respectively. Our assertion holds for such cusp forms fi.

:In fact, it is known that fiO are égain primitive forms of

conductor 1. Let us write f(z) = fi(pz). Then we have that
(£],0) (2) = p™¢, (2/p)

and
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o _ ~k_. o
(f|kT) =p £ (z/p).
. o o
Since f (z) = fi (pz), we see that
o} _ .~k_ <
(£ lkT)(Z) =p fi (z/p) .
It follows that (£],1)7 = £°] .
Now let us show the relation for primitive forms gj of

conductor p. We know from [1, Lemma 3] that

0 -1 | .
. = . with = *1.
951y o) = 95 Y

Since Yy is expressed as
1-k/2
vy = —a(p)p’ ¥/

with the p-th Fourier coefficient a(p) of gj and since‘gjO is

again a primitive form of conductor p, we have that

0 -1 o}
) = yg. .

g. %, (
J 'k'p O 3

Thus we observe that

-k/2
b /

gj]kT =Y gj(z/p)

and

k/2gj0(z/p)-

g _ -—
95 | T = YP
This concludes the proof of Lemma 2.

Lemma 3. Let f be an element of Mk(Fo(p)). Then the

transformation equation ¢(X;f) = 0 of f is Z-rational if and

only if both f and flk(g _é) are Z-rational.

Proof. Let us write the Fourier expansions of £ and f[kT as

(1.1))  f(z) =1 _ a(n)e(nz),
and
(1.1)  (£], 1) (2) = 2_ b(n)e(nz/p),

respectively. Further let us write the transformation equation
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of £ as

(1.2)  o(x;6) = xPTH 4 PH (-1 Mo xPTITH,

First let us show that if both f and f{kr are Z-rational, then
all coefficients cu are Z-rational. Let us define a set R by

(1.3) R ={ (é g), T, = (2 _i)'l u=20,1,2,...,p-1}.

Then, since p is a prime, the set R gives a complete set of
representatives for To(pﬁ\SLz(Z) (e.g., [5, Lemma 2.2]).

0 -1, ,1 u

Since T_ = 0)(0 l), it follows from (1.1b) that for any

u (1

integer u,
(1.4) (£l 1) (2) = 2°_c"b(n)e(nz/p),

where ¢ = e(l/p)._Since all Fourier coefficients b(n) belong to
Z, the modular forms f|kTu are Z[zl-rational. Thus coefficients
du4are Z[z]l-rational. In fact, coefficients cu are symmetric

functions in { flka}ae . On the other hand, (1.4) shows that

R
for any field-automorphism o of C, {(flka)p}u,eR.= {flku}QGER'
Thus we have that oup % ou. This shows that the modular forms
ou are Z—rationai. Conversély.assume that all the coefficients
OU are Z-rational. Then we have that for any field-automorphism

| - = - (&
(1.5) M, p(X = £lia) =T, (X - (£],0)°).

Especially, we have that f° = f or £P = f]kTu for some u,-

0
' o _ ad o 1 -1 - £P ' - 1 1,u
Assume that f£" = flkTuO' Since £ |k(0 1) f¥ and TuO T(O 1) 0,

we see
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P _
(1.6) £f© = flkr.
Therefore we have
L 0
(;.7) f[kTu = flkt = £ for any u.
Moreover Lemma 2 and (1.6) show that

(1.8) (£],0° = fp|k1'= £.
Thus we have that
(1.9)  (£], 1" = (£],0° = £.
Rewriting the equation (1.5) through (1.7) and (1.9), we obtain
that | | |
x - £)(x - £ = x - £°) (x -5)P.
Hence we have that for any field-automorphism 0,
(1.10) £° = £.
Namely, £ is Q-rational. On the other hand, the vector space
Mk(F(p))lhas a Z-rational basis (e.g., [8, (9)]1), where T (p) is

the subgroup of SLz(Z) defined by

r(p) = { (2 g)é-SLZ(Z) | a=d=1, b=c=0 mod p}.

Thus we can write f as
f(z) = c2n=0d(n)e(nz)

with a rational number ¢ and rational integers d(n). Let us
consider the equation 9 (X;f) ='d over the ring Q[[gl] of formal
power series in g = e(z). Then f is integral over Z[[gl] and

is contained in its quotient field. In fact, all coefficients of
®(X;f) are Z-rational from the assumption, and therefore, they

belong to Z[[g]] for g = e(z). Since Z is principal, Z[I[q]]
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is a normal ring (e.g., [2, VII.3 Exercise 9c]), and this shows
that f is Z-rational. Lemma 2 and (1.10) show that for any field-

automorphism p,
P
(fIkT) = f|kT.

Therefore a similar argument as above in Z[[ql/p]] shows that
f[kr is again Z-rational. Note that flkT belongs to Mk(r(p)j.
This COncludes the proof of Lemma 3.

Proposition 4. Let f.gg an element of Mk(ro(p)) and let

us write the transformation equation of f as

o(x:£) = xPHT 4 gPTL gy Mg xPHITH
: u=1 u
If ¢(X;f) = 0 4is Z-rational, then we have a congruence:
o(X;f) = (X —01)(Xp -opj mod p.

Proof. Let us write g = e(1l/p) and p be the unique prime
ideal of Z[g] which divides p. Then we know that z =1 mod p.
Since f[kT is Z-rational by Lemma 3, the Fourier expansion (1.4)
of f[kTu'shows that

flkTu = flkr mod p

for any T Thus we have that

"t

o(X;f) = (X - £) (X - flkT)p mod p

(x - £) (xP - (flkT)p) mod p.
Especially;'we have that
0q 3 £ mod p

and

Q
1

(f[kT)p mod p.
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Thus we have that

L F) = - P _
P(X;£) = (X cl)(x op) mod p.

Here all coefficients of ¢(X;f) are Z-rational, and especially

both ol‘and cp are Z-rational. Therefore we have that

P(X;£) = (X - 01)(Xp - op) mod p.
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§2. Proof of Theorem 1.

By the definition of the discriminant, we have
D = I(f[|,a - £ g) 2
k k

where the product is taken over all non-ordered pairs (q,RB)
with o # B in the representative set R as in (1.3). Then we

see that

— p 1 _ _ 2
P H (f flkT ) 0<u<v§p—1(f|kTu flkTv) :
Obviously D is a modular form on SL2(Z) of weight kp(p+1). Let
us put

P 1o _

0<u<v§p—l(f|kTu - flkTv)'
Then we see D = 62. FPirst let us show

Lemma 5. 4§ is 3 modular form on SL, (Z).

1 1, _
O l) = § and

0 -1 ___‘ S for m = kp(p+1)/2_ Put ¢ = (é 1) and T = (2 _(]5).

Proof. It is sufficient to prove that 5[

GIm(l 0)

The right multiplication of ¢ on the coset space ro(pﬁ\SL (2)

induces a permutation on the representative set R, and (1 0

10,
01’7 Tp-1

1)

is transformed to ( to T and Tu to 7 for u =

0’ u+l

0,1,---,p-2. Thus we observe that the first factor Hp 1(f - flkTu)

of § is invariant under o, and that

{H0§u<vgp—l(f|kTu - flkTv)}lkp(p—l)/Z0

= (-1 P-1 -
= (=1) 1-[0§u<v§p—l(f|k1-u flkTv)'

Since p is odd, this shows that 6|m0 = §. Also, 1t induces a

10

permutation on R, and (é g) is transformed to Tor To
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and T to Tv(u) for u = 1,2,---,p~-1. Here v(u) is é integer in

{1, 2, ---, p-11} satisfying v(u)u = -1 mod p. Rewriting § as

p-1 . _ Pl - . _
I[u=0(f f|kTu) Hv=1( flkTO flkTv) H1§u<v§p-1(f|kTu fIkTv)’
we observe that

= _qP-1 - .oPp-1 _ |
slmT Ti=p (£ flkTu) Hv=l(f[kT0 flkTV)

T cucvsp-1 Elx Ty - Elety vy

Thus, in order to prove that 6]mT = §, we have to show that the

last factor H1§u<v§p—l(f|ETu - f[krv) of § is alternating under

Fhe permutation v; namely, it is sufficient to prove that the
permutation ¥ on (Z/pZ)x defined by ¢ (a) = -1/a for a (Z/pZ)><
is an odd permutation. Since wz =" 1id., we see that

Y = TII(a,b),
where the product is taken over all the transpositions (a,b)
between a and b with ab = -1 and a # b. The number % of the
elements in (Z/pZ)xwith a2 = ~1 is 2 or 0 according as p = 1 mod 4
or not. Thus (p-1-2)/2 is odd. Sincé the number of the transpositions
iny is (p-1-2)/2, ¥ is an odd permutation. This concludes the

proof of Lemma 5.

We claim that

(2.1) § = cg, where ¢ is a constant with c? = (_1)(p—1)/2pp

and g is a Z-rational modular form on SL2(Z)..

In fact; both f and flkr are Z-rational by Lemma 3. Thus,
using the Fourier expansion: (1.4) of flkTu' we can find polynomials

Bn(x,y) in Z[x,y] so that
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u v ©
(2.2)  fler, - £l = (@0 - e (% ) e me/p)

u

_ ‘ _ .V
for all Tu and TV. Put ¢ = H0§u<v§p—l(c £ ). Then we see that

2 ~1)/2
¢? = (-nP -1/ H0§u<v§p_l(cu N KA

v

= (-1) P /2 p-1 o (g =)

u,v=
uFv

= (-n P2l ugpl vy

- (_1)(P-1)/2pp.
- _ -p-1 ) u v
Further put g = T (£ - flkTu)'H0§u<v§p—1{2n=15n(§ ,C )el(nz/p) 3.

Then Hg;é(f - f[kru) is Z-rational as shown below. For any field-
automorphism p of C, we defined the action of p on a Fourier

series ¢ = Z:=Oc(n)e(nz/p) by ?p = Z§=

Oc(n)pe(nz/p). Then the

Fourier expansions (1.1a) and (1.4) of £ and fIkTu show that any
automorphism p induces a bijection of the set {f - flkTu | uw=0,

1,2,---,p-1}. Thusjﬂﬁ;é(f - f[kTu) is Q-rational. Moreover, all

Fourier coefficients of f - f[, t  belong to zZ[z]. Thus
Hﬁ;é(f - f]kru) is Z-rational. A similar argument combined with

the symmetricity in x and y of the polynomial Bn(x,y) shows that
© u v . .
H0§u<v§p—1{zn=18n(c /¢ )e(nz/p)}is also Z-rational. Therefore

g is Z-rational. Note that § = cg. Then Lemma 5 shows that g is

a Z-rational modular form on SL2(Z). Thus (2.1) is established.
Now we prove the divisibility of g by the power of A as

indicated in the theorem. Let us put h = g/A(p—l){Z‘ Since the

Fourier expansion of g starts from e(E%lz), h is still a modular
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form. In fact, the Fourier expansion (2.2) of f]kru - flkTv
starts from e(z/p), and therefore, by countihg the number of
such factors in the product for g, we know that the Fpurier
expansion bf g starts from e(E%lz). Further the cusp form A

is nowhere vanishing on H and its Fourier expansion starts from
e(z). Thus h is holomorphic on H and even at icw. Since the
first coefficient of the Forier expansion of A is equal to 1,

h is again Z-rational. Next we assume that £ is a cusp form.

Then, since the Fourier expansion of the first factor Hﬁ;é(f - flkTu)

of g starts from e(z), that of g starts from e(B%lz) or higher
term. A similar argument as above is still valid. This completes
the proof of Theorem 1.

We remark the following direct consequence of Theorem 1,
which may be well known:

Corollary 6. Let us consider the specialized equation of

f at an elliptic curve E defined over Q. For the definition of

the specialized equation and the details, see [3, §3]. Under

the same notation as in [3, §31, if the specialized equation

®(X;£,E) =0 is irreducible, then the prime p always ramifies

in the splitting field of the equation.

Remark. The above proof shows that without assuming the

Z-rationality of transformation equation, we may express D

as

p = AP71,2

with a modular form h on SL2(Z).

- 2-4 -



- 14 -~

§3. The transformation equation of gEi -~
14

In this section, let us consider in more detail the trans-

formation equation of gE* D as in [3]. Here g is a cusp form in
14

sz(Po(p)) and E¥* is the Eisenstein series defined by

AP
—A ab
% = _
E)\lp(Z) ZYQF&\TO (p) (cz+d) r ( Y (C d) ) .
where A 1is an even integer > 2 and rm = {i(é ?) | né&z}. The

Eisenstein series EK P is a modular form on ro(p) of weight ),
14

and is expressed as follows (see [9, p.794]):

(3.1)  Ef (2) = —22—1c, (2) - p’c, (p2)},
4 -—
(p 1)BA
where BA is the )\-th Bernoulli number and
(3.2)  G,{z) = -B./2) + £ {5 a* 11e (nz)
) AN A n=1'“0<d|n | .

Let us take a cusp form Sﬁ(z) = Zn=la(n)e(nz) in Sz(Fo(p))

with the following three properties:

0 -1, _ e
(3.3) ?lg(p 0) = y@ for y = tl;

(3.3b) a(l) = 1;
(3.3c) ?’is Z-rational.

For example, any Q-rational primitive form in Sg(ro(p)) satisfies
these conditions. Moreover, we can construct another example of
such cusp forms. We will give this example at the end of this
section.
Let us put
%/2
(3.4) g =-+2—n¢
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where we write
(3.5) (pA—l)B /2X = N_/D
A AT

with mutually prime integers NA and DA' and d is the greatest

common divisor of pg/2 and D.,. Then we have

A

Proposition 7. The transformation equation of gEK b is
. 14

Z-rational.

Proof. It is sufficient to show that gE* and gE*
T=Xp IEY ol g
are Z-rational (see Lemma 3). Here T = (2 _é). We see from (3.1),

(3.2) and (3.5) that

Py, i | w
* = —_ b
(3.6) EA,p(z) 5 { 5 + Zn=1b(n)e(nz);
A A
with b(n) €%2. Thus N.E* is Z-rational, and therefore, gE*
}\ }\,p >\lp

is Z-rational. Since GA(z) is a modular form in MK(SL2(Z)),

we have that

(3.7) G, (pz) |t = p—AGA(z/p),

and hence, (3.1) shows that

(3.8) (N,E¥ ) (2) = DA{GA(Z) - GA(Z/p)}.

,pll

On the other hand, it follows from (3.3a) that

(3:9)  (¢],1) (@) = yp 2% (z/p).

Thus gE¥* | T 1is again Z-rational. In fact, both the modular
A,plL+A

forms f(z/p) and GA(Z) - Gx(z/p) are Z-rational; therefore,

the modular form:

D

(3.10)  (gEf _|,7) (2) = y—g2Pz/p) (G, (2) - G, (2/p))

,Plk
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is Z-rational, where k = g+). This is what we wanted to show.

Proposition 8. Let us write the transformation equation of

— pll P|1 U pll 38
: * = X o+ - .
@(X gEk' ) 2 l( 1) O’.X

Then the modular form % has a Fourier expansion of the form:

| 5 |
(3.11) o (2) = -Y(_al)Pg(zz) + Io_sc(n)e(nz)

with rational integers c(n).

Proof. Since op is the p-th elementary symmetric function

in {gEK plku}aE:R' we have by (1.3) that
L4 .
X o * p—l p"'l * : p_l *
0p gE)\,p{Zu=0Hv=0(gE)\,plkTv)}+ Hu=0(gEA,plkTu)'
v#u
Here = (0 _1)‘ Since t = T(l u) it follows from (3.10) that
Tu 1 u'- u o 1"’ ‘ -

D
(3.12) (9B} lyty) (2) = y—3* #((z+u) /p) (G, (2) - G, ((z+u) /p)].

Thus we can find polynomials Bn(x) in Z[x] so that (3.12) is
rewritten as

D
(3.13) (9B} |yt (2) = —y—Prn o6, (ch) e (nz/p)

for all " Here‘g = e(1l/p). Especially we have the second

polynomial Bz(x) = x2. Therefore we have that

D
(3.10) 18 l(gEE [yt (2) = —y(al)pzzzzpw(n)e(nz/p)

u
with rational integers w(n). Note w(2p) = 1. On the other hand,
since the Fourier expansion of gE; p starts from e(z), (3.13)

4

shows that

(o]

* p_l p_l *
(3.15)  gBY (=P (MPT(gEF n=3p-2

A,p "u=0"v=0
v#u

|t )3 () =& w'(n)e (nz/p)

p
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with rational integers w'(n). Thus, considering w(2p) = 1 and
3p-2 > 2p, we see that the Fourier expansion of Gp starts from

D
e(2z) with the coefficient _Y(_EA)P. Moreover, it follows from

Proposition 7 that op is Z-rational modular form. This concludes
the proof of Proposition 8.
Remark. Our modification of ? as in (3.4) is best possible.
Analyzing carefully the above proof of Proposition 7, one see
that if both c99E*’p and c*?EK’plkT are Z-rational for a constant c,

2/2N

then ¢ is a rational integer and a multiple of o) N,

/d.

Proposition 9. The discriminant D of @(X;gEK p) is expressed
14

D = (_l)(P-l)/prAZ(p+l)h2,

where h is a Z—rationalfmodular form on SL2(Z).

Proof. The Fourier expansion (3.13) of the modular form
gEK pIkTu shows that both the Fourier expansions of the modular
r

forms g - gE* T and gEK

- *
A,p[k u 9E

start from
x,p|kTv

,pIkTu
e(2z/p) for any Tu and T, Thus that of the modular form

p—l * - * - * - *
Hu=0(gEA,p gEx,plkTu) H0§u<v§p—1(gEx,p]kTu gEA,p|kTv) starts

from e((p+1)z). Then a similar argument as in the proof of
Theorem 1 shows our assertion.

Now let us give examples of the cusp forms ?’satisfying
the conditions (3'3a,b,c) when there exists a primitive form
of conductor p. Let us take a primitive form f in Sz(ro(p))
of conductor p and write the Fourier expansion of f as

f(z) = I__ b(n)e(nz).
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(For the primitiveness of cusp forms, see, for example,
[9, p789].) We denote by M the module generated over % by all
b(n) in C and by K the field generated by M. For any isomorphism

o of K into C, we define the conjugate £9 of £ by
£%(z) = 3°_b(n) % (nz)
n=1 :

As is well known, £9 is again a primitive form in SQ(FO(p)).
We define a cusp form Tr(qgf) in SQ(FO(p)) for any o in K by

o

00

Tr (af) = Zo
where ¢ runs over all isomorphisms of K into C. Since f is
primitive, it follows from [l, Lemma 3] that

L0 =1, _

Moreover we have that for any conjugate fg,

ol 0 -1, _ o}
(3.16b) f lz(p 0) = vf
for the above y, because y is expressed as

(3.17) vy = -b(p)p- %2,

Thus we see that for any o in K,
(3.18)  Tr(af)|, " ") = yrr(af).
L'p O

We see easily that
(3.19) Tr (of) is Z-rational if and only if g belongs to D =

{B&K | TrK/Q(Bx)éZ for all x&M}.

Proposition 10. Let us put

U = &xé[)] Tr (af) has a Fourier expansion of the form:

el(z) + 2:=2c(n)e(nz) with rational integers c(n)},

and
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V= {aeD | Try (@) = 0}.

Then we have

(1) U is not empty;
(2) V is isomorphic to Zd_1 for 4 = [K:Q];
(3) U = e + V for any element g of U.
Proof. Let o be an element of D. Since b(l) = 1 and

[oe}

Tr(of) = zn=lTrK/Q(qb(n))e(nz), we see that

(3.20) o belongs to U if and only if Tr =1,

K/Q®

Since. M generates K and since M is a Z-free module, M is

isomorphic to Zd; Let {wi}?=l be a Z~basis of M and {ni}?=1

be the dual basis of {wi} with respect to Tr hence we have

K/Q’
(3.21)  Try o (wng) = 8,

Then we know'that

d .
(3.22) D = Zi=1Zni (direct sum).

Since 1 (=b(1l)) belongs to M, we may write as 1 = Zg=1miwi

for some rational integers m, - Then (3.21) shows that m, = TrK/Qni

for any i. Namely, we have that

d

(3.23) 1l = Zi=1(TrK/Qni)wi'

.. d .
Let ¢ be the greatest common divisor of {TrK/Qni}i=l' Since

f is primitive , all Fourier coefficients b(n) of £, and therefore,
all w, are algebraic integers. This combined with (3.23) shows
that ¢ is equal to 1. Thus considering (3.22), we know that

(3.24) Tr D = 7.

K/Q
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Especially there exists an element o, of D such that Tr(aof)

0
belongs to U. Since V g&Q is isomorphic to Qd-l, we see the
assertion (2). The third assertion is clear from (3.20).

Now let us put ??= Tr(af) for any element o of U. Then
(3.18), (3.19) and (3.20) show that 97satisfies the conditions

(3.3 ).

a,b,c

- 3=-7 -
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§4f Numerical examples.

In this section, we are going to give several numeriacal

examples of the transformation equations @(x;gEK p) = 0 and
. I
the specialized equations @(X;gEK p,E) = 0 at various elliptic
4

curves E defined over Q. See [3, §3] for the definition of the
specialized equation at an elliptic curve. For simplicity,

we consider only the case dim SQ(PO(p)) = 1. Thus we may take
as V’in (3.4) with (3'3a,b,c) the unique primitive form in
SQ(PO(p)). Let us modify y as in (3.4) and write the modified
modular form as g.

Let us explain hdw to read the table given below by taking
the following case I as an example. This case is the restatement
of the example given in our previous paper [3, §5]. We will add
several new exampleé here. We use the same notation in §3 and
write simply G, H, and D for 12g2, 216g3, and A, respectively.

Here 9, (resp., g3) is the Eisenstein series in M4(SL2(Z)) (resp.,

M6(SL2(Z))) whose constant term of the Fourier expansion is equal to

1/12 (resp., 1/216 ). Thus they are Q-rational.

g=-5-13¢.
x° 1
x> 0
x* 250D
x> -144002
x*  1556°D?
X GH2D2 + 18096GD3

1 65H2D3 + 538240D4
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The above table can be read that the transformation equation

@(X;gEzls) is given by the polynomial

6
(4.1)  x° -25epx* -14400%x3 +1556%D%%? +(GH%D? +18096GD3)x

+(65H2D3 +538240D4).

Thus, for example, the monomial -25GD given at the right-hand

. 4 . . . . :
side-of X" is the isobaric polynomial of the coefficient of X4

Tr (X) 0
2. -30° 220
Tr(x%) 506D = 2730-3.141 & —— £
' 36.72.11.13
- | 29
Tr(x3) 4320D° = 2 46—3-22120( " 2 £,,)°
38.53.93.11%.13.17-19/T44169

Tr(X4) 630G2p% = 27%2.3.301
oz ( 234 . X f ')0
o514 6 53 112.932.17.19-23-29/T8295489 °2
or(X0) -5GH2 +89520GD°
578 55811 (e =243 (0 -3537792) o
- 25218 7 .-5.:13.722.792.902 —f40)

318.57.9°.11%.13%.17%-19%-23-29:31-37y1 (a)

18

N (0=3537792) = 2 -37-72-11°23~3lo73°2161

rr (x®) 76108%D> +16815360D"

56
_ 2_94~3-46!Zé 2°° (51170 +17457217536)

321 ,59.5.114.133.172.19%.23

C
5 £48)

©29.31037.4143Y" ( a}

N(5117a+17457217536)

= -237.38.11.383%-3129512851870124265857
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Here Tr(Xu) indicates the ~th power sum Tr(gEz 5)u of all the
7

roots of the transformation equation given in (4.1), and the
corresponding isobaric polynomial is given at the right-hand side

of Tr(Xu). As we have seen in [3], the power sum Tr(gEZ 5)u can
. I4

be expressed as

-1
D(8y-1,£,9MEf ;1°7)

2—2(8u—1)
ﬂ8u<f,f>

* |- .3. -2
Tr(gE4'5) 3-(8y-2)! f.

£ P(8y)

(See [3, Theorem] for the notation.) After the isobaric polynomial
in the table, we have given this expression of power sum. (This
expression is not given in [3, §5].) Thus, for example, in the

expression corresponding to Tr(XS), the value —243(a—3537792)/{318

+57.7°.11%.13%.172.192.23-29-31.37y" () } gives the special value

5 4
40<f

. Here f40 indicates a primitive form in S4O(SL2(Z));

f40>

40"
o is a generator of the field K(f40) generated over Q by all
Fourier coefficients of f40; ¢y indicates the dharacteristic
polynomial of o and ' (x) = dy/dx. Further, in the above expression
of Tr(XS), the summatioﬁ is over all isomorphisms g of K(f40)
into C. Note that in the limit of the calculation we have done, .
all the primitive forms in Sm(SLz(Z)) are conjugate under the
automorphisms of C. We denote by N(y) the norm of an algebraic
number v, for example, N(nx—-3537792) indicates the norm of the
number 0-3537792. If the factors in the listed numbers are less
than 1010, then they are primes; otherwise, we do not know
whether they are primé or not.

Let us now list the characteristic polynomials y (x) and

their discriminants D(p) of a generator o of the fields K(fm):
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m Y(x) and D(y)
40 | ¥(x) = x°-548856x°~810051757056x+213542160549543936
D(y) = 220.32.52.92.132.73.59077.92419245301
a8 | wix) = x4—5785560x3-467142374034432x2+1426830562183253852160x
+329791382884021432080767385¢
70 .22 6 _6 2
D(p) = 2'°-3%%.5°.7°.31.383°.10210753616344141199245524873423541499439
50 | $(x) = x°+24225168x°-566746931810304x-13634883228742736412672
D(p) = 232.312.5%.94.12284628694131742619401
60 | Yi(x) = x°+449691864x°-2209450184054433792%3
~736010060393513697870348288%2 |
+810634763334812972416233648439689216x
+263222216157060824115203098902237248565018624
D(p) = 248.338.58..8 154.53.1010

+651916320472103878902727074480503094855670432357132070088

29889732805885022069457473017171187795597"S

This number 65191--:-5597 is a number of 97-figures.

(o]
I
wn
N
w
-
~

0

—145G2D

587520HD2

3635GH2D> - 377403840GD>

c°m3p? + 6290064G2HD3

~7758%D3 -7058849600u2D%
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Tr (X) 0
2 2 -38 223 o9
Tr(x%)  2906%D = 27°%.3.181 5

3 -52-72-11-13-17

f20

35
Tr(X3) —1762560HD2 = 2 58.3.2812( T3 -2 c )G

o 375274112 .13%.19 .23 BT335 30

Tr(X4) 27510GH2D2_+ 1582277760GD>
44
_ =78 ) 277 (131¢+1196402688) G
=2 33T T3 £40)
G 37757 +77.117.13%.17%.19%.23.29.31.37y" (g)
27 .7 .2 - '
N(131a+1196402688) = -2°'.3".7°.3833.32619042931
Tr(xs) -5G2H3D2 - 457402320G2HD3
= 2798.3.481

-2°2 (4,-8757800448)
>

L33 5% £50) "
$29.31.37.41.43.47y" () -

3 T e57 7 -114-133-172-192~23

N(0-8757800448) = 221-37-52-19-73~4235321855794559

4_3

e (x®)  2939450u%D 2p4

+ 1421841072000H°D +'585580127846400D5

= 27118 3 5y
268(168536131a2+47995636461477888a+9993503564022187290525696)

27-511-78-115.134.173.193.232.292.31.37,41043047053¢?(a)

-3 (
93

. g
o)
N(168536131a2+47995636461477888a+9993503564022187290525696)

105 ;23 3 ;2 4

= -2 5°.11%.13.17

+1165842531588761730920594563390304066538263826553725077932

25580762957067062391
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Case III. P=5, ¢ =4, x =8, k = 12.

x° 1

x> 60480D

x* -625u%D + 130183200002

x> 1171137606%D% + 11768083957280D° |

x? 6975su%p? + 17283257868306%D° + 39309437117214720D

x  HOD? + 17889611952H°D - 18249030627747840u%D"
+ 15417626668505432064D°

1 20345H°D3 + 335091233981440H"D* + 6660452326511923200H%D°
+ 32175921734973802414080D°

CTr(X)  -60480D

Tr(x?)  1250H%D + 1054166400D

Tr(x3)  -464741280H2D% - 20325436323840D°

Tr(x*)  s502230u%D? + 27308861671680H%D> + 411430804078878720D

Tr(x’) -5u%D? - 552450647760H%D% - 1001721601502668300u2D%

-8528203665906974392320D°
Tr(x®)  2269408108°D° + 101092055900113920u%p*

245

+ 30124477620177181286400H"D" + 178664126617848672068567040D
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Case IV. P =5, 2 =4, X =10, k = 14,

o T T A N
NI

. =924775H°D7 - 21779093073266168000H D

g = 5%2.71-521¢
1

0 .
-2545GH®D - 604109741760GD>

25344112320H3D2 - 211931520573911040HD

“u*p? - 27110066987928960G2HD°
2.4

3

1207235G

- 18393423999571176837120G°D

7452 5

GH'D® + 22434273283920GHD3

D

- 306714023877649287994343424GHD5

8,3 6,4

4

-137733379370650837386547200H DS

-1335397897742946615034439270400H2D6

Tr(X) 0

2 2

Tr(XZ) S090GH™D + 1208219483520GD

Tr(X°) -76032336960HD? + 635794561721753120HD°
Tr(x*)  81251106%H%D% + 1145901051228326406%a2D3
+ 803470856176952483143680G2D"

Tr(XS) -5GH'DT” - 434675195691600GH™D

752 5,3

- 101645803821847030179840GH3D4

+ 641683050942935’873278036869120CHD5

8,3 6,4

Tr(X6) 14539127450H D~ + 2490718583181800323200H™D

+ 72718216860527846662995763200H D>

+ 642540701843479691260435943482982400H°D°

+ 877146390169927704752272689036106137600D7

+ 5557001335458375149568GH D%
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"Case V. p =5, =4, X =12, k = 16.

g = - 5-31-601-691¢
1

81829440GD

-10225G2H%D + 1216590866568000G2D2

2 2.3

2910441252960H4D + 6127470158334076661760H"D

- 32282327635049729294991360D4

20065355GHD? + 204260280733724336320CH

+ 10256756271487171426170408960GH2DY

4.3

D

+ 92754860107460880754044689448960GDS

cZup? + 3019423074347448062%1%D3

4.4

-.1616075240214171538481347584G2H D

+ 4211742212834091386209897324806144G%H2D"

- 13223615489524979651841803535733751808G2D6

64370105H-D° + 1860464795874207408499840H5D%

1435861361962972042529821882490880H6DS

+

272324675659205212055849466146099036160H4D6

+

108890178080782704778692703693672305131520H2D

+

871861028963226012849339863959645515656724480D8

+
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Tr(X)  -81829440GD.
Tr(X?)  20450G%H%D + 4262875517577600G2D2
Tr(X°)  -11241441830880H7D% - 267658181885197261025280H2D3
- 333901542596495424649297920D%
Tr(x*)  128839830GHD? + 350708164048445224320GH%D3
+ 17176524173998325938032762101760GH2D%
+ 15348600887342729858716479124930560GDY
Tr(X)  -5G2HD? - 334334374436696400G2H5D7
- 6232562017950017936662318080G2H*p*
- 1105217254226789312600343970428511518720G2H?D5
- 704474107875704575852741574977576721448960G2D%
Tr(x%)  90715550801082%D3 + 50642550664820076143642880u%p"
+ 84100815515218630048984550520668160H°D°
+ 71139193278750995235760020495784302585949573120H%D°
+ 152077104881047937683933892892491027290971061616640H207
+ 55882397614885896504263747102166330237811042088386560D°
Case VI. P =5, 2 =6, A =4, k = 10.
g = -52.13¢
x® 1
x> 0
x* -sse’p
x> -41040HD?
x2 395GH%D? - 7266240GD7
x  -628°p% + 121104G%HD3
1 -325H%D% - 2691200m%p%

- 4-9 =
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Tr (X) 0
2, 2 -38 223
Tr (%) 1106%D = 27203181 52 £,
37.5%.7%.13.17
_ 31
| 377.5.7%.11%.13%.17.23 /51379
Tr (x*)  4470GE%D? + 39519360GD3
44
_.-78 2°% (1494+142350336) o
=2 38 (s £40)
377.57.7°011%.13%.17%.102.23.29.31.37y" (q)
N(1490+142350336) = -225~37-52-7?o19-8389~89oo3

Tr(X°) 5G°HOD? + 10680480G2HD3

= 2798.3.481

2  2°2(4-180741120) Y
0323 59 18.11%.133.172.102. 252 50

3 75777117 -13 ©237+29031.37-41:43:47y" (a)

N(a-180741120) = 222-37-31F1223oi8919300277

4p3 2D4 + 5137086873600D5

Tr(X6) 204350H'D” + 8391590400H

= 27118 5. 55,

vy (202 (66374230%421213804941967360-67543443341033481437184)
c

£,
327.511.79.115.13%0 173,193,232, 29%.31.37.41.43-47.53y " () 60

N(6637423a2+2121380494196736a—67543443341033481437184)

= 2107.323,53 55,174,181 233

»450456472421115659925683391938601142706911756985491297538017303
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-10800D

-175H%D + 39994560D2

-954000H%D2 - 58506624000D>

4595H*D? + 5976610560H2D> + 29346922598400D%

6.2 -
-H°D? - 26913792H*D® + 134778459340812p%

3375u°D + 352042480008%D%

%

Tr (X) 10800D

Tr(x%)  350H

2 2

D + 36650880D
2.2 3

Tr(XS) 8532000H°D" + 139408128000D

trxt)  42870u*D? + 70958165760H%D> + 554255811993600D

4

4.3 2,4

Tr(Xs) 5H6D2 + 2374938960H D~ + 433666967592960H™D

Tr(x8)  5935550H%D3 + 42310659964300u*D* + 23509557362450452008°D

+ 2237768521113600000DS

2.5

+ 9081391088816750592000D6-
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Case VIII. P =11, 2 =2, A =4, k = 6.

12

4

11

~

1

g = -11-619¢
1
0
11088D
-9075HD
-5962H%D + 24952224D2
~77H?D - 67215456HD>
37678773HD? + 25829299584D°
-17237915H°D% - 119108926464HD"
2011493H%D? + 104087609758H°D> - 63766745458048D"
-55913H°D? - 44737025102H°D> + 98746847977536HD"
440H%D? + 6582378638H%DS - 52178539740844H%D"
+ 21138255578398464D°
-u’D% - 308633685H°D° + 6499878090033H-D*
- 20914887319687488HD"
- 6718%D3 - 207200985242u%D% + 1480882485474007H%D
. 3777866437306791104D°

- 4-12 -
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Tr(X)

Tr (X%)
Tr(XS)
Tr (x5
Tr (X°)
Tr (x%)
Tr(X/)
Tr (x%)
Tr(Xg)
Tr(XlO)

Xll

Tr(X™7)

Tr (x12)

- 33 -

0
-22176D

27225HD

23848H%D + 146078592D2

33SH-D - 167040720HD>

-375645699H2D% - 1221354706176D°

493425009H°D2

1316800325 D2

4634885H°D> - 9276821678520H°D

252458%0% + 3407018048508%D3

+ 1841678960352HD°

+ 4757929285648H2D3_+ 11020319744130048D

3 4

4

- 21750837501488832HD

- 45226189141798280H2p%

- 97227250729594799616D°

118/D% + 4400455461072H°D° + 127109577108789495H5p%

+ 239140646004793752384HDS

825050231500HD3 - 19665598331764275H

+ 393248139239476286700H2D5 + 845180451592627987085568D

4.4

D
6

- 4-13 -
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In what follows, we are going to give the specialized equations
Q(X;gEi,p’E)= 0 at several elliptic curves E defined over Q. Again
let us explain how to read the table given below for specialized
equations. We first list the curves where we specialize the

transformation equations in Case I-V:

Case A : y° = 4x> —22.371, 4373.19 (11A) ;
Case B : y2 = 4x3 —22x +1 (371) ;
case ¢ : y° = 4x> =23.371.5x 4373.251 (37B) ;
Case D : _y2 = 4x3 +23-3x —23 ;
Case E : y2 = 4X3 +1 (272) .

The curve in Case A is isogeneous to the modular curve Xo(ll)/Q

(

I

H/Po(ll)). This curve is referred in [10] as 11A. The example

H

of Case A is the restatement of [3, §5]. The curves in Case B and
Case C correspond the distinct non-isogeneous factors of the

jacobian variety of X0(37) . The curve in Case D is found in

/Q
Serre [6, 5.9.2], which has potential everywhere gdod reduction.
The curve in Case E has complex multiplication under Q(/=3). In
the following table, we list the specialized equations of the
transformation equations already listed above at these elliptic
curves. In Case A, as is well known, all the specialized equations
of level 5 are .reducible; so, we here list only one of them

which corresponds to that in Case I. All the factors of the

equations listed below are irreducible over Q.

- 4-14 -
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4 3

Case A. G = 2 H=-2".19 D= -11
(1) x%+4400%%-174240%3+4801280X%-340645072X+5881529280
= (X-22) (x°+22x*+4884x3-66792%%+3351856X-267342240)
Case B. G = 2%.3 H = -22.35 p =37
(1) x°-44400x*-1971360x%+488897280X%+47063460096X+1162360730560
Discriminant
= 230.312.55.1168.3712 430442372
Constant term = 26-5-373-71711

(11) x%-12360960%*-173732014080X5-906454164234240X%-158592818333712384%
-617317300619300044800

Discriminant
= 290.330.55.3712.4312.17515886745480535148167 2
Constant term = -21°.3%.52.373.1275457

(I1I11) X%+2237760X°+1781129088000X%+603569053249044480%3

2

+77756911326531739975680X"-524619092816465160434614272X

+105470303081456206598924843089920

Discriminant
= 2196.360 55,2712 c2492.117192.191320980941323573505961 21532
Constant term = 2°°.312.5.373.71711-1272109

(IV) X6-39697470231920640X4+2318403282667096971018240X3
-79571649536431574388800162365440X2
+215475800430255113967103637484510117888X
-180650394914609884769327204746079333724979200

Discriminant

_ ;156 90 (5 .2 ;.12

3 57+117-37

2
X(1692620601527228431550100005983156558085509852481908028)
37328703

Constant term = -2°9-318.52.373.2777.6469-19089662430217
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(v) x%+145329085440X°+3837341672479781683200%"

—46021426623559234641189289328640)(3
+35178581265i605713387572533809327772794880X2
-46790723656122484150478959948110814885763660906496X
+5075737063108711398438669685930545872239299744266893393920

Discriminant

210,102 .5 12 2 2

= 2 3 «57.3777-737.39521

X 1638823091808126122004055543622661872689329826018532338)2
1603186396722399746932636921 :

43 .18

Constant term = 2 -3_ 5

<537 '661-8897132982043042382280208129

Case C. G =225 H=-23.251 D = 37
(1) x8-148000%%-1971360%3+5432192000%%+1029841968640X+14284097373120

Discriminant

36.c5

_ 36.c5.5,12 4,2

3712 97 4 Z

+2517-158512865466953

Constant term = 2°-3:5-37°.293749

(11) Xx%-137342000%%-1615064279040X3+151709417062400%2
-16661863907206758400X-53980077857153227161600

Discriminant
= 290,511 37129592 . 846492.80524545706391590943442857 >
Constant term = -28.3.5%2.373.103.2512.8353

(I1I) X6+2237760X5+1688966528000X4f1242544486072320000X3

2

+428210896271006105600000X“-122101944360234810500710400000X

+12154857571766922351262826496000000

s’

Discriminant _
= 2186 535,212 1492.251%.613%-76812-85990%.2828711435333527499047-
Constant term = 2°°-3-5%.11.373.433421914559869
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- 37 =

(IV) X®-132384946524160000X*+21274901477944622530560000%3
-1024232100465770191290105856000000%2
-6666338187777448119334115989258240000000X
-171765970451673771504422151468636281241600000000

Discriminant

156 41 .12 ,,.2

3712223 z

= 2 S -251

X(210413886361011152471697101677904852736456762343701556447‘)2
5299686747399133

30 8

Constant term = -2""-3-5 5 2

-37°-251%-42776313398349053608831
(v) x5+484430284800%5+42637091095065067520000%%

+1191013336577507913643327488000000X3
+13457249056881351216480342923175526400000000)(2
+28017443414101677967629098569361263396126720000000000X

+17931826045430048857989553905829178499337154671411200000000000

Discriminant

216 .55 7,12 ,c 4

3712.951 z

= 2 *5 +3001

x{59569294896991541925368974827809306186927780234914489024 2
564400393948147302109439473683144103

42 11

Constant term = 2" °-3-5 5

-377-809

x679234447403551875231178057851449

H=2%.33 p= .20.35

3

5,22

Case D. G = -2"-3

4 2

(1) X6-111974400X -348285173760X +3109490031329280X

+19395514284707414016X
+30756189783160164188160

Discriminant

156.5102.55.5252. 19932

30, ;20

= 2

Constant term = +5.31-53

6 2

2
(I1) X +187042037760X4+245549406344970240X3~409599982526419477463Q40X

-3391011510639691674610040832X

-1232983430314568952093894456115200
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_38_

Discriminant
= 2228 3132 ¢5.122.1766601958386631369872
Constant term = -27°.320.52 5514671

(111) x®-940584960X5+314896235102208000X*-44180830874421892617338380%3

(IV) X6+42080459238584604426240X

(V)

+2280132588424701078050853649121280X2
-17214744129018591819208640165526254911488X
+437329739457071001758251942193692492633441566720

Discriminant

306 ;162 .5 2

= 2 3 - 572857 -1281038620436158228092596208394272

60 332 5.31.53.509-48955757

4

Constant term = 2

+1377552015614216371873334710763520X;
-89221522557725558133720282371231512044503040X2

-139350800506019023284957313437543882607023333021057024X
=55300532147549500076664990648195586731052493633265100180684800

Discriminant

368 192

= 2308 4 5.472.1092

5

X44Z75612064'289953736301204301726556694592007012186072876292

Constant term = -2/2.338.52.107-3240694984266366049

X6+366512097853440X5+24406304373574174539723571200X4

-1957290889419754283886842288845509560893440X3
+23787048189330037674267146417212680864094364958279598080X2
-16467673098362564917405712521433419400135894794798454628675502473216X

+2946351257120748673032865078237641507167920249441162884821938006433
022156472320

Discriminant

438 222 (5

= 2 -3
8629380009334997313026253707

87

x(1705548135068099045964341560266432474082434388963556675Slé)2

44

Constant term = 2 377.5-19-9787-20795362588083644126474341
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Case E. G=0 H=-25.35 p= .33

(1) x%-1049760x3+226351350720
Discriminant = 239.366.55.716.176
Constant term = 20-31%2.5.113

(11) x%-92513249280%X3-174990344338597478400
' Discriminant = 2°9.396.513.76,416.4,6
Constant term = —218-318'52-413

(111) X%-1632960%5+949822848000x%-227647896698880000%3

2

+19303585597263052800000X°-674475678084121598361600000X

+8394331582098381949894656000000
= (X2-544320X+20323353600)3
Discriminant of the irreducible factor = 2-°.3%.5

Constant term of the irreducible factor = 2-V-3

(1v) x%-901218987881625600000000%3

-19837121300256932128368336568320000000000000

156 2156 65 1,6 526 cqb 6 6

3 57717

13,

Discriminant = 2 «+237-597-717-70157

Constant term = -2°0.3%0 3.213

5 597-71

(V) X6-22783187826815470647902208000000X3

+420663885954424404794201383021715969885287219200000000000

Discriminant

216,186 (55 16 156,126 c,16 6

= 2 3 +137-1737-521

2

<4519

x2070362216376807869728367

42 .36 11 3 3

Constant term = 27%4-3°9.5t1.5219.4519
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