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On the Idiscriminants of transfdrmation equations 

of modular forms 

by 

Yoshitaka MAEDA 

Introduction. 

The purpose of this note is to add some supplementary 

results to our previous paper [3]. We have proved there that 

the transformation equations of certain modular forms can be 

expressed by special values of the zeta functions of those forms. 

At the symposium, we talked about this result. Here we give some 

results obtained after that. 

Let f be a modular form on rO(p) of weight k. We assume that 

p is an odd prime throughout the paper. Then the transformation 

equation of f is defined by 

¢(X;f) = IT (X - flka) = 0, 
a Er O(p)\SL2 (Z) 

where (flky) (z) = det(y)k/2 f ((az+b)/(cz+d)) (cz+d)-k for 

y = (a b)E-GL +(R) = {YE:GL
2

(R) I det(y) > O}. 
c d 2 

Obviously all coefficients a~ of ¢(X;f) are modular forms on 

SL
2

(Z). We call that the transformation equation ¢(X;f) = 0 is 

Z-rational if all coefficients a have Z-rational Fourier 
~ 

expansions as modular forms (see §1, for the Z-rationality of 

Fourier expansions). Then one of our results is 
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Theorem 1. If the transformation equation ¢(X;f) = 0 

of f is Z-rational and if p is an odd prime, then the discriminant 

D of ¢(X;f) is expressed as 

. (-1) (p-l) /2pPLlP+lh2, 

D ;" {(-1) (p-1) /2p
p"p-1h 2, otherwise, 

where h is a modular form on SL2 (Z) with a Z-rational Fourier 

expansion and Ll is Ramanujan'~ function exp(2rriz)rr~=1 (l-exp(2rrinz»)24. 

Especially, when f is the special cusp form discussed in [3], 

we even know the divisibility of the above form h by ~(p+l)/2 

Proposition 9). We will prove this theorem in §2. 

In Proposition 4, we will also show under the assumption in 

Theorem 1 the following congruence relation: 

mod p. 

Here both 01 and 0p are certain modular forms on SL
2

(Z). Though 

this result follows from the Eicher-Shimura congruence relation 

[7, Theorem 7.9], we will give an elementary proof without using 

their result. 

In [3], we considered the transformation equation ¢(X;f) = 0 

for f = gE~,p , where g is a cusp form on rO(p) and E~,p is 

a certain Eisenstein series. In §3, we will show that for a certain 

choice of g, the transformation equation ¢(X;gE~ ) = 0 of gE~ A,P AlP 
is Z-rational. In §4, we will give numerical examples of the 

transformation equations for the above gE~ p and the specialized , --
equations at several elliptic curves (see [3, §3], for the definition 

of the specialized equation 'at an elliptic curve). 
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§1. Congruence relation of transformation equations. 

Let p be an odd prime and rO(p) be a subgroup of SL2 (Z) 

defined by 

mod p}. 

We denote by Mk(rO(p» the vector space of modular forms on rO(p) 

of weight k. Hence an element f of Mk(rO(p» is a function on 

the upper half complex plane H with the following three properties~ 

(i) f is holomorphic on Hi 

(ii) = f for all y E.- r 0 (p) ; 

(iii) 
00 

has the Fourier expansion of the form: Ln=Oay(n)e(nz/p) 

at ioo for all y E: SL
2 

(Z) e (z) = exp (2Tfiz) ). 

Moreover, if ay(O) = 0 for all yE SL
2

(Z), then f is called a 

cusp form. The subspace of Mk(rO(p» consisting of all cusp forms 

is denoted by Sk(rO(p». 

Let A be a subring of C and f be a function on H with a 

• 00 

Fourier expanslon of the form: Ln=Oa(n)e(nz/N) for some positive 

integer N. Then we say that f is A-rational if a(n) belongs to A 
00 

for any n. Let g(z) = Ln=Ob(n)e(nz/N) be another A-rational 

function and ill be an ideal of A. Then we write f - g mod m 

if a(n) :: b(n) mod m for all n. Further, for any field-automorphism 

G of C, we define an action of G on f by 

f G(z) 00 ()G ( IN) = Ln=Oa n e nz . 

Though the following lemma is a corollary of [8, Theorem 5], we 

give an elementary proof. 
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Lemma 2. Let f be an element of Mk(rO(p». Then for any 

field-automorphism a of C, we have that 

Proof. It is sufficient to show this for a basis of Mk(rO(p». 

First let us show the relation for Eisenstein series. We know 

from [4, Satz 11] that the subspace of Mk(rO(p» spanned by all 

Eisenstein series has a basis consisting of the following functions: 

k > 2 : 00 k-l 
Gk(z) = -Bk /2k + Ln=I{L o <dlnd }e(nz) 

and G
k 

(pz) 

k = 2 

Here Bk is the k-th Bernoulli number and 

G2 (z) = i/{4rr(z-z)} - 1/24 + L~=I{Lo<dlnd}e(nz). 

o -1 
Put T = (1 O)~ Since Gk(z) is an Eisenstein series on SL2 (Z) 

of weight k, we have that GklkT = Gk ' and therefore, Gk(pz) IkT 

-k 
= p Gk(z/p). Thus both GklkT and Gk(pz) IkT are Q-rational. Then 

the desired result follows for Gk(z) and Gk(pz). A similar 

argument shows that the lemma holds also for E • Next let us 
p 

show the relation for a basis of cusp forms. The theory of primitive 

forms shows that a basis of Sk(rO(p» is given by fi(z), fi (pz) 

and g. (z). Here f. (z) and g. (z) are primitive forms of conductor 
J 1. J 

1 and p, respectively. Our assertion holds for such cusp forms f .. 
1. 

In fact, it is known that f. a are again primitive forms of 
1. 

conductor 1. Let us write f(z) = f. (pz). Then we have that 
1. 

and 
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Since fO"(z) = f.O"(pz), we see that 
1 

0" -k 0" 
(f Ik T) (z) = p fi (zip). 

It follows that (flkT)O" = fO"lkT. 

Now let us show the relation for primitive forms g. of 
J 

conductor p. We know from [1, Lemma 3] that 

Since y is expressed as 

( ) l-k/2 
y = -a p p 

with y = ±1. 

0" with the p-th Fourier coefficient a(p) of g. and since g. is 
J J 

again a primitive form of conductor p, we have that 

0"1 0 -1 0" g. . k ( 0) = yg. • 
J P J 

Thus we observe that 

-k/2 
gj1kT = yp gj(z/p) 

and 

0"1 -k/2 0" g. kT = yp g. (zip). 
J J 

This concludes the proof of Lemma 2. 

Lemma 3. Let f be an element of Mk(fO(P)). Then the 

transformation .. equation q) (Xi f) = 0 of f is Z-rational ... if and 

o -1 
only if both f and fl k (1 0) are Z-rational. 

Proof. Let us write the Fourier expansions of f and flkT as 

00 

f(z) = ~n=Oa(n)e(nz), 

and 

respectiv~ly. Further let us write the transformation equation 
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of f as 

(1. 2) <I>(X;f) 

First let us show that if both f and flkT are Z-rational, then 

all coefficients 0 are Z-rational. Let us define a set R by 
II 

(1. 3) { I 0 Tu -_ (0
1 

-u1 ) R = (0 1)' u = 0,1,2,···,p-1}. 

Then, since p is a prime, the set R gives a complete set of 

representatives for rO(p~SL2(Z) (e.g., [5, Lemma 2.2]). 

Since Tu = (~ -~) (~ ~), it follows from (l.lb ) that for any 

integer u, 

I 
00 nu 

(1.4) (f kTu) (z) = Ln=OZ;; b(n)e(nz/p), 

where Z;; = e(l/p). Since all Fourier coefficients b(n) belong to 

Z, the modular forms flkTu are Z[z;;]-rational. Thus coefficients 

o . are Z[Z;;]-rational. In fact, coefficients 0 are symmetric 
II II 

functions in { flkal aER . On the other hand, (1.4) shows that 

for any field-automorphism P of C, {(flka)p}a E-R = {flka}a~R· 

Thus we have that 0 P = 0 • This shows that the modular forms 
II II 

o are Z-rational. Conversely. assume that all the coefficients 
II 

o are Z-rational. Then we have that for any field-automorphism 
II 

P of C, 

Especially, we have that fP = f or fP = flkT for some uo• 
Uo 

fP flkT • Since fPlk(~ -1 = fP and 1 i)uO, Assume that = 1) Tu = T(O Uo 0 

we see 
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(1. 6) 

Therefore we have 

(1. 7) fl· T = fiT = fP k u k for any u. 

Moreover Lemma 2 and (1.6) show that 

(1. 8) 

Thus we have that 

(1. 9) 

Rewriting the equation (1.5) through (1.7) and (1.9), we obtain 

that 

Hence we have that for any field-automorphism p, 

(1.10) 

Namely, f is Q-rational. On the other hand, the vector space 

Mk(f(p» has a Z-rational basis (e.g., [8, (9)]), where f(p) is 

the subgroup of SL2 (Z) defined by 

f (p) = { (~~) E SL2 (Z) 1 a == d - 1, b - c - 0 mod p}. 

Thus we can write f as 

co 
f(z) = cLn=Od(n)e(nz) 

with a rational number c and rational integers d(n). Let us 

consider the equation ~(X;f) =0 over the ring Q[[q]] of formal 

power series in q = e(z). Then f is integral over Z[[q]] and 

is contained in its quotient field. In fact, all coefficients of 

~(X;f) are Z-rational from the assumption, and therefore, they 

belong to Z[[q]] for q = e(z). Since Z is principal, Z[[q]] 
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is a normal ring (e.g., [2, VII.3 Exercise 9c]), and this shows 

that f is Z-rational. Lemma 2 and (1.10) show that for any field-

automorphism p, 

(flkL)P = fl kL • 

Therefore a similar argument as above in Z[[q1/p]] shows that 

flkL is again Z-rational. Note that flkL belongs to Mk(r(p)). 

This concludes the proof of Lemma 3. 

Proposition 4. Let f be an element of Mk(rO(p)) and let 

us write the transformation eguation of f as 

<I> (Xi f) 

If <I>(Xif) = a is Z-rational, then ~ have a congruence: 

mod p. 

Proof. Let us wr~te ~ = e(l/p) and p be the unique prime 

ideal of Z[~] which divides p. Then we know that ~ = 1 mod p. 

Since flkL is Z-rational by Lemma 3, the Fourier expansion (1.4) 

of flkLu· shows that 

flkLu = flkL mod p 

for any L . Thus we have that 
u 

<I> (Xif) - (X 

Especially, we have that 

mod p 

and 
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Thus we have that 

¢(Xi f ) :: (X - 01) (X
p 

- 0p ) mod p. 

Here all coefficients of ¢(Xif) are Z-rational, and especially 

both 01 and 0
p 

are Z-rational. Therefore we have that 

¢(Xif) :: (X - 01) (XP - 0p ) mod p. 
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§2. Proof of Theorem 1. 

By the definition of the discriminant, we have 

where the product is taken over all non-ordered pairs (a,S) 

with ~ ¢ S in the representative set R as in (1.3). Then we 

see that 

D = IT~:~(f - flkLU)2.ITO~u<V~P_1 (fl kLu - flkLv)2. 

Obviously D is a modular form on SL
2

(Z) of weight kp(p+1). Let 

us put 

a = IT~:~(f - flkL u ) .ITO~u<v~p-1(flkLu - fl kLv)· 

Then we see D a 2 . First let us show 

Lemma 5. a is a modular form on SL2 (Z). 

Proof. It is sufficient to prove that alm(~ ~) = a and 

~ I (0 -1) = ~ f k ( 1) /2 P t (1 1) d (0 -1) u m IOu or m = p p+ . u 0 = 0 1 an L = 1 O· 

The right multiplication of 0 on the coset space ro(p)\SL2 (Z) 

1 0 induces a permutation on the representative set R, and (0 1) 

is transformed to (~ ~), Lp_1 to LO' and LU to LU+1 for u = 

0,1,···,p-2. Thus we observe that the first factor IT~:~(f - fl kLu ) 

of a is invariant under 0, and that 

p-1 I I = ( -1 ) IT 0 < < -1 (f kL - f kL ). =u<v=p u v 

Since p is odd, this shows that al m0 = a. Also, L induces a 

permutation on R, and (~ ~) is transformed to LO' LO to (~ ~), 
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and TU to TV(U) for u = 1,2,···,p-l. Here v(u) is a integer in 

{I, 2, ... , p-l} satisfying v(u)u = -1 mod p. Rewriting 0 as 

rrP- 1
(f - fl T )·rrP- 1 ( fikTO - fl T )·rr (fl T fl T ) u=O k u v=1 k v l~u<v~p-l k u - k v ' 

we observe that 

olmT = -rr~:~(f-flkTu) .rr~:~(flkTO-flkTv) 

Thus, in order to proye that olmT = 0, we have to show that the 

last factor rrl~U<v~p-l(fl~Tu- flkTv) of 0 is alternating under 

the permutation Vi namely, it is sufficient to prove that the 

permutation ~ on (Z/pZ)x defined by ~(a) = -1/a for a (Z/pZ)x 

is an odd permutation. Since ~2 = id., we see that 

~ = rr(a,b), 

where the product is taken over all the transpositions (a,b) 

between a and b with ab = -1 and a ~ b. The number 2 of the 

elements in (Z/pZ)xwith a 2 = -1 is 2 or 0 according as p = 1 mod 4 

or not. Thus (p-I-2)/2 is odd. Since the number of the transpositions 

in·~ is (p-I-2)/2, ~ is an odd permutation. This concludes the 

proof of Lemma 5. 

We claim that 

(2.1) o = cg, where c is a constant with c 2 = (-1) (p-l)/2pP 

and g is a Z-rational modular form on SL2 (Z). 

In fact; both f and flkT are Z-rational by Lemma 3. Thus, 

using the Fourier expansion (1.4) of flkT u ' we can find polynomials 

S (x,y) in Z[x,y] so that 
n 
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(2.2) u 
fl L - fl L = (1;; k u k v 

for all u V 
LU and LV· Put c = rro~u<v~p-1 (l; - l; ). Then we see that 

2 = (-1) p (p-1) /2rr ( u _ rV) (rv _ r U ) 
C 0~u<v~p-1 l; ~ ~ ~ 

= (-1) (p-1) /2 rrP-1 (u _ rV) 
u,v=O l; ~ 

u:fov 

= (-1) (p-1)/2pP . 

.,.,. rther p t g -_ rrP- 1 (f fl ) rr {"co Q (u V) ( /)} tU u u=O - kLu· 0~u<v~p-1~n=1~n l;,l; e nz P . 

P-1 
Then rru=O(f - flkLu) is Z-rational as shown below. For any field-

automorphism P of C, we defined the action of p on a Fourier 

series 1= E:=oC(n)e(nz/p) by ~p = E:=oc(n) Pe(nz/p). Then the 

Fourier expansions (1.1 a ) and (1.4) of f and flkLu show that any 

automorphism P induces a bijection of the set {f - flkLu I u = 0, 

p-1 
1,2,···,p-1}. Thusrru=O(f flkLu) is Q-rational. Moreover, all 

Fourier coefficients of f - flkLu belong to Z[l;]. Thus 

rr~:~(f - flkLu) is Z-rational. A similar argument combined with 

the symmetricity in x and y of the polynomial S (x,y) shows that n 

g is Z-rational. Note that 0 = cg. Then Lemma 5 shows that g is 

a Z-rational modular form on SL2 (Z). Thus (2.1) is established. 

Now we prove the divisibility of g by the power of ~ as 

indicated in the theorem. Let us put h = g/~ (p-1)~2. Since the 

£::1. Fourier expansion of g starts from e( 2 z), h is still a modular 
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form. In fact, the Fourier expansion (2.2) of flkLu - flkLv 

starts from e(z/p), and therefore, by counting the number of 

such factors in the product for g, we know that the Fourier 

E.::l expansion of g starts from e( 2 z). Further the cusp form ~ 

is nowhere vanishing on H and its Fourier expansion starts from 

e(z). Thus h is holomorphic on H and even at ioo. Since the 

first coefficient of the Forier expansion of ~ is equal to 1, 

h is again Z-rational. Next we assume that f is a cusp form. 

Then, since the Fourier expansion of the first factor rr~:~(f - flkLu) 

of g starts from e(z), that of g starts from e(P;l z ) or higher 

term. A similar argument as above is still valid. This completes 

the proof of Theorem 1. 

We remark the following direct consequence of Theorem 1, 

which may be well known: 

Corollary 6. Let us consider the specialized equation of 

f at an elliptic curve E defined over Q. For the definition of 

the specialized equation and the details,~e [3, §3]. Under 

the same notation as in [3, §3], if the specialized equation 

~(X;f,E) = 0 is irreducible, then the prime p always ramifies 

in the splitting field of the equation. 

Remark. The above proof shows that ~thout assuming the 

Z-rationality of transformation equation, we may express D 

as 

with a modular form h on SL2 (Z). 
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§3. The transformation equation of gE~ . 
A,P 

In this section, let us consider in more detail the trans-

formation equation of gE* as in [3]. Here g is a cusp form in A,P 
so(ro(p» and E* is the Eisenstein series defined by 

7v A,P 

E ~ ( z ) = L: r 'r. ( ) (c z +d) - A , 
A,P y~ 00'0 P 

where A is an even integer > 2 and r <Xl = {± (~~) I n E- Z}. The 

Eisenstein series Et,p is a modular form on rO(p) of weight A, 

and is expressed as follows (see [9, p.794]): 

(3.1 ) E* (z) = A,p 
2A A A {G

A 
(z) - p GA (pz)}, 

(p -1)B
A 

where BA is the A-th Bernoulli number and 

(3.2) 
<Xl A-I 

GA (z) = -BA/2A + L:n=I{L:o<dlnd }e(nz). 

Let us take a cusp form ~(z) = L:~=la(n)e(nz) in S!L (rO(p» 

with the following three properties: 

(3.3 ) 
a 

a(l) = 1; 

r is z-rational. 

For example, any Q-rational primitive form in S!L (rO(p» satisfies 

these conditions. Moreover, we can construct another example of 

such cusp forms. We will give this example at the end of this 

section. 

Let us put 

(3.4) 
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where we write 

(3.5) 

with mutually prime in~egers NA and DA, and d is the greatest 

common divisor of p~/2 and D
A

. Then we have 

Proposition 7. The transformation equation of gE* is 
A,p 

Z-rational. 

Proof. It is sufficient to show that gE~ and gE* I L 
A,P A,P ~+A 

are Z-rational (see Lemma 3). Here L o -1 
= (1 0)· We see from (3.1), 

(3.2) and (3.5) that 

D N 
( -A A 00 b( , 

E~,p z) = N
A

{ DA + En=1 n)e(nz)l (3.6) 

with b(n) oEz. Thus NAELp is Z-rational, and therefore, gELp 

is Z-rational. Since GA (z) is a modular form in MA (SL2 (Z», 

we have that 

(3.7) 
-A 

GA (pz) I A L = P GA (zip) , 

and hence, (3.1) shows that 

(3.8) 

On the other hand, it follows from (3.3 ) that a 

(3.9) 
-~/2 (<;1 ~ L) (z) = yp r (z I p) • 

Thus gE~,pl~+AL is again Z-rational. In fact, both the modular 

forms r(z/p) and GA (z) - GA (zip) are Z-rational; therefore, 

the modular form: 

(3.10) 

- 3-2 -



- 16 -

is Z-rational, where k = t+A. This is what we wanted to show. 

Proposition 8. Let us write the transformation equation of 

gE* as A,p 

Then the modular form a has a Fourier expansion of the form: ---- p --- - -- ---
DA 00 

(3.11) a (z) = -y (---a:-) Pe (2z) + Ln=3c(n)~(nz) p . 

with rational integers c(n). 

Proof. Since a is the p-th elementary symmetric function 
p 

in { gE ~ , p I k a} a E: R' we have by (1. 3 ) tha t 

ap = gEt,p{L~:~IT~:~(gEt,plkTv)}+ IT~:~(gEt,plkTU)· 

Here T 
U 

(3.12) 

v=/=u 

o -1 1 u . 
= (1 u)· Since Tu = T(O 1)' it follows from (3.10) that 

Thus we can find polynomials S (x) in Z[x] so that (3.12) is 
n 

rewritten as 

(3.13) 

for all T • Here ~ = e(l/p). Especially we have the second 
u 

polynomial S2(x) = x
2

. Therefore we have that 

(3.14) 
1 DA 

IT~:o(gEt/plkTU) (z) = -Y(d)PL~=2pw(n)e(nz/p) 

with rational integers wen). Note w(2p) = 1. On the other hand, 

since the Fourier expansion of gE~ starts from e(z), (3.13) 
1\ ,p 

shows that 

(3.15) gEt,p{L~:~IT~:~(gEt,plkTV)} (z) = L~=3P_2w' (n)e(nz/p) 
v=/=u 
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with rational integers WI (n). Thus, considering w(2p) = 1 and 

3p-2 > 2p, we see that the Fourier expansion of 0 starts from 
DA p 

e(2z) with the coefficient -y(~)p. Moreover, it follows from 

Proposition 7 that 0 is Z-rational modular form. This concludes p 

the proof of Proposition 8. 

Remark. Our modification of f as in (3.4) is best possible. 

Analyzing carefully the above proof of Proposition 7, one see 

that if both c Cf Et P and c rEt pi k Tare Z-rational for a constant c, 

then c is a rational integer and a multiple of p£/2NA/d. 

Proposition 9. The discriminant D of ~(X;gE~ ) is expressed - A,P - -
as 

where h is a Z-rational;modular form on SL2 (Z). 

Proof. The FO'urier expansion (3.13) of the modular form 

gE~ IkT shows that both the Fourier expansions of the modular 
,p u 

forms g - gE~ IkT and gE* I l - gELplklv start from 
,p u A,p k u 

e(2z/p) for any T and T . Thus that of the modular form u v 

from e((p+1)z). Then a similar argument as in the proof of 

Theorem 1 shows our assertion. 

Now let us give examples of the cusp forms 1 satisfying 

the conditions (3.3 b ) when there exists a primitive form a, ,c 

of conductor p. Let us take a primitive form f in S£ (rO(p)) 

of conductor p and write the Fourier expansion of f as 
00 

f(z) = ~n=lb(n)e(nz). 
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(For the primitiveness of cusp forms, see, for example, 

[9, R789].) We denote by M the module generated over Z by all 

b(n) in C and by K the field generated by M. For any isomorphism 

a of K into C, we define the conjugate fa of f by 

As is well known, fa is again a primitive form in s~(ro(p)). 

We define a cusp form Tr(af) in s~(rO(p)) for any a in K by 

a a Tr(af) = L:a f , 

where a runs over all isomorphisms of K into C. Since f is 

primitive, it follows from [1, Lemma 3] that 

(3.16 ) a 
y = ±1. 

Moreover we have that for any conjugate fa, 

for the above y, because y is expressed as 

(3.17) 1-~/2 Y = -b(p)p . 

Thus we see that for any a in K, 

(3.18) 
0 

Tr (af) I ~ (p 
-1 

0) = yTr(af). 

We see easily that 

(3.19) Tr(af) is Z-rational if and only if a belongs to D = 

{S 6 K I Tr
K

/ Q (Sx) cE Z for all x ~ M} . 

Proposition 10. Let us put 

U = {a t: D I Tr (af) has a Fourier expansion of the form: 

00 

e(z) + L:n=2c(n)e(nz) with rational integers c(n)}, 

and 
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v = {a ~D I TrK/Q(a) = OJ. 

Then we have -----
(1) U is not empty; 

(2) V is isomorphic to zd-l for d = [K:Q]i 

(3) U = a + V o for any element a
O 

of U. 

Proof. Let a be an element of D. Since b(1) = 1 and 
00 

Tr(af) = Ln=ITrK/Q(ab(n»e(nz), we see that 

(3.20) belongs to U if and only if TrK/Qa = 1. 

Since.M generates K and since M is a Z-free module, M is 

. h' d {}d . { }d 1somorp 1C to Z . Let wi i=1 be a Z-bas1s of M and ni i=1 

be the dual basis of {wi} with respect to TrK/ Qi hence we have 

(3.21) 

Then we know that 

(3.22) d 
D = L. lZn. 1= 1 (direct sum). 

Since 1 (=b(I» belongs to M, we may write as 
d· 

1 = L. Inl.w. 1= 1 1 

for some rational integers mi. Then (3.21) shows that m
i 

= Tr
K

/
Qn i 

for any i. Namely, we have that 

(3.23) 

d 
Let c be the greatest common divisor of {TrK/ Qn i }i=1. Since 

f is primitive, all Fourier coefficients b(n) of f, and therefore, 

all w. are algebraic integers. This combined with (3.23) shows 
1 

that c is equal to 1. Thus considering (3.22), we know that 

(3.24) 
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Especially there exists an element a O of D such that Tr(aOf) 

d-1 
belongs to U. Since V ~Q is isomorphic to Q ,we see the 

assertion (2). The third assertion is clear from (3.20). 

Now let us put r= Tr(af) for any element a of U. Then 

(3.18), (3.19) and (3.20) show that r satisfies the conditions 

(3.3 b)' a, ,c 
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§4. Numerical examples. 

In this section, we are going to give several numeriacal 

examples of the transformation equations ~(x;gE~ ) = 0 and 
1\, p 

the specialized equations ~(X;gE~ ,E) = 0 at various elliptic 
1\, P 

curves E defined over Q. See [3, §3] for the definition of the 

specialized ~quation at an elliptic curve. For simplicity, 

we consider only the case dim Si(rO(p» = 1. Thus we may take 

as (/) in (3.4) with (3.3 b ) the unique primi ti ve form in T a, ,c 

Si(rO(p». Let us modify r as in (3.4) and write the modified 

modular form as g. 

Let us explain how to read the table given below by taking 

the following case I as an example. This case is the restatement 

of the example given in our previous paper [3, §5]. We will add 

several new examples here. We use the same notation in §3 and 

write simply G, H, and n for 12g
2

, 216g3 , and ~, respectively. 

Here g2 (resp., g3) is the Eisenstein series in M4 (SL2 (Z» (resp., 

M
6

(SL2 (Z») whose constant term of the Fourier expansion is equal to 

1/12 (resp., 1/216 ). Thus they are Q-rational. 

Case I. P = 5, i = 4, A = 4, k = 8. 

g = -5 ·13 Cf • 
x6 1 

x5 0 

x4 -25Gn 

x3 -144on
2 

x2 155G
2

n
2 

X GH2n
2 + 18096Gn3 

1 65H2n 3 + 538240n
4 
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The above table can be read that the transformation equation 

~(X;gE4,5) is given by the polynomial 

(4.1) x6 -25GDX
4 

-1440D2X3 +155G2D2X2 +(GH2D2 +18096GD3)X 

+(65H
2

D3 +538240D4 ). 

Thus, for example, the monomial -25GD given at the right-hand 

side-of x4 is the isobaric polynomial of the coefficient of x4. 

Tr (X) 

Tr (X2) 

o 

50GD 

Tr(X5 ) -5GH
2 

+89520GD
3 

2-78.3.381I _243(a -3537792) ""f f 
= . cr(318.57.75.113'132'172'192023o29.31.37~u (a~ 40 

N(5117a+17457217536) 

= -237'38.11.38320312951285187012426585~_ 
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Here Tr (X].1) indicates the ].1-th power sum Tr(gE* )].1 of all the 
4,5 

roots of the transformation equation given in (4.1), and the 

corresponding isobaric polynomial is given at the right-hand side 

of Tr(X].1). As we have seen in [3], the power sum Tr(gE4,5)].1 can 

be expressed as 

Tr(gE* )].1 
4,5 

].1-1 
2 ( 8 1) D (8 U~ 1, f, g ].1E4* 5 ) 

= 2- ].1- 3 (8 2')' , f •• ].1- . If P (8 ].1) 8 • 
Tr ].1<f,f> 

(See [3, Theorem] for the notation.) After the isobaric polynomial 

in the tabie, we have given this expression of power sum. (This 

expression is not given in [3, §5].) Thus, for example, in the 

. 5 43 18 
expression corresponding to Tr(X ), the value -2 (a-3537792)/{3 

753 222 
·5 ·7 ·11 ·13 ·17 ·19. ·23·29·31·37~' (a)} gives the special value 

D(39,f40,g5E4,54) 
~O Here f 40 indicates a primitive form in S40(SL2 (Z» i 

Tr <f
40

,f
40

> 

a is a generator of the field K(f
40

) generated over Q by all 

Fourier coefficients of f40i ~ indicates the characteristic 

polynomial of a and ~I (x) = d~/dx. Further, in the above expression 

of Tr(X5 ), the summation is over all isomorphisms cr of K(f40 ) 

into C. Note that in the limit of the calculation we have done, 

all the primitive forms in Sm(SL2 (Z» are conjugate under the 

automorphisms of C. We denote by N(y) the norm of an algebraic 

number y, for example, N(a-3537792) indicates the norm of the 

number a-3537792. If the factors in the listed numbers are less 

10 than 10 , then they are primesi otherwise, we do not know 

whether they are prime or not. 

Let us now list the characteristic polynomials ~ (x) and 

their discriminants D(~) of a generator a of the fields K(f ): m 
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48 

50 

60 
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l/J(x) and D (l/J) 

l/J(x) = x 3-548856x2-810051757056x+213542160549543936 

D (l/J) = 226.312.52.72.132.73.59077.92419245301 

l/J(x) = x
4
-5785560x

3
-467142374034432x

2
+1426830562183253852160x 

+3297913828840214320807673856 

D (l/J) = 270.322.56.76.31.3832.10210753616344141199245524873423941499439 

l/J(x) = x 3+24225168x
2

-566746931810304x-13634883228742736412672 

D(l/J) = 232.312.54.74.12284628694131742619401 

l/J(x) = x 5+449691864x
4
-2209450184054433792x

3 

-736010060393513697870348288x
2 

+810634763334812972416233648439689216x 

+263222216157060824115203098902237248565018624 

D(l/J) = 2148.338.58.78.174.23.1019 

·651916320472103878902727074480503094855670432357132070088 

* 

* 2988973280588502206945747301717487795597 ' 

This number 65191"'5597 is a number of 97-figures. 

Case II. P = 5, JI. = 4, A = 6, k = 10. 

g = 5
2

'31 Cf 

x6 1 

x5 0 

x4 -145G
2

D 

x3 587520HD
2 

x2 3635GH
2

D
2 - 377403840GD

3 

X G2
H3D2 + 6290064G

2
HD

3 
-

1 -775H
4

D
3 -7058849600H

2
D

4 
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Tr(X) 0 
23 

= 2-
38

.3 ·18!· 9 ~ 229 f 20 3·5·7 ·11.13.17 

Tr(X3) -1762560Hn2 -58 _2
35 

= 2 ·3·28!E( 11 5 4 2 2 f30)cr 
cr 3 ·5·7 ·11 .13 019 .23/51349 

44 
= 2 -7 8 .3 • 3 8 , ~ ( 2 ( 131 a+ 1196402 688 ) f ) cr 

.~ 17 7 4 3 2 2 2 40 
cr 3 ·5·7 ·11 ·13 017 019 .23.29.31 o371/Ji (a) 

N (131a+1196402688) = _227 .3 7 .72 .3833 .32619"042931 

Tr(X5 ) _5G2
H3n 2 - 457402320G2Hn 3 

= 2-98 ·3.48! 

.E (-2
52

(a-8757800448) cr 
cr 23 9 6 4 3 2 2 2 f.50) 

3 ·5·7 ·11 ·13 ·17 .19 .23 .29031037o41o43o471/Ji (a) 

N(a-8757800448) = 221.37.52.19.7304235321855794559 

Tr(X6 ) 2939450H4n 3 + 1421841072000H2n 4 + "585580127846400n5 

= 2-118~3.58! 
.E ( 2 68 (168536131a2+479956364614778 88 a+9993503564022187290 525696) 

cr 27 11 8 5 4 3 3 2 2 3 ·5 ·7 ·11 ·13 ·17 ·19 ·23 ·29 031 0 37.41 o43 o47 o 531/Ji (a) 

N(168536131a2+47995636461477888a+9993503564022187290525696) 

= ~2105.323.53.112.13.174 

.1165842531588761730920594563390304066538263826553725077932 

25580762957007062391 
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Case III. P = 5, ! ~ 4, 1 = 8, k = 12. 

g = -S·13·313~ 

X6 1 

XS 60480D 

X4 -62SH2n + 1301832000D2 

X3 117113760H2n 2 + 11768083937280n3 

X2 697SSH4DZ + 1728323786880H2n 3 + 39309437117214720D4 

X H6n 2 + 178896119S2H4n3 - 18249030627747840H2D4 

+ lS417626668S0S432064DS 

1 2034SH6D3 + 33S091233981440H4D4 
+ 66604S2326S11923200H2DS 

+ 32175921734973802414080n6 

Tr(X)-60480D 

Tr(X2) 12S0H2n + 10S4166400n2 

Tr(X3) -464741280H2n 2 -"2032S436323840n3 

Tr(X4) S02230H4D2 
+ 27308861671680H2n 3 + 411430804078878720n4 

Tr(XS) _SH6 n 2 - SS24S9647760H4n 3 - 1001721601S02668800H2D4 

-852820366S90697439232on S 

226940810H6n3 + 1010920SS900113920H4n4 

+ 30124477620177181286400H2n S + 178664126617848672068S67040D6 
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Case IV. P = 5, i = 4, A = 10, k = 14. 

X6 1 

X5 0 

2 . 
g = 5 ·71·521r 

X4 -2545GH2D - 604109741760GD 2 

X3 25344112320H3D2 - 211931520S73911040HD 3 

X2 120723SG 2H4D2 - 27110066987928960G 2H2D3 

- 18393423999S71176837120G 2D4 

X GH7D2 + 22434273283920GHSD3 + S557901335458375149568GH3n4 

- 306714023877649287994343424GHD5 

1 -924775H8D3 - 21779093073266168000H6D4 

-13773~379370650837386547200H4D5 

-1335397897742946615034439270400H2D6 

Tr(X) 0 

Tr(X2) . 5090GH2D + 1208219483520GD2 

Tr(X3) -76032336960H3D2 + 635794561721733120HD3 

Tr(X4) 8125110G 2H4D2 + 114590105122832640G2H2n3 

+ 803470856176952483143680G 2D4 

-5GH7D2 - 434675195691600GH5D3 

- lci1645803821847030179840GH3D4 

+ 641683050942935873278036869120GHD 5 

14539127450H8D3 + 2490718583181800323200H6D4 

+ 72718216860527846662995763200H4D
5 

+ 642540701843479691260435943482982400H
2n6 

+ 877146390169927704752272689036106137600D 7 

- 4-7 -



- 28 -

-Case V. P = 5, 2 = 4, A = 12, k = 16. 

g = - S·31·601·691S'> 

X6 1 

xS 81829440Gn 

X4 -1022SG 2H2n + 1216590866568000G 2n 2 

X
3 

29104412S2960H4n 2 
+ 6127470158334076661760H2n 3 

- 32282327635049729294991360n4 

X2 2006S35SGH6n 2 + 204260280738724336320GH4n 3 

+ 10256756271487171426170408960GH2n4 

+ 92754860107460880754044689448960Gn S 

X G2H8n 2 + 30194230743474480G 2H6n 3 

1~16~75240214171538481347584G2H4n4 
+ 4211742212834091386209897324806144G 2H2n5 

- 132236154895249796518418035357337S1808G2n6 

1 64370105H10n 3 + 1860464795874207408499840H8D4 

+ 143S861361962972042529821882490880H6D5 

+ 27232467S659205212055849466146099036160H4D6 

+ 108890178080782704778692703693672305131520H2D7 

+ 8718610289632260128493398639S964SS156S6724480D8 
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Tr(X) 

Tr(X2) 

Tr(X3) 

- 818 29440GD . 

20450G 2H2D + 4262875517577600G 2D2 

-11241441830880H4D2~ 267658181885197261025280H2D3 

- 33390154259~495424649297920n4 

128839830GH6D2 + 359708164048445224320GH4n3 

+ 17176524173998325938032762101760GH2D4 

+ 15348600887342729858716479124930560GD5 

_5G 2H8D2 - 334334374436696400G2H6D3 

- 6232562017950017936662318080G 2H4D4 

- 1105217254226789312600343970428511518720G2H2D5 

- 704474107875704575852741574977576721448960G 2D6 .. 
Tr(X6) 90715S508010H10D3 + S0642SS0664820076143642880H8D4 

+ 84100815S1S218630048984SS0S20668160H6DS 

+ 7113919327875099523376002049~78430238S949S73120H4D6 

+ 152077104881047937683933892892491027290971061616640H2n7 

+ 5S88239761488S896S04263747102166330237811042088386560D8 

Case VI. P = 5, ~ = 6, A = 4, k = 100 

2 g = -5 .135" . 

X6 1 

X5 0 

X4 -SSG
2
n 

X3 -41040HD2 

X2 395GH2D2 - 7266240GD 3 

X _G 2H3D2 + 121104G 2HD 3 

1 -325H4D3 - 2691200H2D4 
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Tr (X) 0 
2 2 -38 223 

Tr(X) 110G D = 2 ·3·181· 9 2 2 f 20 
3 ·5 ·7 ·13·17 

31 
= 2-58 .3.28 I E ( 2 f )a 

. a 311055.740112.132017023/51349 30 
123120HD2 

Tr(X4 ) 4470GH
2

D2 + 39519360GD3 

44 
= 2-78 .3.38 I" ( 2 (149a+142350336) f ) a 

·~a 17 7 5 3 2 2 2 40 
3 ·5·7 011 013 017 ·19 023 029 031 0 371/J' (a) 

Tr(X5 ) 5G2
H3D2 + 10680480G2HD 3 

= 2-98 ·3.48! 

." (2
52

(a-I8074I120) a 
~a 23 9 6 4 3 2 2 2 f50) 

3 ·5·7 ·11 ·13 ·17 ·19·~3 .29 •.. 3.1037.41.o430471/J' (a) 

N(a~180741120) = 2
22

·3 7 ·31.1223 o i8919300277 

Tr(X6 ) 204350H4D3 + '8391590400H2D
4 

+ 5137086873600D5 

=·2-118 ."3·58! 

0l:(2
68

(6637423a
2

+2121380494196736a-67543443341033481437184) f )c 

a 327.511.79.115.134.173.193.232.292.31037o41o43o47o531/Ju (a) 60 

N(6637423a
2
+2121380494196736a-67543443341033481437184) 

= 2107.323.53.75.174.181.233 

·450456472421115659925683391938601142706911756985491297538017303 
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X6 1 
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P = 5, ~ = ?f A = 6, k = 12. 

g = 53 .319' 

X5 -10800n 

X4 -175H2n + 39994560n2 

X3 -954000H2n 2 - 58506624000n3 

2 4 2 2 3" 
X 4595H n + 5976610560H n_-+ 29346922598400n 4 

X _H6n 2 ~ 26913792H4n 3 + 1347784593408H2n4 

1 3875H6n3 + 35294248000H4n 4 

.< 

Tr(X) 

Tr(X2) 

Tr(X3) 

Tr(X4) 

Tr(X5) 

10800n 

3~OH2ri + 36650880n 2 

8532000H2n 2 + 139408128000n3 

42870H4n 2 + 70958165760H2n 3 + 554255811993600n4 

5H6n2 + 2374938960H4n 3 + 433666967592960H2n 4 

+ 2237768521113600000n 5 

59355S0H6n 3 + 42310659964800H4n 4 + 233095S73624S043200H2n S 

+ 9081391088816750592000n6 . 
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.. 

Case VIII. P = II, i 7 2, A = 4, k = 6. 

Xl2 1 

XlI 0 

g = -11·61~ 

X10 .II088D 

X9 -9075HD 

X8 -5962H2D + 24952224D 2 

X7 -77H3D - 67215456HD 2 

X6 37678773H2D2 + 25829299584D 3 

X5 -1723i913H3D2 - 119108926464HD3 

X4 2011493H4D2 + I04087609758H2D3 - 68766745458048D 4 

X3 -55913H5D2 - 4473702SI02H3D3 + 98746847977536HD 4 

X2 440H6D2 + 6S82378638H4D3 - S2178S39740844H2D4 

+ 211382SSS78398464D S 

X _H 7D2 - 308633685HSD3 + 6499878090033H3D4 

- 20914887319687488HD S 

1 - 671H6D3 - 20729098S242H4D4 
+ 1480882485474007H2DS 

- 3777866437306791104D6 
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Tr(X) 

Tr (X2) 

Tr(X3
) 

Tr(X4) 

T.r (X
5

) 

Tr(X6) 

Tr(X7 ) 

Tr (X8) 

Tr(X9) 

Tr(X10 ) 

o 

-22176n 

2722SHn 

- 33 -

23848H2n + 146078592n2 

385H3n - 167040720Hn2 

-375645699H2n 2 - 1221354706176n3 

493425009H3n 2 + 1841678960352Hn3 

131680032H4n 2 + 475792928S648H2n 3 + 11020319744130048n4 

4634883H5n 2 - 9276821678520H3n 3 - 217S0837S01488832Hn4 

2S24SH6n 2 + 3407018048S0H4n3 - 4S226189141798280H2n4 

- 97227250729S94799616n 5 

IlH7D2 + 44004SS461072HSn 3 + 127109577108789495H3n 4 

+ 239140646004793752384Hn S 

82S0S0231S00H6n 3 - 19665598331764275H4n4 

+ 393248139239476286700H2n 5 
+ 845180451592627987085568n6 
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In what follows, we are going to give the specialized equations 

¢(XigE~ ,E)= 0 at several elliptic curves E defined over Q. Again /\.,p 

let us explain how to read the table given below for specialized 

equations. We first list the curves where we specialize the 

transformation equations in Case I-V: 

2 4x 3 2 -1 +3-3. 19 Case A y = -2·3 x 

Case B 2 4x 3 2 
Y = -2 x +1 

Case 
2 

4x 3 3 -1 +3-3. 251 C y = "':'2·3 -5x 

2 
4x 3 3 _2 3 Case D y = +2 ·3x 

Case E 2 4x 3 +1 Y = 

(11A) i 

(37A) ; 

(3 7B) ; 

(27 A) . 

The curve in Case A is isogeneous to the modular curve XO(II) /Q 

(~ H/r O(II)). This curve is referred in [10] as l1A. The example 

of Case A is the restatement of [3, §5]. The curves in Case Band 

Case C correspond the distinct non-isogeneous factors of the 

jacobian variety of XO(37) /Q. The curve in Case D is found in 

Serre [6, 5.9.2], which has potential everywhere good reduction. 

The curve in Case E has complex multiplication under Q(/-3). In 

the following table, we list the specialized equations of the 

transformation equations already listed above at these elliptic 

curves. In Case A, as is well known, all the specialized equations 

of level 5 are _reducible; so, we here list only one of them 

which corresponds to that in Case I. All the factors of the 

equations listed below are irreducible over Q. 
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Case A. G = 24 H = -2 3 .19 D = -11 

(I) X6+4400X4-174240X3+4801280X2-340643072X+5881529280 

=(X-22) (X 5+22X4+4884X3-66792X2+3331856X-267342240) 

Case B. G = 24·3 H = _2 3 .3 3 D = 37 

(I) X6-44400X4-1971360X3+488897280X2+47063460096X+1162360730560 

Discriminant 

= 236.312.55.116.3712.420442372 

Constant term = 26 .5.37 3 .71711 

(II) X6-12360960X4-173732014080X3-906454164234240X2-158592818333712384X 

-617317300619300044800 

Discriminant 

= 290.330.55.3712.4312.175158867454805351481672 

Constant term'= -219.36.52.373.1275457 

(III) X6+2237760X 5+1781129088000X4+603569053249044480X3 

+77756911326531739975680X2-524619092816465160434614272X 

+1~5470303081456206598924843089920 

Discriminant 

= 2156.360.55.3712.53872.117192.1913209809413235735059612153 2 

Constant term = 233.312.5.373.71711.1272109 

(IV) X6-39697470231920640X4+2318403282667096971018240X3 

-79571649536431574388800162365440X2 

+215475800430255113967103637484510117888X 

-180650394914609884769327204746079333724979200 

Discriminant 

= 2156.390.55.112.3712 

x(1692620601527228431550100005983156558085509852481908028)2 
37328703 

30 18 2 3 Constant term = -2 ·3 ·5 ·37 ·2777·6469·19089662430217 
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(V) X6+145329085440X5+3837341672479781683200X4 

-46021426623559234641189289328640X3 

+351785812651605713387572533809327772794880X2 

-46790723656122484150478959948110814885763660906496X 

+5075737063108711398438669685930545872239299744266893393920 

Discriminant 

= 2210.3102.55.3712.732.395212 

X(1638823091808126122004055543622661872689329826018532338)2 
1603186396722399746932636921 . 

Constant term = 243.318.5.373.661.8897132982043042382280208129 

Case C. 

(I) X6-148000X4-1971360X3+5432192000X2+1029841968640X+14284097373120 

Discriminant 

= 236.55.3712.972.2514.1585128654669532 

Constant term = 26·3~5·373.293749 
- .. 

(II) X6~137344000X4_1615064279040X3+151709417062400X2 
-.. 

-16661863907206758400X-53980077857153227161600 

Discriminant 

= 296.511.3712.2512.846492.805245457063915909434428572 

Constant term = -218.3.52.373.103.2512.8353 

(III) X6+2237760X5+1688966528000X4+1242544486072320000X3 

+428210896271006105600000x2~12210194436023481050071040OOOOX 
+12154857571766922351262826496000000 

Discriminant 

= 2186.535·3712.1492.2514.613~·76812·859992·2828711435333527499047= 

Constant term = 230 .3.5 6 .11.37 3 .433421914559869 
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(IV) X6 -132384946524160000X4+21274901477944622530560000X3 

-1024232100465770191290105856000000X 2 

-6666338187777448119334115989258240000000X 

-171765970451673771504422151468636281241600000000 

Discriminant 

= 2156. 541'37 12 .223 2 '2512 

x(21041388636101115247169710167790485273645676234370155644~2 
5299986747399133 ) 

Constant term = -230'3'58'373'2512'42776313398349053608831 

(V) X6+484430284800X5+42637091095065067520000X4 

+1191013336577507913643327488000000X3 

+13457249056881351216480342923175526400000000X2 

+28017443414101677967629098569361263396126720000000000X 

+17931826045430048857989553905829178499337154671411200000000000 

Discriminant 

= 2216'555.3712'2514'30012 

X(59569294896991541925368974827809306186927780234914489024)2 
564400393948147302109439473683144103 

Constant term = 242'3.511.373'809 

Case D. 

x679234~47403551875231178057851449 

G = _2 5 '3 2 H = 26 '33 D = _2 6 '3 5 

(I) X6 -111974400X4-348285i73760X3+3109490031329280X2+19395514284707414016X 

+30756189783160164188160 

Discriminant 

= 2156'3102'55.5232'19932 

Constant term = 230 '3 20 .5.31.53 

(II) X6+187042037760X4+245549406344970240X3~4095~~~82S26419477463Q4 0X2 

-3391011510639691674610040832X 

-1232983430314568952093894456115200 
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Discriminant 

= 2228.3132.5S·132·1766601958386631369872 

Constant term = -245·326·52.S51461 

(III) X6-940S84960X5+314896235102208000X4-44180830874421892617338880X3 

+22801325884247010780S0853649121280X2 

-172147441290185918192086401655262549114~8X 

+437329739457071001758251942193692492633441S66720 

Discriminant 

= 2306.3162.55·28572.128103862~436158228092596208394272 

Constant term = 260 .3 32 .5.31.53.509.48955757 

(IV) X6+42080459238584604426240X4+1377552015614216371873334710763520X3 

-89221522557725558133720282371231512044503040X2 

-139350800S06019023284957313437543882607023333021057024X 

-55300532147549500076664990648195586731052493633265100180684800 
_ J 

Discriminant 

= 2368.3192.55.472.1092 

x4427561206428995~73630120430172655669459200701218607287629 2 

Constant term = -272.338.52.107.3240694984266366049 

(V) X6+366512097853440X5+24406304373574174539723571200X4 

-1957290889419754283886842288845509560893440X3 

+23787048189330037674267146417212680864094364958279598080X2 

-16467673098362564917405712521433419400135894794798454628675502473216X 

+2946351257120748673032865078237641507167920249441162884821938006433 
022156472320 

Discriminant 

= 2438.3222.55 

X(1705548135068099045964341560266432474082434388963556675510)2 
8629380009334997313026253707 ) 

Constant term = 287 .344 .5.19.9787.20795362588083644126474341 
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3 
D = -3 

(I) X6-1049760X3+226351350720 

Discriminant = 236.366'55'116'176 

Constant term = 26 '312 '5'11 3 

(II) X6-92513249280X3-174990344338597478400 

Discriminant = 296'396.513.76'416'616 

Constant term = _218'318'52.413 

(III) X6~1632960X5+9~9822848000X4_227647896698880000X3 

+19303585597263052800000X2-674475678084121598361600000X 

+8394331582098381949894656000000 

= (X 2-544320X+20323353600)3 

Discriminant of the irreducible factor = 218 .38 .5 3 

Constant term of the irreducible factor = 210'3 8 .5 2 '112 

(IV) X6 -901218987881625600000000X3 

-19837121300256932128368336568320000000000000 

Discriminant = 2156'3156'565'176'236'596.716'701576 

Constant term = _230'330'513'593'713 

(V) X6-22783187826815470647902208000000X3 

+420663885954424404794201383021715969885287219200000000000 

Discriminant 

= 2216.3186'555'76'136'1736'5216'45196 

x2070362216376807869728367 2 

Constant term = 242'336'511.5213'45193 
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