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Abstract

Weak Weyl representations of the canonical commutation relation (CCR) with
one degree of freedom are considered in relation to the theory of time operator
in quantum mechanics. It is proven that there exists a general structure through
which a weak Weyl representation can be constructed from a given weak Weyl
representation. As a corollary, it is shown that a Weyl representation of the CCR
can be constructed from a weak Weyl representation which satisfies some additional
property. Some examples are given.
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1 Introduction

Let H be a self-adjoint operator on a complex Hilbert space H and T be a symmetric
operator on H. We say that the pair (T,H) obeys the weak Weyl relation if, for all t ∈ R,
e−itHD(T ) ⊂ D(T ) (D(T ) denotes the domain of T ) and

Te−itHψ = e−itH(T + t)ψ, ∀ψ ∈ D(T ). (1.1)

From the representation theoretic point of view, the pair (T,H) is called a weak Weyl
representation of the canonical commutation relation (CCR) with one degree of freedom

∗Corresponding author. The work is supported by the Grant-in-Aid No.17340032 for Scientific Re-
search from Japan Society for the Promotion of Science (JSPS).
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[3]. This comes from the following facts: (i) every pair (T,H) obeying the weak Weyl
relation satisfies the CCR:

[T,H]ψ = iψ, ∀ψ ∈ D(TH) ∩ D(HT ),

i.e., (T,H) is a representation of the CCR with one degree of freedom, but the converse
is not true ; (ii) every weak Weyl representation (T,H) with T self-adjoint is a Weyl
representation of the CCR, i.e., it satisfies the Weyl relation

eitT eisH = e−isteisHeitT , s, t ∈ R (1.2)

[6, Proposition 2.1-(iii)].
Detailed analyses of weak Weyl representations were first given by Schmüdgen [9, 10](in

the notation there, T = P,H = −Q). Then Miyamoto [6] used the weak Weyl relation
to develop a theory of time operator in quantum mechanics. In the context where H
is the Hamiltonian of a quantum system, the operator T is called a time operator with
respect to (w.r.t.) H [6]. Motivated by this work, one of the present authors extended
the framework of the theory of time operator to a more general one, introducing a notion
of generalized time operators [3]. We use the term “time operator” in the general context
too. Along this line of research, spectral analysis for time operators has been made in [4].

This paper is a continuation of the previous work [3, 4]. The main purpose of it is to
point out that there exists a remarkable structure through which a Weyl representation can
be constructed from a weak Weyl representation which satisfies some additional property.
This structure, which may have physical significance too, makes it possible, for example,
to identify the spectrum σ(|H|) of |H| (the absolute value of H) as σ(|H|) = [0,∞) under
some condition.

The present paper is organized as follows. In Section 2, we state the fundamental result
of the present paper as Theorem 2.4, which tells us that every weak Weyl representation
of the CCR produces another weak Weyl representation of the CCR, and prove three
corollaries of it, one of which (Corollary 2.6) is concerned with the construction of a Weyl
representation of the CCR from a weak Weyl representation of the CCR as mentioned
in the preceding paragraph. Section 3 is devoted to proof of Theorem 2.4. In the last
section, we discuss some examples illustrating the abstract general results established in
Section 2.

2 Main Results

Before stating the main results of this paper, we first recall some known facts.
The following fact is an interesting property to be kept in mind on weak Weyl repre-

sentations:

Lemma 2.1 Let (T,H) be a weak Weyl representation of the CCR on the Hilbert space
H. Suppose that H is semi-bounded (i.e., bounded below or bounded above).

(i) ([3, Theorem 2.8]) Then T is not self-adjoint.
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(ii) ([4, Theorem 2.1-(i)]) If H is bounded below, then the spectrum σ(T ) of T is
either C (the set of complex numbers) or Π+ := {z ∈ C|ℑz ≥ 0}, the closed upper
half-plane of C.

(iii) ([4, Theorem 2.1-(ii)]) If H is bounded above, then σ(T ) is either C or Π− :=
{z ∈ C|ℑz ≤ 0}, the closed lower half-plane of C.

(iv) ([4, Theorem 2.1-(iii)]) If H is bounded, then σ(T ) = C.

For a closable linear operator C on a Hilbert space, we denote its closure by C. Let
(T,H) be a weak Weyl representation of the CCR on the Hilbert space H. Then it is easy
to see that (T ,H) also is a weak Weyl representation of the CCR. Hence, without loss
of generality, one can assume that T is closed. In what follows we take this assumption,
unless otherwise stated.

Lemma 2.2 ([6, Proposition 2.1]) There exists a dense subspace D ⊂ H such that D ⊂
D(TH) ∩ D(HT ) and HD ⊂ D.

This proposition implies that D(TH)∩D(HT ) is dense in H. Hence one can consider
the adjoint (HT )∗ (resp. (TH)∗ ) of HT (resp. TH) with (HT )∗ ⊃ TH (resp. (TH)∗ ⊃
HT ), which implies that D((HT )∗) (resp. D((TH)∗)) is dense in H. Hence HT and TH
are closable and

(TH)∗ ⊃ HT, (HT )∗ ⊃ TH. (2.1)

Therefore the linear operator

D :=
1

2
(TH + HT ) (2.2)

on H is a symmetric operator.
The following result also is known:

Lemma 2.3 ([9, Corollary 2], [6, Theorem 4.4]) The self-adjoint operator H is purely
absolutely continuous.

This result implies, in particular, that the point spectrum σp(H) (the set of all the
eigenvalues of H) is empty. In particular, 0 is not an eigenvalue of H. Hence, via the
functional calculus, we can define a self-adjoint operator

L := log |H|. (2.3)

The first of the main results of this paper is as follows:

Theorem 2.4 For all t ∈ R, e−itLD(D) = D(D) and

De−itL = e−itL(D + t). (2.4)

This theorem tells us that the pair (D,L) is a weak Weyl representation of the CCR.
Therefore Theorem 2.4 reveals a general structure or mechanism through which every
weak Weyl representation produces another weak Weyl representation.

Theorem 2.4 yields some corollaries.
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Corollary 2.5 Suppose that |H| ≥ c or |H| ≤ c for some constant c > 0. Then D is not
essentially self-adjoint. Moreover the following (i)–(iii) hold:

(i) If |H| ≥ c, then σ(D) is either C or Π+.

(ii) If |H| ≤ c, then σ(D) is either C or Π−.

(iii) If |H| is bounded with 0 < c1 ≤ |H| ≤ c2 for some positive constants c1 and c2,
then σ(D) = C.

Proof. Under the assumption that |H| ≥ c > 0 (resp. |H| ≤ c), we have L ≥ log c
(resp. L ≤ log c). Hence L is semi-bounded. Therefore, by Lemma 2.1-(i), D is not
essentially self-adjoint.

(i) If |H| ≥ c, then L is bounded below as shown above. Hence, by Lemma 2.1-(ii),
σ(D) is either C or Π+.

(ii) If |H| ≤ c, then L is bounded above as already seen. Hence, by Lemma 2.1-(ii),
σ(D) is either C or Π−.

(iii) Under the present assumption, L is bounded. Hence, by Lemma 2.1-(iii), σ(D) =
C.

The next corollary is concerned with a construction of a Weyl representation of the
CCR from a weak Weyl representation of the CCR:

Corollary 2.6 Suppose that D is essentially self-adjoint. Then

eisDeitL = e−isteitLeisD. (2.5)

Namely (D,L) is a Weyl representation of the CCR.

Proof. By (2.4), we have eitLDe−itL = D + t (∀t ∈ R), which, together with the
functional calculus for the self-adjoint operator D, implies (2.5).

Remark 2.1 In view of Corollary 2.6, it is very important and interesting to find an
additional condition for the weak Weyl representation (T,H) of the CCR under which D
is essentially self-adjoint. But, in this paper, we do not discuss this problem.

Let q and p be the operators on the Hilbert space L2(R) defined by

q := Mx, p := −iDx, (2.6)

where Mx is the multiplication operator by the variable x ∈ R and Dx is the generalized
differential operator in x. It is well known that q and p are self-adjoint and (q, p) is a Weyl
representation of the CCR. The representation (q, p) of the CCR is called the Schrödinger
representation of the CCR.

Corollary 2.7 Let H be separable. Suppose that D is essentially self-adjoint. Then there
exist mutually orthogonal closed subspaces Hn of H such that the following (i)–(iii) hold:

(i) H = ⊕N
n=1Hn (N a positive integer or ∞),
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(ii) For each n and all t ∈ R, eitD : Hn → Hn, e
itL : Hn → Hn,

(iii) For each n, there exists a unitary operator Un : Hn → L2(R) such that

UnDU−1
n = q, UnLU−1

n = p.

In particular

σ(|H|) = [0,∞), (2.7)

σ(D) = R, σp(D) = ∅. (2.8)

Proof. By Corollary 2.6, (D,L) is a Weyl representation of the CCR. Since H is
separable by the present assumption, the first half of Corollary 2.7 follows from the von
Neumann uniqueness theorem ([7], [8, Theorem VIII.14]). Hence we have

σ(L) = σ(p) = R, σp(L) = σp(p) = ∅,
σ(D) = σ(q) = R, σp(D) = σp(q) = ∅.

By the spectral mapping theorem, we have (2.7).

Remark 2.2 By Lemma 2.3, σp(|H|) = ∅.

Remark 2.3 The Schrödinger representation (q, p) is viewed as a special realization of
(T,H), for example, (T,H) = (q, p) (or (T,H) = (p,−q)). In this case we have

L = log |p|, (2.9)

D = DS :=
1

2
(qp + pq). (2.10)

It is well known (e.g., [5, p.63]) that DS is the generator of the strongly continuous
one-parameter unitary group {u(θ)}θ∈R of dilation on L2(R) defined by

(u(θ)f)(x) = eθ/2f(eθx), f ∈ L2(R), a.e.x ∈ R,

i.e., DS is a self-adjoint operator such that

u(θ) = eiθDS , θ ∈ R.

For an open set Ω of R, we denote by C∞
0 (Ω) the set of infinitely differentiable functions

on Ω with compact support in Ω.
Since C∞

0 (R) ⊂ D(DS) and each u(θ) leaves C∞
0 (R) invariant, it follows from a general

theorem (e.g., [8, Theorem VIII.10]) that DS is essentially self-adjoint on C∞
0 (R). Thus

the present example is a trivial illustration of Corollary 2.7.
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3 Proof of Theorem 2.4

We recall an important formula:

Lemma 3.1 ([9, Proposition 1], [3, Theorem 6.2-(i)]) Let f be a continuously differen-
tiable function on R such that f and f ′ are bounded on R. Then f(H)D(T ) ⊂ D(T )
and

Tf(H)ψ − f(H)Tψ = if ′(H)ψ, ψ ∈ D(T ). (3.1)

We now go into proof of Theorem 2.4. For t ∈ R and ε > 0, we define the function fε

on R by

fε(λ) := e−it log
√

λ2+ε2
,

It is easy to see that fε is a continuously differentiable bounded function on R and f ′
ε is

bounded on R with

|fε(λ)| = 1, f ′
ε(λ) = − itλ

λ2 + ε2
fε(λ).

Hence we can apply Lemma 3.1 to obtain that

Tfε(H)ψ − fε(H)Tψ = if ′
ε(H)ψ, ψ ∈ D(T ). (3.2)

Let ϕ ∈ D(TH). Then Hϕ ∈ D(T ). Hence

Tfε(H)Hϕ − fε(H)THϕ = if ′
ε(H)Hϕ.

It follows from the functional calculus that

lim
ε→0

if ′
ε(H)Hϕ = te−itLϕ, lim

ε→0
fε(H)THϕ = e−itLTHϕ, lim

ε→0
fε(H)Hϕ = He−itLϕ.

By the closedness of T , we conclude that He−itLϕ ∈ D(T ) and

THe−itLϕ = e−itL(TH + t)ϕ, ϕ ∈ D(TH). (3.3)

For all η ∈ D(H) and ψ ∈ D(HT ), we have by (3.2)

⟨Hη, Tfε(H)ψ⟩ = ⟨η, fε(H)HTψ⟩ + ⟨η, iHf ′
ε(H)ψ⟩ .

Hence Tfε(H)ψ ∈ D(H) and

HTfε(H)ψ = fε(H)HTψ + iHf ′
ε(H)ψ.

Hence
lim
ε→0

HTfε(H)ψ = e−itLHTψ + te−itLψ.

Therefore e−itLψ ∈ D(HT ) and

HTe−itLψ = e−itL(HT + t)ψ, ψ ∈ D(HT ).
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By a simple limiting argument, one can extend this result to all ψ ∈ D(HT ) with
e−itLD(HT ) = D(HT ) and

HTe−itLψ = e−itL(HT + t)ψ, ψ ∈ D(HT ). (3.4)

It follows from (3.3) and (3.4) that

e−itLD(TH) ∩ D(HT ) = D(TH) ∩ D(HT )

and, for all ψ ∈ D(HT ) ∩ D(TH),

De−itLψ = e−itL(D + t)ψ.

Thus the desired results follow.

4 Examples

4.1 Quantum mechanics on the half-line (0,∞)

Let R+ := {λ|λ > 0} = (0,∞)　 and define the operators H and T on L2(R+) as follows:

H := λ̂+ := Mλ, T := −p̂+ := i
d

dλ
, D(p̂+) := C∞

0 (R+). (4.1)

Then it is easy to see that λ̂+ is self-adjoint, −p̂+ is symmetric and (−p̂+, λ̂+) is a weak
Weyl representation of the CCR. As already pointed out in [4, Example 2.1], one has

σ(λ̂+) = [0,∞), σ(−p̂+) = Π+. (4.2)

In the present case we have

L = log |H| = B := log λ̂+,

D = A := −1

2
(p̂+λ̂+ + λ̂+p̂+).

Lemma 4.1 The operator A is essentially self-adjoint on C∞
0 (R+). Moreover

(e−iθAf)(λ) = eθ/2f(eθλ), f ∈ L2(R+). (4.3)

Proof. Similar to the proof of the fact stated in Remark 2.3.

Remark 4.1 Every unitary operator u(θ) mentioned in Remark 2.3 is reduced by L2(R+).
We denote its reduced part by u+(θ). Then {u+(θ)}θ∈R gives a unitary representation on
L2(R+) of the dilation group {eθ}θ∈R acting on R+. The lemma shows that −A is the
generator of this unitary group.
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By Lemma 4.1 and Corollary 2.7, (A,B) is unitarily equivalent to a direct sum of the
Schrödinger representation (q, p).

It may be instructive to find explicitly the unitary operator implementing the equiv-
alence. Indeed this is possible as done below (cf. [2, Appendix B]).

We denote by F the Fourier transform on L2(R):

(Fu)(k) :=
1√
2π

∫
R

e−ikxu(x)dx, u ∈ L2(R), a.e.k ∈ R,

in the L2-sense. For each f ∈ L2(R+), we define fe ∈ L2(R) by

fe(k) := f(ek)ek/2, a.e.k ∈ R,

and introduce E : L2(R+) → L2(R) by

Ef := fe, f ∈ L2(R+).

Then E is unitary. Using E and F, we define an operator M : L2(R+) → L2(R) by

M := F−1E. (4.4)

Obviously M is unitary. Explicitly we have

(Mf)(x) =
1√
2π

∫
R

f(λ)λ( 1
2
+ix)−1dλ, x ∈ R,

for all f ∈ L2(R+) such that ∫
R+

|f(λ)|√
λ

dλ < ∞.

Hence M is a Mellin transform. It is not so difficult to show that

MAM−1 = q, MBM−1 = p.

For every constant m > 0, the pair (−p̂+, λ̂+ + m) is obviously a weak Weyl represen-
tation. In this case we have λ̂+ + m ≥ m > 0. Hence, by Corollary 2.5, the operator

Am := −1

2
(p̂+(λ̂+ + m) + (λ̂ + m)p̂+)

is not essentially self-adjoint. This is an interesting phenomenon too (one can prove this
fact directly by computing the deficiency indices of Am). Moreover we can show that
σ(Am) = Π+ (the proof is similar to that of [4, Theorem 4.2], but, in the present case, it
is very easy).
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4.2 The free Hamiltonian of a non-relativistic quantum particle
in R and the Aharonov-Bohm time operator

Let (q, p) be the Schrödinger representation of the CCR with one degree of freedom as in
(2.6). For a constant m > 0, we define

H0 :=
1

2m
p2 = − 1

2m
∆x,

acting in L2(R), where ∆x := D2
x. The operator H0 is called the one-dimensional free

Hamiltonian of a non-relativistic quantum particle with mass m. It is well known that
H0 is a non-negative self-adjoint operator on L2(R) and its spectrum is purely absolutely
continuous with

σ(H0) = [0,∞).

Let
TAB :=

m

2

(
qp−1 + p−1q

)
(4.5)

with domain
D(TAB) := F−1C∞

0 (R \ {0}). (4.6)

It is easy to see that TAB is a symmetric operator on L2(R). Moreover, (TAB, H0) is a
weak Weyl representation of the CCR [6]. The operator TAB is called the Aharonov-Bohm
time operator [1]. By Lemma 2.1, TAB is not essentially self-adjoint. It is proven in [4]
that

σ(TAB) = Π+.

In the present example, we have

L = P0 := log H0,

D = Q0 :=
1

2

(
TABH0 + H0TAB

)
⊃ q0,

with

q0 :=
1

2
DS|D(TAB),

where DS is given by (2.10). Therefore we can apply Corollary 2.7 to conclude that
(Q0, P0) is unitarily equivalent to a direct sum of the Schrödinger representation (q, p) of
the CCR.

In fact one can prove explicitly that (Q0, P0) is unitarily equivalent to a two direct
sum of the Schrödinger representation (q, p) of the CCR. This is essentially done in [2,
Appendix B]. Hence we omit the details.

4.3 A relativistic free Hamiltonian and a time operator of it

A one-dimensional relativistic free Hamiltonian of a quantum particle with mass m ≥ 0
and without spin is given y

H(m) :=
√

p2 + m2
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acting in L2(R). A time operator w.r.t. H(m) is defined by

T (m) :=
1

2
{H(m)p−1q + qp−1H(m)}

with domain D(T (m)) := F−1C∞
0 (R \ {0}) ([3, Example 11.4]). In this case we have

L = P (m) := log H(m),

D = Q(m) :=
1

2
(T (m)H(m) + H(m)T (m)) ⊃ 2(DS + mTAB).

Hence the following results hold:

(i) Consider the case m = 0. Then Q(0) is essentially self-adjoint. Hence (Q(0), P (0))
is unitarily equivalent to a direct sum of the Schrödinger representation (q, p).

(ii) If m > 0, then Q(m) is not essentially self-adjoint.

In case (i), we can show, as in the case of the preceding example, that (Q(0), P (0)) is
unitarily equivalent to a two direct sum of the Schrödinger representation (q, p).

In case (ii), we can prove that σ(Q(m)) = Π+ (the proof is similar to that of [4,
Theorem 4.3]).

Remark 4.2 Results obtained in this section can be extended easily to higher dimen-
sional versions of the examples.
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