<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者</td>
<td>川嶋 望</td>
</tr>
<tr>
<td>番外</td>
<td>共著者あり。共著者名 高宮考悟 高宮 社父江 南條憲治 祖父江憲治。</td>
</tr>
<tr>
<td>通知</td>
<td>共著者あり。共著者名 高宮考悟 高宮 社父江 南條憲治 祖父江憲治。</td>
</tr>
</tbody>
</table>
Differential expression of isoforms of PSD-95 binding protein (GKAP/SAPAP1) during rat brain development

("PSD-95結合蛋白質(GKAP/SAPAP1)のラット脳発育過程における発現の多様性")

川崎a,b、高宮考悟b、孫傑b、北島信a、祖父江恵治b

a 北海道大学医学部循環器内科学講座
060 北海道札幌市北区北15条西7丁目

b 大阪大学医学部バイオメディカルリサーチセンター神経生化学教室
565 大阪府吹田市山田丘2-2
Differential expression of isoforms of PSD-95 binding protein
(GKAP/SAPAP1) during rat brain development

Nozomu Kawashima a,b, Kogo Takamiya a, Jie Sun a, Akira Kitabatake b, Kenji Sobue a

a Department of Neurochemistry and Neuropharmacology, Biomedical Research Center,
Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan
b Department of Cardiovascular Medicine, Hokkaido University School of Medicine,
North 15, West 7, Kita-ku, Sapporo, Hokkaido 060, Japan.

To whom correspondence should be addressed
TEL : +81-6-879-3680
FAX : +81-6-879-3689
E-mail : sobue@nbiochem.med.osaka-u.ac.jp

Key words: Postsynaptic density; PSD-95/SAP90

The nucleotide sequences reported in this paper have been submitted to the GenBank™ with
accession number AB003594, AB005146
Abstract

PSD-95/SAP90, which binds to the C-terminus of NMDA receptor and Shaker-type potassium channel, is one of the major postsynaptic density proteins. Recently, novel class of proteins interacting with the guanylate kinase domain of PSD-95 have been identified, guanylate kinase-associated protein (GKAP) and SAP90/PSD-95-associated proteins (SAPAPs). Here we report the isolation of new isoforms of PSD-95 binding protein (GKAP/SAPAP1) using the yeast two-hybrid system. The isolated protein directly interacts with the guanylate kinase domain of PSD-95. Northern blot analyses reveal that the expression of these isoforms containing distinct N-terminal sequences is differentially regulated during brain development. The present findings suggest that each isoform of the PSD-95 binding protein is differentially expressed in a development-dependent manner and may be involved in the complex formation of PSD-95 and channel/receptors at the postsynaptic density.
1. Introduction

Postsynaptic density (PSD) is a unique synaptic structure underlying the postsynaptic membrane of excitatory nerve synapses. Morphological analyses revealed a specialization of the PSD during postnatal development [1,2]. Several components have been identified in the PSD: for example, actin, spectrin (calspectin or fodrin), MAP2, tubulin, and Ca\(^{2+}\)/calmodulin-dependent protein kinase II [3-6]. However, the overall components and the molecular organization of PSD remain unknown [3-8]. Several PDZ domain-containing proteins such as chapsyn-110, PSD-95/SAP90, SAP97, and SAP102 have been identified in the pre- and postsynaptic sites [9-13]. They have repeating PDZ domains, an Src homology domain 3 (SH3), and/or a domain that has homology with an yeast guanylate kinase (GK) in order from the N-terminus to the C-terminus [14,15]. PSD-95/SAP90 has been identified as one of the abundant proteins in the PSD fraction [10]. It binds to NMDA receptor and Shaker-type potassium channel through the PDZ domain [16-18]. Kim et al. have demonstrated the clustering of NMDA receptor or potassium channel mediated by the PDZ domain of PSD-95 [9,17]. In contrast, there have been few reports regarding the functional role of the C-terminal SH3 or GK domain of PSD-95. To reveal the molecular organization of the PSD, using the yeast two-hybrid system, we searched for proteins interacting with the C-terminal side of PSD-95. During a course of our study, the isolation of new class of proteins which interact with the GK domain of PSD-95 has been reported from two groups, so called, guanylate kinase-associated protein (GKAP) and SAP90/PSD-95-associated proteins (SAPAPs) [19,20]. We also independently isolated several cDNA clones of PSD-95 binding protein which proved to be isoforms of GKAP /SAPAP1 by the sequence analysis. These isoforms have unique sequence variants at the N-terminus. Northern blot analyses using specific probes for each N-terminal sequence revealed that these isoforms show different expressions during development of rat brain. These findings suggest that the expression of these isoforms is differentially regulated at a transcriptional level during brain development.
2. Materials and methods

2.1. Yeast two-hybrid system

Yeast two-hybrid system for the isolation of PSD-95 binding proteins was employed according the method as described previously [21,22]. The C-terminal 340 amino acids (residues 385-724) of rat PSD-95 was obtained by polymerase chain reaction (PCR) and subcloned in frame into yeast expression vector pAS2-1, GAL4 binding domain vector (Clontech, USA) for the bait construction. This bait vector was transformed into yeast strain Y-190 harboring the reporter gene HIS3 and lacZ. The bait strain was further transformed with a rat brain cDNA library constructed in pGAD10, GAL4 activation domain vector (Clontech). Positive clones growing on synthetic dropout –Tryptophan/-Leucine/-Histidine plate containing 25mM of 3-amino-1,2,4-triazole were confirmed by β-galactosidase filter assay, as described previously [21,22].

2.2. 5' RACE and 3' RACE

We performed 5' rapid amplification of cDNA ends (5' RACE) and 3' RACE as described elsewhere [23]. We carried out PCR between the 5' and 3' sequences obtained by 5' and 3' RACE. The amplified fragments and the obtained clone by the yeast two-hybrid system were subcloned into pBluescript SK- (STRATAGENE, USA) and sequenced.

2.3. In vitro binding assay

The full-length coding region of the PSD-95 binding protein (clone2-2A, shown in Fig.1) was subcloned in frame into pQE 30, hexahistidine (6xHis)-tagged fusion vector (QIAGEN, USA). The rat PSD-95 C-terminus (residues 394-724), the SH3 domain with the flanking region (residues 394-533), and the GK domain (residues 534-724) were obtained by PCR and subcloned in frame into pGEX-3X to produce glutathione S-transferase (GST)-tagged fusion proteins (Pharmacia, Sweden). The 6xHis fusion proteins and the GST fusion proteins were purified by Ni-NTA resin (QIAGEN)
and glutathione-coupled Sepharose 4B (Pharmacia), respectively. In overlay binding assay, the 6xHis-tagged fusion protein of clone2-2A was separated by SDS-PAGE, transferred to nitrocellulose membrane (Schleicher & Schuell, German), and was probed by GST fusion proteins after blocking with Block Ace (Yukijirushi, Japan). The probes bound to the 6xHis-tagged protein were visualized by anti-GST polyclonal antibodies (produced in our laboratory) and horseradish peroxidase H-conjugated anti-rabbit IgG (Promega, USA).

2.4. Northern blot analysis

Total RNAs were extracted from adult rat tissues using ISOGENE RNA extraction kit (Nippon Gene, Japan). To analyze expressional change of the PSD-95 binding protein and PSD-95 mRNAs during brain development, total RNAs were extracted from rat whole brains at indicated developmental stages. Ten micrograms of total RNAs were separated on 1.0% agarose formaldehyde-denaturing gels, and then transferred to nylon membranes (GeneScreen, USA). The fragment which was present in clone2-2A-D and SAPAP1 in common (nucleotide positions 1564 to 2176 of Genbank AB003594) was 32P-labelled by the random priming method and used as a probe (Fig.3C, common probe). For Northern blot analysis of PSD-95, PSD-95 cDNA fragment expanding from nucleotide positions 1212 to 2229 (Genbank M96853) was labelled by the random priming method. As a specific probe for clone2-2A, B, and C, a 145bp cDNA fragment (nucleotide positions 1 to 145 of Genbank AB003594) was 32P-labelled using specific anti-sense oligonucleotide (5'-CTGTCCATTCA TCCTGGGGGAAC-3') (Fig.3C, probe I). As a specific probe for clone2-2D, a 451bp cDNA fragment (nucleotide positions 31 to 481 of Genbank AB005146) was prepared in the same way (Fig.3E, probe II). For SAPAP1 specific probe [20], SAPAP1 cDNA fragment (nucleotide positions 272 to 1270 of Genbank U67137) was obtained by PCR and 32P-labelled by the random priming method (Fig.3G, probe III). To normalize the applied RNAs, ribosomal RNAs were stained with 0.02% methylene blue.
3. Results and discussion

3.1. Isolation of PSD-95 binding protein

For the isolation of proteins that interact with the C-terminus of PSD-95, the yeast two-hybrid system was introduced to screen a rat brain cDNA library using the bait consisted of the C-terminal 340 amino acids (residues 385-724) of rat PSD-95. 6.0x10^6 independent colonies were screened, and a single clone, clone2-2, carrying 1260bp sequence was isolated (Fig.1). We then applied the 5' and 3' RACE methods to obtain the full-length coding sequence of clone2-2. As a result, we obtained four full-length coding sequences, clone2-2A-D, shown in Fig.1. Sequence analysis of clone2-2A reveals an open reading frame that encodes a sequence of 694 amino acids with a calculated Mr of 77,000. There are presumably three distinct splicing variants at the N-terminus of isolated clone, clones2-2A and C, clone2-2B, and clone2-2D. A two-amino acid deletion around the N-terminal splicing site was detected in two clones of five clone2-2A by the 5' RACE (clone2-2B). Since the reading frame is not disrupted, this deleted protein seems to be one of isoforms of the PSD-95 binding protein. The nucleotide sequence of clone2-2B has been submitted to the Genbank™ Data Bank with the accession number AB003594. In addition to these N-terminal variants, a ten-amino acid deletion was also observed in the middle portion of this molecule (clone2-2C). This deletion most likely represents an alternative splicing based on its in-frame sequence. In comparison with data base entries, four clones obtained are thought to be originated from the same gene with GKAP and SAPAP1 because they contain identical sequences except for the N-terminal and the central region, but clones2-2B and D are novel isoforms that have not yet been reported. The N-terminal sequence of clones2-2A-C is essentially the same with that of GKAP. Clone2-2D is therefore thought to be the rat homologue of human GKAP. Up to this time, four sequence variants have been identified at the N-terminus of the PSD-95 binding protein (Fig.1).
3.2. In vitro binding assay

We further examined the interaction between the obtained clone2-2 and PSD-95 using the yeast two-hybrid system. They bound each other even when the inserts were exchanged between the binding domain vector and the activation domain vector. Furthermore, clone2-2 specifically bound to the bait consisted of the GK domain but not to that of the SH3 domain of PSD-95 in the yeast two-hybrid system (data not shown). We performed gel overlay assay to confirm the direct interaction between the GK domain of PSD-95 and the PSD-95 binding protein in another system. As shown in Fig.2, the 6xHis-tagged clone2-2A fusion protein was separated by SDS-PAGE and transferred to nitrocellulose membrane, followed by overlay assay probed with GST, GST-tagged PSD-95 C-terminus (GST-SH3+GK), GST-tagged SH3 domain with the flanking region (GST-SH3), or GST-tagged GK domain (GST-GK). The 6xHis-tagged clone2-2A protein interacted with GST-SH3+GK and GST-GK, but not with GST or GST-SH3. This result is consistent with that of the two-hybrid system. Kim et al. have performed overlay filter assay and demonstrated the in vitro interaction between PSD-95 and GKAP [19]. We could confirm their results using the same method in spite of some differences in the vector constructions and assay conditions.

3.3. Expression of PSD-95 binding protein mRNAs

We performed Northern blots to analyze the expression of the PSD-95 binding protein mRNAs regarding tissue distribution and brain development. Northern blots using a common probe revealed that the PSD-95 binding protein mRNAs were exclusively expressed in brain and testis, but not in any other tissues (Fig.3A). In adult rat brain, the transcripts were at least composed of two major bands, 7.6kb and 5.4kb in size. We consider that both transcripts are originated from the same gene encoding PSD-95 binding protein because several fragments containing common sequences, and antisense sequences used as probes, showed the same results under high stringent conditions (data not shown). In the testis, the 3.9kb transcript was dominant (Fig.3A). The 7.6kb and 5.4kb transcripts in
the brain were differentially expressed during development (Fig. 3B). The 7.6kb transcript was rapidly expressed at birth and increased to reach a plateau by the adult stage. The 5.4kb transcript was detected at birth and was gradually upregulated thereafter. To determine the expression patterns of various isoforms of the PSD-95 binding protein mRNAs in the brain, we performed Northern blot analyses using specific probes for each N-terminal sequence variant. When 145bp fragment representing clone2-2A, B, and C (probe I, shown in Fig. 3C) was used as a probe, major 5.4kb and minor 7.6kb transcripts were detected. Both transcripts appeared at birth and were gradually upregulated during brain development (Fig. 3D). Using 451bp fragment representing clone2-2D (probe II, shown in Fig. 3E), only 5.4kb transcript was shown. It was first detected at postnatal day 15, and gradually upregulated thereafter (Fig. 3F). The N-terminal specific sequence of SAPAPI as a probe (probe III, shown in Fig. 3G) showed only 7.6kb mRNA, which was gradually downregulated from birth to the adult stage (Fig. 3H). These results indicate that the 5.4kb mRNAs using a common probe are composed of transcripts of clones2-2A, B, C and clone2-2D, and the 7.6kb mRNAs are transcripts combined with SAPAPI, clones2-2A, B, and C. The expression patterns of various isoforms during brain development, therefore, could be divided into two groups: the one is upregulated (clones2-2A, B, C, and D) and the other is downregulated (SAPAPI). On the other hand, PSD-95 mRNAs were composed of two bands, a major 3.5kb and a minor 6.0kb (Fig. 3B). Cho et al. have reported that the former was expressed in both forebrain and cerebellum, and the latter was prominent in cerebellum [10]. The expression patterns of the 5.4kb mRNAs originating from clones2-2A-D were coordinated with the major 3.5kb mRNA of PSD-95 during development (Fig. 3B). Consequently, the transcription of the PSD-95 binding protein isoforms containing distinct N-terminal sequences might be differentially regulated in brain at different developmental stages.

In this study, using the yeast two-hybrid system and the following RACE methods, we identified several clones which directly interacted with the GK domain of PSD-95. Based on our results, these
clones might be encoded by the same gene with GKAP/SAPAP1, but we provided additional splicing variants in the N-terminus. We also reported differential expression of isoforms of the PSD-95 binding protein mRNAs dependent on different transcriptional and splicing regulations during brain development.

Although the precise function of this PSD-95 binding protein remains unknown, the interaction between NMDA receptor/potassium channel, PSD-95, and a family of this protein may contribute to the molecular organization of the PSD. Our next purpose is to reveal the interaction between these complexes and cytoskeletal proteins, especially the actin-based cytoskeleton, and to elucidate the functional and structural mechanisms which regulate their interactions in the PSD.

Acknowledgements: This work was supported by Grants-in-Aid for COE research from the Ministry of Education, Science, and Sports Culture of Japan (to K.S.).
References

Figure legends

Fig. 1. Schematic structures of isolated clones as compared with GKAP and SAPAPI. The common sequence in all isoforms is depicted as a white bar. The specific N-terminal sequence shared by clones2-2A, B, C and GKAP is indicated as shaded boxes. The black box and the hatched boxes at the N-terminus indicate the specific N-terminal sequences in clone2-2D and SAPAPI, respectively. Hatched boxes in the middle portion refer to the two types of inserted sequence. The amino acid sequences of these boxes are also shown. Clone2-2B has a deletion of two amino acids (amino acid positions 27 and 28 of Genbank U67987) around the N-terminal splicing site. Clone2-2, isolated by the two-hybrid system, is indicated as a black bar at the top in the corresponding position.

Fig. 2. In vitro interaction between PSD-95 and the PSD-95 binding protein. The direct interaction between PSD-95 and the PSD-95 binding protein was examined using gel overlay assay. The 6xHis-tagged clone2-2A fusion protein separated by SDS-PAGE is probed with GST, GST-SH3+GK, GST-SH3, or GST-GK. Molecular size markers are indicated on the left in kilodaltons. Arrowhead indicates the position of the 6xHis-tagged clone2-2A. The SDS gel loading the same sample was stained with Coomassie blue and shown at the bottom.

Fig. 3. Expression of the PSD-95 binding protein mRNAs. A, tissue distribution of the PSD-95 binding protein mRNAs. Total RNAs from adult rat tissues were hybridized with the 32P-labelled common probe shown in C. Each lane indicates, 1. brain, 2. testis, 3. lung, 4. heart, 5. intestine, 6. colon, 7. liver, 8. spleen and 9. kidney. The sizes of the transcripts calculated from the mobility are indicated on the left side in kilobases. B, expressional changes of the PSD-95 binding protein mRNAs during brain development were revealed by a common probe. Total RNAs from rat whole brains at indicated stages were analyzed. Lane 1. embryonic day 18, 2. postnatal day 0, 3. day 5, 4. day 15, 5. day 30, and 6. 6 weeks. To compare the expression pattern of PSD-95, the Northern blot
of PSD-95 is shown in the middle panel. 28s RNAs for the standardization are shown at the bottom. C, E, and G, schematic structures are essentially the same as in Fig.1 and probes used in this figure are shown as bold black lines in the corresponding positions. D, Northern blot analysis using a clone2-2A-, B-, and C-specific sequence at the N-terminus as a probe (probe I shown in Fig.4C). F, Northern blot analysis using a clone2-2D-specific probe (probe II shown in Fig.4E). H, Northern blot analysis using an SAPAP1-specific probe (probe III shown in Fig.4F). Numbers of lane indicated in D, F, and H are the same developmental days as in B.
clone2-2A
[1 MIDLFAEWWWQCVQVSNGRTIDQVW 27]
clone2-2B
[27 VW 28] GVIKLSAVE
clone2-2C
VSSCITYKFPFPVQRTTTPFISIT
clone2-2D
[1 MNLIFKDILFGVATK 17]
SAPAP1
335AA
GKAP
A.

B.

C.

clone2-2A
clone2-2B
clone2-2C
probe I
common probe

E.

clone2-2D
probe II

G.

SAPAP1
probe III
Probe:

GST GST-SH3+OK GST-SH3 GST-GK

106—
80—
coomassie stain