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Abstract 

The free, transversevibration$ of thin isotropic 

plates of various shapes are investigated in the present 

study. The main objectives of the study are to demon

strate methods of obtaining series-type solutions for 

vibration of plates of arbitrary shape under various 

boundary (constraint) conditions, and to present accurate 

and extensive numerical results on the topic. 

Analytical procedures are described in detail and 

the frequency equations obtained are expressed in con

venient forms. The natural frequencies and nodal patterns 

of the plates are presented in figures and tables. Vari

ations of these results with wide ranges of parameters 

are shown and their physical significances are thoroughly 

discussed. 
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CHAP. I PREFACE 

1-1. General statement of the problem 

The attention of recent technology has been directed 

toward faster and larger, and therefore the need for more 

flexible and lighter structures is obvious. This trend 

has increased the practical importance of dynamic analysis 

in addition to the classical static analysis, and the 

numerical evaluation of vibrational characteristics of 

structural elements has become an important part of the 

design process. Particularly, thin flat plates of various 

shapes are found in many structures and the natural fre

quencies and mode shapes of the plates are indispensable 

information from a technical point of view. On the other 

hand, plate vibration has been an academic subject that 

·famous physicists in the 1800's, such as Poisson, Kirch

hoff and Rayleigh, have engaged in. For the reasons of 

both practical and academic interests, numerous publi

cations concerned with the vibration of plates have been 

published. 

The object of this work is, first, to present ana

lytical methods to deal with the free transverse vibration 

of thin elastic plates of various shapes and edge condi

tions. The author introduces new series-type solutions 

which are mathematically exact, satisfying the differ

ential equation of plate vibration, although truncation 

of the series is necessary. Secondly, extensive and 
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accurate numerical results are presented to demonstrate 

the effectiveness of the methods and to provide compre

hensive data on the topic. Convergence study by succesive 

truncation of the series and comparison with other values 

in available, open literature are made to show the validity 

of the results. Frequency data are presented in terms of 

nondimensional frequency parameter. Both tabular and 

graphical results are given whenever possible, because 

tabular results are important for considering the accuracy 

of the method and the comparison by other researchers,and 

curves are useful for qualitative studies. 

A survey was made to collect references mostly from 

technical journals published after 1967, thereby avoiding 

duplication with Leissa's monograph [1]. Since a thorough 

survey covering the recent development of this decade was 

not found, the author believes that this survey is a good 

supplement to Leissa's work. Inasmuch as the complicating 

effects of plates such as anisotropy, in-plane forces, 

variable thickness, surrounding media, large deflections, 

shear deformation and rotary inertia are not considered 

in the present work, literature involving these effects 

has been basically excluded in the survey. 
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1-2 Comments on the methods of analyzing plate vibration 

The classical (thin) plate theory is used to analyze 

vibration of plates in the present study. This theory is 

based on some assumptions in deriving a governing differ

ential equation of motion. For a thin plate whose deflec

tion is small in comparison with its thickness, the govern

ing equation can be derived by making use of the linear

lized strain-displacement relation and the assumption that 

"Normals to the midplane of the undeformed plate remain 

straight and normal to the midplane during deformation." 

For solving the differential equation thus obtained, 

it is naturally desirable to obtain the exact solutions. 

However, the exact solutions are found only in a limited 

number of problems such as a simply supported rectangular 

plate, and it is well known that the exact analytical 

methods cannot be applied to problems of plates with 

irregular boundaries. Approximate mathematical techniques 

have been developed to remedy the situation. Concerning 

bending problems of plates, a valuable study was made by 

Leissa et al. [2] to compare approximate methods, and it 

is the author's opinion that most of the comments in that 

study are useful also in considering vibration problems 

because the governing equation of plate vibration is 

obtained only by substituting the inertia force for the 

static load in the equation. 

The approximate methods available in the plate vi

bration problems are classified into some categories 



depending upon whether the solutions satisfy the differ

ential equation or the boundary conditions. The Rayleigh

Ritz method consists of minimizing the Rayleigh quo-

tient of the plate and using trial functions satisfying 

the given boundary conditions. This method is widely 

applied in the field and the products of beam functions 

are commonly used to represent the plate deflection. The 

Galerkin method requires that the residual of the differ

ential equation be orthogonal to each term of the series 

that satisfy the boundary conditions. Point-matching is 

a convenient technique, utilizing the exact solutions of 

the differential equation and meeting the boundary con

ditions at discrete points along the boundary. The finite 

element method (FEM) has advanced recently with the develop

ment of computers and has its own practical advantage, 

particularly its applicability to problems having irregular

ly shaped boundaries. 

Although various approximate methods, as described 

above, have been developed and a great number of technical 

papers are available using those methods, analytically 

oriented methods are still of importance. The present 

methods are good means to yield accurate numerical results 

since the solutions satisfy both the governing equation 

exactly and the boundary (constraint) conditions with an 

arbitrary degree of exactitude. Two types of the series 

solution are given in the present study, and both solutions 

employ Fourier series to deal with the boundary (constraint) 

conditions. 
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solution (a)--- Suppose that a plate is constrained along 

an internal segment. With the reaction force and bending 

moment acting on the segment regarded as unknown harmonic 

force and moment, the stationary response of the plate to 

these loads is obtained in terms of the Green function. 

The unknown force and moment distributed along the segment 

are expanded into Fourier (sine) series with unknown coef

ficients, and the frequency equation is given in a matrix 

form by using constraint conditions on the segment. This 

method is applied to elastically constrained rectangular 

plates (Chap.2) and extended to clamped polygonal plates 

(Chap.4) and irregularly shaped plates (Chap.5). 

Solution (b)--- Suppose that a plate has a non-uniform edge 

condition. The boundary conditions along the edge are 

represented as accurately as necessary by expanding them 

into Fourier series. The exact solution of the differential 

equation of motion for the plate is substituted into the 

obtained boundary conditions. The frequency equation is 

then given by rewriting the products of trigonometric series 

into single series and equating coefficients of trigonometric 

functions having the same periodicity. This method is ap

plied to circular plates having non-uniform elastic edge 

conditions and edge mass (Chap.3). 

5 



CHAP.2 RECTANGULAR PLATES WITH INTERNAL SUPPORTS 

2-1. Introduction 

This chapter presents an analytical method using Fourier 

series and its applications to rectangular plates having in-

ternal elastic supports. In Sec.2-2, a general analytical 

procedure is presented and a frequency equation is given in 

general form. The detailed equations are derived to determine 

natural frequencies and mode shapes for rectangular plates 

with combinations of simply supported and clamped edges (Sec. 

2-3) and plates with internal line or rectangular supports 

(Sec.2-4). 

Research on vibration of rectangular plates has a long 

established history, and more pUblications have been obtained 

than those on circular plates because a rectangular plate 
m 

accomodates twenty-one distinct combinations of clamped, 

simply supported and free edges. Fifty seven pertinent ref-

erences concerned with vibration of thin isotropic rectan-

gular plates are reviewed and available results are presented 

for comparison purpose. 

2-2 Analysis * 
This section involves a general analysis to deal with 

vibration of rectangular plates having elastic constraints 

along some segments parallel to the edges. The analysis will 

be applied to various rectangular plates in the following 

sections. 

* [56] 
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The differential equation of motion governing trans-

verse vibration of thin isotropic plate is given, by use 

of the c1a~ica1 thin plate theory, as 

(2-1) 

where W"(;;c.)d. t) is the transverse displacement of the plate, 

PC;;C,1, t) is the external force, D is the flexural rigidity 

defined as D = Ef,~/2 (J-Li) (E : Young , s modulus, 11 :p1ate 

thickness and )) :Poisson B s ratio), f is mass density per 

unit area of the plate, t is time, and '12. is the Laplacian 

operator ('\74= V2V2) written as \j2=cJ"/ox.2.+ o/a~2 in rectangular 

coordinates. 

Figure 2-1 shows a rectangular plate elastically sup

ported on some segments C, (p =1,2, .•. , p) and Ctl ( p' =1,2, 

. . . , I 
P) located parallel to the edges. The X(/ plane of a 

rectangular coordinate o-x(fZ is taken in the neutral sur

face of the plate. Assuming harmonic displacement W(x:,,;}) ej(.J,)t; 

and regarding unknown reaction Pex.q.,t) acting on the internal 
• t: 

support as unknown external force Q,c-c .. 1) eJw , equation (2-1) 

1 

o z 
t-+----(J. ----..H 

Fig.2-1 
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becomes 

(2-2) 

W(X)~) and Q(X,~) are expanded into infinite series in terms 

of the normalized eigenfunction WtMn(;(/~) of a rectangular 

plate with no constraints. 

(2-3a) 

Q ex, '(f) =- f f (2m., w",n (;(,() (2-3b) 
WI= I VI=-I 

where coefficient Q~n in Eq. (2-3b) is expressed as 

Qm. = tla
Q (U,V) WrnY/(U,V-) c/udv-

o 0 
(2-4) 

wi th (t-(, V') being a point where an external force is 

applied. Substituting Eqs. (2-3) into (2-2) and making 

use of the relation 

(2-5) 

yield 
(2-6) 

and deflection WC;('d) is expressed as 

IX) 00 1GtIb 
W(x"/(f)=p' [' :l. ~ ~ WmnCX/~) Q(U,lt)Wmn(UJvJav-du 

L Wl'lln Woo 
WI=I 1'1"'1 (2-7) 

If harmonic bending moments l Mx (X,';fJ Mycx,tJ)} e jwt, act 

on a plate in addition to the force, the contribution of 

these moments to the plate deflection can be obtained by 

considering the moments as coupling forces. Suppose that 

8 



two sets of ~i3tributed forces Mx Ll V- , Mx 6,1/ and My 
~ U , My 11 u act along opposite sides of a rectangular 

plate element .6 LA.!l1J , the deflection caused by the 

coupling forces becomes 

-l1x~ 11' (;(;(1 ~; fA, V) + I1xL1 V G ex,'!; ().+ IH)., l)) 

- My t1 U q (X,1j u, ll') +M, AU. C:[ (-X;/Jj U) 1J'+Ll V) 

Then, the deflection by the force and moments is expressed 

as 

Wex/d-> = fIb I Q(U,I}) Gu,'j; U,!J')+ t1.cu,V') :/./1 (x,'J; u,v) 
o (J 

+ l1y{u,1J-) ;v Gcx,'J) U,7J.) !dVdlA (2-9) 

where 

is the Green function of the plate. When unknown force 

Ct) ctJ ' it 
and moment t o..y;(~) M.difJ 1 e J()J act on the segment Cp [X = 

J (If) Cf)} , t 
1Gt=~, ~r ~ '1 ~ ~p + if] and ({).,(i.) I'll (;C.) e JuJ act on the 

segment Cp[XP~x.~7f+Qf,d=dp=bl]' Q.eu,v-) and 11'K(u}1}), 

l1,tu,f}) in Eg. (2-9) are written by 

using Dirac's delta function. And the deflection is 
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(2-12) 

The forces and moments distributed along the segments 

are expanded into Fourier sine series. 

(2-13) 

Here it is also possible to use Fourier series with both 

sine and cosine terms or cosine terms only. Substituting 

Eqs. (2-13) into (2-12) yields 

are elastically constrained along the segments, the follow-

ing conditions must be satisfied. 

(2-16) 



where f? r '·~.l and f<x,p, ~lIP/ are the stiffnesses per unit 

length of the internal supports for the lateral deflection 

and rotation, respectively. 

W'HIYl(ap,~) and WM.,(x-1bp') are also expanded into Fourier 

sine series 

11 

Wmh (al" ~ )=; fL. •. " (Qpkin ~1l(~-1p) w...(t,bp')=~. f L Jb;) si ~ i1i~-xf) 
xp l=1 p' '" f;1 ", r l (2-17 ) 

Substituting Eqs.(2-17) into the equations obtained by 

the substitution of Eq. (2-14) into (2-16) and equating 

all coefficients of SiYl{j1f(~-~f)/lf} and 5in{j1f(t.-ty)/Jr} 

to zero, the following equation is derived. 

Jp ft· J; 
Lm/tCOt) I"'Ii,JcQt) 

T OCr) 
2."" "; n X'I 

2~'ffijOPI I ooco l :OpLltr~(~) :a'f11t11\,;Ca;) M.(~) 

-t-LL ~ 
lot,} 

=0 (2-18) 
Pl ~., 5J~ J j)1=J i1=J W",,. -or l",,,/~ (b{) r~lfl/bz') Q(~'! 

2."kl IIJ f 'N 

PI J. ,0; tb I Lnr~ (bf) ~b./LIIJ(bt) t1"? 2fo. I 'J. n 1'1 1'P • i 

where i"i,j and J'n denotes Kronecker's delta. The natural 

frequencies W of the plate are obtained by the calculation 

of the eigenvalues of Eq.(2-18) and the mode shapes are 
. f.' r 

determined by obtaining the eigenvectors I Q~~ 111~r Q:/ J1r~)} . 
In the numerical calculation, the number of terms (m, VI ) 

of the infinite series and terms ( i. , j.) of the Fourier 

series may be truncated at appropriate finite number 

considering the convergence and accuracy of the solution. 
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If a rectangul.ar plate with all edges simply supported 

is used as a plate without internal constraints, the natural 

frequencies and the normalized eigenfunctions are given by 

(2-19) 

In this case, Eq.(2-l8) can be written as 

T 

I J;-- OJ 
, 

~lnMTfV<f W . (~) 5 in ttJllG<b 1>T1lj.c~) Q(P) Ii: l.J- Pl ~~ xJ p n.t.. 

I J; .. OJ Wlc.osmnip 1r,,~(7r) mCOSVIIllc{t Pn/lz) (1f4Ia) Il~! XJlf (,J n 0000 

+[[_1 =0 
I Oc' -0; m"",~,fmlP) sin ~1fep'rm/~ ctf) 

, 
(2-20) 

Sin Yin ~{¢ttl/j (~/) ~ en 
Xp' ";' it {&yoj 

A~lf;jOn YJ ();S Yl7fgp ¢1lI1~(fl) . n (;oS nli e, ~hI./~') (1f.Qy/l?) Mj~) 

where 

denote nondimensional spring stiffness, t;~(~) is 

and >. is frequency parameter 

A 4 == .f a4-wVD 
¢t1,Lllp) and CP",/~(JfJ in Eq. (2-20) express the definite 

integrals as follows. 

(2-21) 

(2-22) 

I I 

~.~crp) =1 Jln f1rr (fL-l) )In i1ii d l , ~Ht/i;(Ji> -L J/n Jn7Tff[t) si'ylilll cfl (2-23) 
o 0 

where 



The mode shapes are determined by 

1" 

Sih y,mcl.rn.~l7p) 

~c.os »111~ 4>n,~ (If) 

13 

s: tl Yl1i~r~,~(fl) 
Yl (.()s YJITtV f»l'~(j'p') 

(tI) 
(2-25) 

Ip' Qy,~ 

(1f~r/p) 11:~ 

2-3 Rectangular plate having uniform boundary conditions 

2-3-1 Review 

In 1950's, several excellent papers dealing with 

vibration of rectangular plates were published. Young [5] 

employed the Ritz method and beam functions to represent 

the plate deflection. Iguchi [6] analyzed a free plate 

by the series method. Warburton [7] considered rectangular 

plates with all possible boundary conditions, and presented 

comprehensive solutions obtained by the Rayleigh method. 

Besides these studies, about a hundred and sixty pertinent 

references, published before 1967, were uncovered in [1]. 

Comparing with the recent increase of literature in-

cluding the complicating effects of plates such as aniso

tropy, varying thickness and so forth, thin isotropic 

rectangular plates with uniform boundary conditions are 

not often dealt as before. 

The outstanding comprehensive paper [8] was published 

attempting to present accurate analytical results for 



natural frequencies of rectangular plates. Twenty-one 

combinations of clamp, free and simple support are con

sidered. Exact characteristic frequency equations are 

given for six cases having Levy-type boundary conditions, 

namely a plate with two opposite sides simply supporc.ed, 

and the remaining cases are analyzed by the Ritz method 

by use of beam functions. Tabular results are available 

for all the cases. 

Laura and Saffell [9] presented an analysis using 

the Galerkin method with a simple polynomial expression, 

and applied to a clamped square plate. This technique 

is used to determine the response of a clamped rectangular 

plate subjected to sinusoidal excitation [10]. To this 

work, Warburton [11] made a comment suggesting that the 

Rayleigh-Ritz method with beam functions is an alternate 

method of solution, which may be more accurate for higher 

excitation frequencies. Laura and his co-researchers widely 

applied this variational technique (the Galerkin or Ritz 

method with simple polynomials) to the fundamental freq

encies of a rectangular plate having zero deflection and 

different rotational stiffness at the edge [12], and a plate 

both translational and rotational stiffness at four edges 

[13,14]. A rectangular plate elastically constrained 

against rotation along three edges and free on the fourth 

edge is also analyzed [15] to discuss a problem which has 

received no treatment. 

14 



Bassily and Dickinson [16] demonstrated the inade

quacy of beam vibration modes when used in the Ritz method 

to obtain approximate solutions of plates involving adjacent 

free edges, and proposed the concept of IIdegenerated beam 

functions" which permit more accurate treatment of the 

problem and still remain the advantages in using beam func

tions. Vijayakumar and Ramaiah [17] presented an interest

ing procedure that the products of mode shapes determined 

from a modified Bolotin solution are used as admissible 

functions in the Rayleigh-Ritz method for the determination 

of the natural frequencies of a clamped square plate. It 

was shown that accuracy of this approach is better than that 

obtained from the modified Bolotin method alone or the 

Rayleigh-~itz method with conventional beam functions. 

Dickinson [18] proposed to use the simply supported plate 

function in the Rayleigh method and made comparison with 

the values in [17]. 

Egle [19] studied the peak resonant response of a 

rectangular plate, simply supported on three edges and 

elastically restrained on the fourth, excited by a concen

trated harmonic load. The effect of changing the elastic 

restraint on the peak resonance is discussed. Snowdon [20] 

has determined the mechanical impedance and force trans

missibility for various internally damped simply supported 

rectangular plates. This author [21] also discussed use 

of centrally located masses and vibration absorbers to 

reduce vibration of rectangular plates. The effect of 

15 
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location on the plate of point-force input is discussed. 

Ochs and Snowdon reported experimental determinations of 

natural frequencies and transmissibilities. Transmissibilities 

across rectangular plates with damping layers [22] and with 

loading masses and straight ribs [23] are studied. 

Gorman and Sharma [24] introduced an interesting ap

proach to vibration of rectangular plates, utilizing super

position of solutions for a homogeneous differental equation. 

This series-type solution is useful in dealing with a rec

tangular plate to which a Levy-type solution cannot be ap

plied and an approximate solution derived by the enegy method 

has been applied. Gorman used this method to a cantilever 

plate [25] and a plate having combinations of simply supported 

and clamped edges [26]. The application on a completely 

free plate [27] yields good results when compared to a Ritz 

solution, although the conditions for free edges in this 

analysis does not satisfy the (Kirchhoff) shear condition 

acco~dating the effect of twisting moment along the free 

edge. 

Jones and Milne [28] used an extended Kantrovich method 

for a clamped plate. The idea extended by Kerr [29] was 

used, considering the Kantrovich method as a fisrt step of 

an iterative procedure. The Kantrovichmethod is a more 

general variational procedure which avoids a strong de

pendence of the Ritz and Galerkin methods on the chosen 

coordinate functions. Mukhopadhyay [30] obtained an ordi-



nary differential equation by substituting the basic 

function satisfying boundary conditions along two opposite 

edges into the partial differential equation of plate vib

ration, and solved the resulting equation in finite differ

ence form. 

17 

Due to the difficulty arising in the analysis, a rectan

gular plate having nonuniform edge conditions has received 

sparse treatment. Kurata and Okamura [31] dealt with a 

simply supported rectangular plate partially clamped along 

central portion on two opposite or four edges. An analytical 

method presented is to satisfy the condition of clamped edge 

by introducing a resisting moment so as to keep zero slope 

along the relevant section, and the fundamental frequencies 

of the plate are obtained. This method was extended by 

Gajendar [32] to include free edges. A similar method was 

employed by Ota and Hamada [33]. Keer and Stahl [34] con

sidered the problem, which was formulated as dual series 

equations and reduced to homogeneous Fredholm integral 

equations of the second kind. They presented numerical 

results including a free plate simply supported along 

adjacent edges symmetrically from the corners. Venkateswara 

et a1. [35] employed the finite element method to demon

strate the effectiveness of the method in solving the 

problem with mixed boundary conditions, and the results 

were compared with those in [34]. 



2-3-2 Application of the method 

Since the analysis in the previous section makes use 

of an eigenfunction for a simply supported rectangular 

plate, the present method is applicable to vibration of 

rectangular plates having combinations of simply supported 

and clamped edges as shown in Fig.2-2. Natural frequencies 

of a rectangular plate simply supported along the entire 

edges (Case (a» are readily given by Eq. (2-l9), and the 

exact frequency equation can be derived for a plate simply 

supported at opposite edges (Case(d» [8]. Among the four 

remaining cases, a rectangular plate clamped along the 

entire edges is considered, when the aspect ratio is taken 

to be unity (a square plate), to show the validity of the 

method by comparing with other available results. 

The segments constraining the plate rotation rigidly 

are located along the entire edges to form a clamped 

square plate on an original simply supported plate. 

(a) 

r -r 
I I I I 
I r r r 
I I 

(d) 

(b) 

D 
(C) 
------, 

I 
I 
I 
I 
I 
/ 

Fig.2-2 Square plates having possible 
combinations of simply supported and 
clamped edges 
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Since a rectangular plate has two axes of geometrical 

symmetry, symmetric and anti symmetric vibration with 

respect to the axes may arise and four types of vibration 

modes are expected as shown in Fig.2-3. 55-type vibration 

is symmetric vibration about both symmetric axes XX and YY. 

SA-type vibration is symmetric about XX axis and antisym-

metric about YY axis. AS-type is essentially the same as 

SA-type if XX and YY axis are inteTchanged, and both types 

lead to identical frequencies in. a square plate. AA-type 

vibration is antisyrnmetric about both axes. Antisymmetric 

mode has a nodal line (i~, zero-deflection line) on the axis 

and therefore one nodal line, at least, appears in SA and 

AS-type mode and two nodal lines in AA-type mode as shown __ 

in the figure. m or Yl in Eq. (2-20) takes odd or even inte-

ger depending upon the type of vibration as presented in 

Table 2-1. 

y 

. i X -+- X 
! 

-:--- --r-

I 
Y 

SS-type SA-type AS-type AA-type 

Fig.2-3 Four types of vibration modes for a rectangular 
plate 

Table 2-1 Four types of vibration 

SS-type SA-type AS-type AA-type 

rn odd odd even even 

n odd even odd even 

19 
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In Table 2-2, frequency equations obtained for a 

clamped square plate are presented. For a square plate, 

two more symmetric axes exist on the diagonal axes, and 

symmetry of vibration about these axes is taken into con-

sideration. The natural frequencies are obtainable by 

calculating eigenvalues of the coefficient matrix in Eqs. 

(2-26,27) • 

Table 2-2 Clamped square plate 

SSSS-type SSAA-type AASS-type AAAAtype 

~ ~ 
", I / 

~ '1/ , / 

-7(---
/ , /1' 

" f " / " 

11.'= 0 

+ + 
Yh,fl=/IJ,'" m,n=2,4 1 ,'. 

SA-type 

} 01"= 0 1 1, tl.) = 1./2. 
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It is desirable, however, to improve accuracy of the 

solution by reducing the double infinite series into single 

series. The following formulas are used for such a manip-

ulation. 

fnSinnx. = --'!!.- sinha(1T-x.)±~inha:X.. 
P(~) h2+aZ 4 sinha1T 

( + :n= odd o<x<rr) 
- even' 

(2-28) 

f cosnx = ~ cosh a (1[- X) +- cosha~ - -1-1(- t)~ J I (+: n=~~1nl 
neg) n2 +a}' 4a sinJ,an 4a.2. Os.X~Tf . 

The coefficient matrix in Eq.(2-27) is written in such a 

form as Eqs.(2-28) can be applied. 

T 

mcosmTTd.'p¢n.,£(p) mcosm7TdZ cA/'lg) 

n COSh1fBp<Pm.~(ft) Y1 COS'irlI"t3:'~/7t) 

}1JcosmItrir 
n 

0 0 I r ~ .cq)cosn1f(3l 0 

=I n Yrlt/fJ.) n.r. 

rn 

I t cosnrriJf Losnrr(J{ 0 ~l1) 0 () ~/~/) 
f) YtIrl~) 

~i(~) 
m2 

~.l~) 0 r- cosmrrdp cosm7Tv{1 0 0 
m fmn(h) n:) 

+L (2-29) 
t1 I; ~.,l~') coS)'{Jlld3 0 ncosnrrr3,' 0 () 0 

m Trln{}.) 
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Summations in the brackets in Eq.(2-29) are calculated 

by applying the following equations derived from Eqs. (2-28). 

L Ln2 
CoSmrBfcosnrr(3i = ~;, [-CJ)shm,TT ('-:';/) GOShYnaf (/~3' ,) 

n(3) )lIIn()I.) Sm }'Y1.1f I Jf (36 

+ coshmJ1f{3p' Coshm;1i(3~/J - ~~ [mr.:rm2] 
(

_odd ) Sm mz1T n-even 

(2-30) 

I ':2 COSYmrtifcosmrrrl.o = I!}n, [-coshYJ,1f('-o<,) cosnn,Tf (,0<0(& ) 
rn(~) JmP') slnhn.1T O{f - 6 

+ COShnrrcA, COShn;lj~3 J - ~ni [n-7nl J 
( 

=odd ) J'mhnrr 
m even 

(2-31) 

I L: *j.c~)COSYl7f(ja' = l(I: S;nmr~ Cm;nTf(3,) sini7fldl. 
neg) Jrnl'lC'/I) 0 n{€)Jlnn(;") 

= Si~hmiTI r 116".( ~1: ) coshmi7fC~~f) + fm,.~)coshmjl1t9g+ s;n~mz1f [1111 7
/)11 ] 

(n- odd) -ewn (2-32) 

L:' ¢m -Cfr)COsrnmXg = jh::: S,nrrtrrfl sintmrci.1) siharl.dl 
meg) Jnm l>-) m,l.. 0 m(~) )(III1('/-.) 

= s~~[ %.d~:')coShmrC~~t)~J,(~)cosMno(} S~h~'1f[n->n2J 
(m- even ) (2-'33) 

where COShm,7T('-fJ,,) Coshml1T( (3~1 ) represents COshm,1f.(I-fjtl)coshm,7T(j./ 
(I" 1-(1f r p 

for (3/>(j<t;' and coshm,Tl(3(coshm,TfU-(3{) for /?f<(J'/ and 

m, = j m2 - (A/If)4 /)A ) rn2 =j YJ12+( A/If )2/),{ 
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Substitution of Eqs. (2-30) through (2-33) into (2-29) 

yields the frequency equation of the plate under con-

sideration. 

(2-35) 

where 

rncosmrrrxp 0 0 V£. t~)CDJhmlll( 81' ) 
t1(l;'f = 'i ~ I {n,L -~ 1-(11 

Sihhm7f YI1(~) I 

o --coshm,-rr( I ;:) mshmlf(/~~ ) 0 m/~ .~r) m,L 

T 

%,i(~) 0 0 0 
+ 

(n= Odd) 
even coshrn.1i(3/ coshm,Tf~{ 0 rn,~ ·(3f) 

YTI:J 

2 n/~,i(7,) 0 -coshmr( [~7 ) coshnjlT(~g) 0 
+I~ I 

sinhYl,1i n(~) n, ( /- ~ ') h (0(6) 0 nCOSn1f{3p' W~ -r/ COS nIT,,-0z 0 

T 

coshnl1fo(Z coshn,7fc{Z nl¢n (~) 0 
n'.J 

+ (2-36) 

(m = Odd) 
even ~,~(~) 0 0 0 



Table 2-3 Comparison of frequency parameter A'J.= wd$l5 for a clamped square plate 

Authors Methods 1 2 3 4 5 6 7 8 

Present 35.9186 73.2934 108.217 131.236 132.115 164.915 210.207 219.668 

Tomotika [36] (I) 35.9866 

Iguchi [6] (I) 73.40 108.22 132.18 164.99 

Young [s] (2) 35.99 73.41 108.27 131.64 132.25 165.15 

Odman [,,7] (3) 35.99856573.405 108.237 131.902 165.023 210.526 220.06 

Vito et a1. Up. (4) 35.98518 131.5731 219.9290 
[~8] Lw. (5) 35.98521 131.5808 

Laura et a1. (6) 35.999 73.825 108.425 
[9] 
Baz1ey [4D] Up. (2) 35.98221 131.5021 

Lw. (7) 35.98533 131.5812 

Leissa[8] (2) 35.992 73.413 108.27 131.64 132.24 

Jones et a1. (8) 35.999 73.405 108.236 131.902 165.023 210.526 
[28] 
Gorman [l6] (9) 35.98 73.40 108.2 131.6 132.2 165.0 210.5 220.0 

Mukhopadhyay (10) 35.289 72.797 105.54 125.009 131.17 
[30] 
Marangoni et Up.(2) 35.987 73.385 108.05 131. 57 
a1. ['I'] Lw.( 7) 35.871 72.007 

Vijayakumar (II) 35.1124 72.8994 107.469 131.629 164.387 210.362 219.325 
[/7] (12) 36.0159 73.4175 108.252 131.581 132.234 165.035 210.530 220.070 

(13) 35.9854 73.3942 108.217 131.581 132.206 165.003 210.523 220.038 

N 
~ 



2-3-3 Results and discussion 

The numerical results obtained by using Eq. (2-35) 

are presented in nondimensional form of X= Wo.2,fP/D, with 

reference values by other authors in Table 2-3. The 

present values are calculated by 20x20 matrix with m ( n) = 

48 terms. The methods used by other authors are indicated, 

and upper and lower bounds are given for [38,39,41]. It 

may be noted that the present method yields lower bounds 

for a clamped square plate. This can be shown by referring that 

all the present values are lower than those by the Rayleigh 

Ritz or Galerkin method which is known to give upper bounds 

of the solution. 

Table 2-3 (continued) 

Authors (Mode) 9 10 11 12 

present 242.154 296.024 308.498 340.509 

adman 242.66 296.35 309.038 340.59 

Gorman 242.2 296.3 308.9 340.6 

Vijayakumar 242.197 295.698 308.929 340.244 
242.154 296.376 308.902 340.596 
242.154 296.342 308.902 340.584 

*method (1) series solution 
(2) Ritz method with beam functions 
(3) Galerkin method with hyperbolic functions 
(4) Rayleigh-Ritz method with non-orthogonal polynomial 
(5) method of orthogonal invariant 
(6) Galerkin method with polynomial 
(7) decomposition technique 
(8) extended Kantrovich method 
(9) method of superposition 

(10) semi-analytic solution (Reduction into an ordinary 
differential equation and finite difference method) 

(11) Bolotin method 
(12) Ritz method with admissible function obtained from 

Bolotin method 
(13) Rayleigh method with admissble function obtained 

from Bolotin method 



2-4 Rectangular plate having internal supports 

2-4-1 Review 

As reviewed in Sec.2-3-l, rectangular plates con-

strained only along the edges have been extensively 

studied. In practice, however, many plate-like struc-

tural elements have internal constraints in addition to 

the boundary conditions, for instance, in form of rivet 

and spot welding. 

Rectangular plates supported at some points have 

been studied by some researcherso Cox and Boxer [42] 

obtained the fundamental frequencies of a free plate 

point-supported at four corners. The lowest five frequen-

cies are calculated by a finite difference procedure. 

John and Nataraja[43,44] also used the finite difference 

to solve the governing equation and the results are re-

ported for a wide variation of support location. Reed [45] 

employed two approximate methods, the Ritz method and a 

series solution to the differential equation, to discuss 

advantages and disadvantages of the methods. Dowell [46] 

presented a Rayleigh-Ritz analysis with support conditions 

expressed by means of Lagrange multipliers, and the numeri-

cal results for a square plate with four internal point 

supports, located symmetrically on the diagonals. Venkates
Rao 

waraAet ale [47,48] have calculated by the finite element 

method the lower frequencies of square plates supported at 

four points on the diagonals. Comparison was made with the 

results in [42,44]. An experimental study was conducted 
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by Sadasiva et al. [49]. Leuner [50] studied the problem 

by a Rayleigh-Ritz analysis and by an experimental inves

tigation through the use of holographic interferometry. 

27 

Yang [52] formulated the eigenvalue problem of a point 

constraint and Damie et al. [51] used the finite element method. 

In comparison with the number of references concerned 

with point-supported plates, only a limited amount of 

papers deal with vibration of rectangular plates constrained 

along internal segments. Klein [53] derived approximate 

solutions by using the Rayleigh-Ritz technique and Lagrange 

multipliers to account for the constraints. The method 

was applied to a clamped rectangular plate with an internal 

line of support, but the results presented are few. 

Stahl and Keer [54] also treated a plate with a centrally 

located rigid line support by an approach using integral 

equations. Takahashi and Chishaki[55] obtained a solution 

for a rectangular plate supported at oblique segments by 

replacing point constraints with the segment reactions. 

The natural frequencies and mode shapes are presented for 

the plate,. 

2-4-2 Application of the method 

(a) Rectangular plate simply supported at the edges and 

elastically constrained at a cross-shaped support 

Consider a rectangular plate simply supported at all 

edges and elastically constrained at a cross-shaped sup

port located in the cent.er as shown in Fig. 2-4. In this 
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case, equation (2-20) is di-

vided into four sets of equa-

tions corresponding to the 

four types of vibration modes. 
k----a~--~ 

(1) SS-type mode (m, Yl. = odd) 
Fig.2-4 

=0 (2-37) 

(2) SA-type mode (m = odd, n =even) 

=0 (2-38) 

o 

(3) AS-type mode (Yi1 = even, yt = odd) 

=0 (2-39) 

o 

(4) AA-type mode (In, n = even) 

m r 
C-1)~Wl~.jJ~) (rro!JJ.) !i1,f. 

=0 
ntp. f1,j 

t1 

f-1)1.'(j t.f[l:) 
(2-40) 



'm and Yl in Eqs. (2-37) through (2-40) take odd or even 

integer as directed in the parentheses. SS-type mode 

is symmetric vibration about the two symmetric axes and 

not influenced by the rotational stiffnesses Xx, X"; of the 
I 

cross-support. Likewise, SA-type is not affected by Xx, X , 
I 

AS-type is not done by X, X; , and AA-type is not by )1, i\ • 

When the plate is clamped at the cross-support (X = ){'= J1x=X; 

= (0), all the first terms in the brackets of Eqs. (2-37) 

through (2-40) vanish. When the plate is simply supported 
I I 

at the support (X =.K = co, Xl< = X"Y= 0 ), SS-type mode is the 

same as that of a plate clamped there. SA-type and AS-type 

mode are obtained by taking Hy.j. = 0 in Eq. (2 - 38) and 11 xJ = 0 

in Eg. (2-39), respectively. In this case, equation (2-40) 

has no physical meanings, and AA-type mode is reduced to 

that of a plate with no constraints on it. 

(b) Rectangular plate clamped at all edges and an internal 

rectangular support 

Figure 2-5 shows a sym-

metric rectangular plate clamped 

at the edges and an internal rec-

tangular support. According to 

the same procedure explained in 

(a), the following equation is 

derived for the four types of 

Fig.2-5 vibration modes. 

29 



m 1Y1'~(~) 
s,'ntrrrr(i-r) ¢n.i.(7~) 

m~t1.i- (7d T 

5;nl'lm8:-r)r~,~(~) 

(1f(»") Ili 
tb 0. x~;.) 
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ynGOs rnll(t-t) ¢i1.~C72-) 

n rp)'tl,i(~/) 
5;(1 mr (i -0) 1Y1t,(' Crt) 

VYlwsYr11i ~-r) ~.J(c!t) Clfi/»Jl1tj = 0 

Yl (j)S'rlU(±-J) r~,iJ~£) 

n fm,} (;[ ) 
sihml(±-o)t~(li) 

Yl CDS Yl1T({-J) fw.j Cii) 

11ft, t1~~ (2-41) 

y.. Q (2.) 

o &l 'Ii 
1f't#-I1;J 

(/) (I) 

where /1x-j., /1YIJ- denote the moments at the outer edge 

(2) 11 (1.1 
and Qxj.' K'J-' ••• do the forces and moments at the 

inner boundary. For calculating each type of vibration, 

m and n take odd or even integer as explained in Table 

2-10 

2-4-3 Results and discussion 

Figure 2-6 presents the frequency parameters A= 

a... (wj I'/D)Vz and mode shapes of a square plate simply sup

ported at the edges and the support (support length: 4 
= 0" =0. 20), wherein thick curve shows nodal line and thin 

curve denotes contour line of the deflection. SA and AS-

type mode has the identical frequencies in a square plate. 

AA-type mode becomes that of a plate without the support 

as already explained. 

Figure 2-7 shows the frequency parameters and mode 

shapes of a square plate simply supported at the edges 

and clamped at the support. There is no difference bet-

ween SS-type modes of a plate simply supported at the 

support and a plate clamped there. However, SA and 



SS-mode 

8.225 10.46 12.88 

SA-mode 

8.397 11.71 14.12 

AA-mode 

+ 

8.886 14.05 17.77 
Fig.2-6 Frequency parameters A and nodal 
patterns of a square plate simply supported 
at the edges and a cross-shaped support 
«('=[=0.20). 

SA-mode ~ 
1---+--1 

8.467 11.72 14.28 

AA-mode 

9.098 14.44 18.11 

Fig.2-7 Frequency parameters A and nodal 
patterns of a square plate simply supported 
at the edges and clamped at a cross-shaped support 
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AA -type mode of a plate clamped at the support have 

higher frequencies than that of a plate simply supported 

there, and different mode shapes appear on the plate. 

Figure 2-8 shows the effect of length of the support 

on the frequencies of SS and SA-type modes of a square 

plate simply supported at the edges and the support. 

Although the frequencies increase monotonously as the 

length is extended, the rate of increase of the frequencies 

has different characteristics depending upon modes of 

vibration. The case of t= 0 = 0 corresponds to a plate 

simply supported at a single point in the center and 

t= J = 1.0 to a plate simply supported along XX and YY 

axes. The frequencies of such plates which have been 

already obtained [8,57] are shown with o. The frequen

cies obtained for these special cases are in good agree

ment with the reference values except for SA-type modes. 

The reason why the frequencies of SA-type modes of a 

plate supported at a small cross-shaped support is higher 

than those of a point-supported plate must be that even 

a small support constrains the rotation of plate, clamping 

the plate in the extending direction of the + (cross

shaped) support. 

The effects of varying stiffness of the support 

on the frequencies are studied in Fig.2-9. with the in

creasS of stiffness of the support, the frequencies also 

increase accordingly. When the stiffness parameters 

approach 0 or 00, the plate becomes free and simply sup-
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ported or clamped at the support, respectively. In SS-

type mode, as shown in Fig.2-9(a), the difference bet

ween the frequencies of SS-2 and S8-3 disappears with the 

decrease of the stiffness, and finally both frequencies 

tend to the frequency of the second mode of a plate 

without internal constraints. 

Figure 2-10 presents the convergence characteristics 

of the frequency parameters A of S8-1 and 8S-2 modes 

of a square plate clamped at the outer and inner square 

boundaries (t= f = 0.20) when the number of Fourier 

series terms is increased. It may be noted that the 

rate of convergence depends on the mode of vibration. 

Figure 2-11 shows the frequency parameters and mode 

shapes of a square plate clamped at both inner and outer 

edges. Frequency equation (2-41) was employed with 
-m x n =40x40 terms and l x!=4x4 terms resulting 24x24 

matrix. Therefore, about 1 percent error may be expected 

/2.8 

{ 
0 0 0 0 0 0 

SS-2 
12.6 

1/.2 

11.0 

10.8 m)(n= 4ox40 

12 24- 36 48 
matrix size 

Fig.2-10 Convergence of frequency parameters A 
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for the values in the figure. The frequencies of an 

internal clamped rectangular plate are also calculated 

in this procedure, but these values can easily be removed 

utilizing the known results for a clamped square 

plates. 

55-mode 

SA-mode 

AA-mode 

11.16 12.77 14.95 

11.29 13.73 14.95 

11.62 15.81 17.22 

Fig.2-11 Frequency parameters A and nodal 
patterns of a square plate clamped at the edges 
and an internal square support (r = 0= 0.20 ) 
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CHAP.3 CIRCULAR PLATES WITH VARIOUS BOUNDARY CONDITIONS 

3-1 Introduction 

The free vibration of circular plates has been a 

subject of considerable study for a century and a half. 

The first theoretical investigation was obtained by 

Poisson [58] in 1829 for axisymmetric vibration of a 

circular plate, and Kirchhoff [59] analyzed the more 

general case of asymmetric vibration in 1850. The summary 

compiled by Leissa [1] revealed that about fifty references 

had been obtained on the subject till 1967. 

The main purposes of the chapter are to show how 

the presence of nonuniform spring and mass systems can be 

acco~dated in the analysis, and to present interesting 

results showing how the frequencies and nodal patterns of 

the circular plates are affected by the addition of the 

nonuniform elastic constraints and masses. 

The fundamental equations of circular plates are 

derived in Sec.3-2 and the numerical results are given 

only for the case when a reasonable number of accurate 

results is not available. sections 3-3 and 3-4 deal with 

circular plates elastically constrained along parts of 

the edge by rotational springs only and by both trans

lational and rotational springs, respectively. It is 

shown in Sec.3-5 that the method used in Sec.3-4 can be 

utilized to analyze a free circular plate having varying 

mass distributed along its boundary. 
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3-2 Circular plates having uniform boundary conditions 

3-2-1 Review 

This section is concerned with circular plates 

having uniform edge conditions. A reasonable number of 

literature is found in [1] for this case due to the fact 

that the uniform boundary conditions make the mathematical 

formulation quite simple. For a solid circular plate, 

number of combinations of boundary conditions is only 

three, compared to twenty .... one distinct combinations for 

a rectangular plate, as long as the classical boundary 

conditions of free, simply support and clamp are con

sidered. Blanch [60] and Carrington [61] obtained natural 

frequencies of a clamped plate, and Maruyama [62J experi

mentally determined the frequencies by use of holographic 

interferometry. Besides these studies, enough literature 

has been available for this case. 

For a free plate, Colwell and Hardy [63J showed the 

frequencies for Poisson I s ratio V =0.33 and Airey [64] 

for ~=0.25. In the recent report by Itao and Crandall 

[65], the lowest 701 frequency parameters and correspond

ing modes are presented for a Poisson's ratio of 0.33. 

For a simply supported plate, numerical results 

available are those published by Gontkevich [66] and 

Wah [67], and Pardoen[68,69J calculated the frequencies 

by the finite element method and the exact solution. 

Jones [70] noted that the fundamental frequency of a 

clamped elliptic plate, obtained by Mazumdar [71], does 
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not depend explicitly upon the geometry of the plates 

when the frequency is expressed in terms of the maximum 

deflection of a uniformly loaded plate. He extended the 

idea to other plates and boundary conditions, and presented 

an approximate formula for several different plates in-

cluding a circular plate clamped or simply supported. 

Johns [72] also presented a two-term approximate solution 

which results the fundamental and second frequencies. 
c 

Jaguot and Lindsay [73] examined the influence of Poissonrs 
A 

ratio on the fundamental frequency of a simply supported 

plate. The number of useful results, however, is limited 

and a thorough and accurate study for a simply supported 

plate still needs to be done over a variety of Poisson's 

ratio from a technical point of view. 

The elastically constrained boundary is a more general 

form of boundary condition, and in fact the classical 

boundary conditions of clamp, free and simply support are 

obtainable by taking two (translational and rotational) 

elastic constraints to be zero and/or infinity. Kantham 

[74] first dealt with a circular plate constrained rigidly 

against deflection and elastically by a rotational spring, 

and presented variation of frequency parameters between 

a simply supported and clamped plate. Laura et ale [75,76, 

77] treated a problem having in-plane force by the Galerkin 

method used with a simple polynomial expression. This 

convenient method was extended to problems of a plate 

subjected to sinusoidal excitation [78], a plate holding 
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a concentrated mass [79] and a plate having two types 

of springs [80]. Singa Rao and Amba Rao [81] employed 

the Rayleigh-Ritz method with a three-term approximate 

expression for the elastically stiffened plate. Snowdon 

[82] considered response of simply supported or free 

circular plate possessing internal damping to a lateral, 

driving, central or concentric ring force. The same 

procedure was applied to a clamped circular plate [83]. 

Saito and Nakazawa [84] dealt with a circular plate 

mounted with an elastic annular support, taking the effect 

of the inertia of the support into consideration. 

3-2-2 Analysis 

The differential equation governing free vibration 

of a thin homogeneous plate is 

4-DV W-PW'"W = 0 (3-1) 

where the biharmonic operator in polar coordinates t.akes 

the form of 

(3-2) 

An exact solution to Eq. (3-1) for a solid circular plate 

with a uniform edge is 

with regular and modified Bessel functions JI1 and II? of 

the first kind, and undetermined coefficients Ah, tn . 
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(a) clamped circular plate 

When a circular plate is completely clamped along 

the edge as shown in Fig.3-l, the boundary conditions are 

given by 

Fig.3-l 

W(a,,&) = 0 

c3w 
or(a,&)= 0 

(3-4) 

Substitution of Eq.(3-3) 

into (3-4) yields a fre-

quency equation 

JY1.i-I (>.) IV! (A) + J~ (~) I~1"IlA) = 0 

( /.:1-= a4-u/P/D) (3-5) 

after applying the formulas 

(b) simply supported circular plate * 

Fig.3-2 

For a simply supported 

plate as shown in Fig.3-2, 

the boundary conditions 

are 

Wca,9)= 0 
(3-7) 

* [85] 



where 

Substitution of Eq.(3-3) into (3-7) results in 

Jrli"l C>') + !Yltl (,,) = l A 
J ... (r-) I~{~) /-)} 

Formulas (3-6) and the recursion formula 

In-tz(t-):::: ~(Yl+I) JVlH(A) - J"{,,) 

I~ut~)=-,~ (n+ I ) LH-dt.) + rl1l~) 

are used to deal with the derivatives of second order 

in Eq. (3-8) • 

(c) free circular plate 

(3-8) 

(3-9) 

(3-10) 

(3-11) 

For a completely free 

Fig .. 3-3 

plate as shown in Fig.3-3,. 

the boundary conditions are 

'/v. Ctl1e) = 0 

Mr(C)'J&) = 0 
(3-12) 
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where \ / [() 2 / () (I ;)2W)] Vr(~e)= -D Oy(V W)+ r(f-V)~y r de' (3-13) 

A determinant of the frequency matrix is written as 

where 

(3-14) 

C1 = Yl \ n (/- n ) ( /- v) - 'l-l In + ~ I vt( /-lJ) + 'X- I J tl.f-J 

C1. = VI { n ( /- n ) ( I - }) ) + X ~ 1~ - A t Y) 2. ( 1-b ) - x- ~ IVlt I 

C3 = I n (v\-/) (f-v ) - 'A2l JVl + " (l-lJ) J»+I 

Ct = l Yl (Yl-I )(J-u) + X ~ lY)- A (I-V) 11'1 

(3-15 ) 

(d) Elastically supported circular plate 

For a circular plate 

elastically constrained 

by a translational and 

rotational spring as shown 

in Fig.3-4, the boundary 

con.di tions are 

Elements in the resulting 

determinant of the form 

Fig.3-4 
Eq. (3-14) are 



C I ;:; t n2. (/ - n ) ( I - v ) - h A2. - K 1 Jh + A I n2 (J - V) t-X } J ntl 

C z ~ f n" (1- YI ) (J - v ) + Y} A2. - ~ J lYi - A l nZ (J -}) ) - X ~ 111-1- I 

C 3 = { Yl (Vl- I ) ( I -1) ) - 'A2. + VI f... I J 1'/ + A ( /-v -L) J~H I 

C4 == t n ( n - I ) ( I -1) ) + X + VI L.- ~ It1 - A ( 1-V - L ) 1 VI-t I 

where 

(e) elastically supported circular plate (rotational 

spring only) 

(3-17) 

The boundary conditions for a circular plate rigidly 

constrained against deflection and elastically against 

rotation are expressed as 

(3-18 ) 

In this case, the frequency equation in (d) is consider-

ably simplified and takes a similar form of Eq. (3-9) 

VnH (>.) + 1)11'1 (~)= 2. A 
J~ (~) 1h(>') r - J) ... [. 

(f) free plate with added mass to its boundary' 

For a free circular 

plate having a uniform 

distributed mass along 

the edge as shown in Fig.3-

5, the boundary conditions 

become 

v ... ( (l,) e) = m 0.)2. W (a, t9 ) 

M",. (().) [)) =- ~()l ~~ (aJ) 

( lq= V<£1 WI) (3-20) 

Fig.3-5 

(3-19) 
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where Ie, is mass moment of inertia per unit of circum

ferential length and kct is radius of gyration of ring. 

Elements of the determinant are given by 

)..4-

C I = { Y}2 ( 1-h )( /-V) - n A2 + L Rm l In + ). { n2 (l- }) ) + >/- ! J »H 

CZ = { n2(1_ n) (I-V)+ VlX" + 1 R»Il I» - A i n2(J- V) - X! 111f-1 
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xf"f 4f (3-21) 
C3 =l n (n-J )( I-}») - A2 ~ VI L ~ R~ \JVl+ ~ (l-Vt- A Lot}- Rm )J»+I 

C4 = { n (n - I ) ( J - )) ) + X - Y1 'A1t Rh) 11..,- A ( 1- V + A~~ RIM) 1~1 

where R~=MA/Mf (M~: total mass of the added mass,Hp : 

total mass of a plate), -A3-=k,/a.. 

3-2-3 Results and discussion 

Some literature surveys [1,2,3] revealed that a 

reasonable number of numerical results had been obtained 

for the two cases when the plate boundary is either 

clamped or free, as pointed out in Sec.3-l-l, but that 

few results were available for the simply supported 

boundary. For this reason, natural frequencies of simply 

supported circular plates are calculated in this section 

by using Eq.(3-9), and the numerical results are summa-

lized in Table 3-1 through 3-6 for the full range of 

physically possible Poisson ratios ,}) = 0,0.1,0.2,0.3, 

0.4 and 0.5. Results are given for all values of nand 

,S having n + S ~ 10, where n denotes the number of nodal 

diameters and 8 the number of interior nodal circles. 



?Z 0 

0 2.10799 

1 5.41883 

2 8.59202 

3 11.7471 

4 14.8962 

5 18.0426 

6 21.1875 

7 24.3315 

8 27.4749 

9 30.6180 

10 33.7608 

I/l 

Table 3-1 Frequency parameters ).. = aCw{f7D) of a simply supported circular plate ()J =0.0) 

1 2 3 4 5 6 7 8 9 10 

3.67442 5.02440 6.29310 7.51641 8.71001 9.88232 11.0385 12.1819 13.3150 14.4393 

6.93802 8.35354 9.70661 11.0170 12.2961 13.5508 14.7861 16.0054 17.2112 

10.1215 11.5747 12.9751 14.3364 15.6672 16.9734 18.2594 19.5282 

13.2846 14.7609 16.1916 17.5867 18.9530 20.2955 21.6178 

16.4393 17.9311 19.3829 20.8023 22.1947 23.5644 

19.5897 21.0927 22.5601 23.9977 25.4103 

22.7376 24.2491 25.7283 27.1803 

25.8840 27.4020 28.8907 

29.0293 30.5526 

32.1739 

~ 
--oJ 
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Table 3-2 Frequency parameters A =O(fJJlf/Dfzof a simply supported circular plate ()) =0.10} 

0 1 2 3 4 5 6 7 8 9 10 

2.14924 3.69301 5.03693 6.30266 7.52419 8.71658 9.88803 11.0435 12.1865 13.3191 14.4431 

5.43001 6.94638 8.36032 9.71235 11.0220 12.3005 13.5548 14.7898 16.0088 17.2143 

8.59856 10.1270 11.5794 12.9793 14.3401 15.6706 16.9765 18.2623 19.5309 

11.7517 13.2887 14.7645 16.1949 17.5897 18.9558 20.2981 21.6203 

14.8998 16.4425 17.9341 19.3857 20.8048 22.1971 23.5666 

18.0455 19.5923 21.0952 22.5624 23.9999 25.4123 

21.1899 22.7399 24.2512 25.7304 27.1823 

24.3336 25.8860 27.4039 28.8925 

27.4768 29.0311 30.5543 

30.6197 32.1755 

33.7623 

~ 
00 
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Table 3-3 Frequency parameters A = aCWi/I'/D)'fz of a simply supported circular plate (V =0.20) 

0 1 2 3 4 5 6 7 8 9 10 

2.18691 3.71087 5.04911 6.31202 7.53183 8.72306 9.89366 11.0485 12.1909 13.3231 14.4468 

5.44093 6.95460 8.36700 9.71803 11.0270 12.3049 13.5588 14.7934 16.0121 17.2174 

8.60502 10.1324 11.5841 12.9834 14.3438 15.6740 16.9797 18.2652 19.5336 

11.7563 13.2927 14.7681 16.1982 17.5927 18.9586 20.3007 21.6227 

14.9033 16.4457 17.9370 19.3884 20.8073 22.1994 23.5688 

18.0484 19.5950 21.0977 22.5647 24.0021 25.4144 

21.1924 22.7422 24.2533 25.7324 27.1842 

24.3358 25.8880 27.4058 28.8943 

27.4787 29.0329 30.5559 

30.6214 32.,1771 

33.7638 

~ 
<0 



~ 0 

0 2.22152 

1 5.45160 

2 8.61139 

3 11.7609 

4 14.9069 

5 18.0513 

6 21.1949 

7 24.3379 

8 27.4806 

9 30.6230 

10 33.7653 

Table 3-4 Frequency parameters A = a (W"JP/D)'6o f a simply supported circular plate (V =0.30) 

1 2 3 4. 5 6 7 8 9 10 

3.72802 5.06096 6.32118 7.53933 8.72944 9.89922 11.0535 12.1954 13.3272 14.4505 

6.96268 8.37359 9.72363 11.0319 12.3093 13.5627 14.7970 16.0154 17.2204 

10.1377 11.5887 12.9875 14.3475 15.6773 16.9828 18.2680 19.5363 

13.2967 14.7717 16.2014 17.5957 18.9613 20.3032 21.6251 

16.4489 17.9399 19.3910 20.8098 22.2018 23.5710 

19.5977 21.1001 22.5670 24.0042 25.4164 

22.7445 24.2555 25.7344 27.1861 

25.8900 27.4076 28.8961 

29.0346 30.5576 

32.1787 

c.n 
o 



~ 0 

0 2.25348 

1 5.46204 

2 8.61768 

3 11.7654 

4 14.9104 

5 18.0542 

6 21.1973 

7 24.3400 

8 27.4824 

9 30.6247 

10 33.7669 

Table 3-5 Frequency parameters A = Q(wlio/D)Qof a simply supported circular plate (11 =0.40) 

1 2 3 4 5 6 7 8 9 10 

3.74452 5.07249 6.33014 7.54671 8.73572 9.90470 11.0583 12.1998 13.3312 14.4542 

6.97062 8.38009 9.72916 11.0367 12.3136 13.5666 14.8005 16.0186 17~2235 

10.1430 11.5933 12.9915 14.3512 15.6807 16.9858 18.2709 19.5389 

13.3006 14.7752 16.2046 17.5986 18.9641 20.3058 21.6275 

16.4521 17.9428 19.3937 20.8123 22.2041 23.5732 

19.6003 21.1026 22.5693 24.0064 25.4184 

22.7467 24.2576 25.7364 27.1879 

25.8919 27.4095 28.8979 

29.0364 30.5593 

32.1803 

CJ1 
~ 



~ 0 

0 2.28312 

1 5.47225 

2 8.62388 

3 11.7698 

4 14.9139 

5 18.0570 

6 21.1997 

7 24.3421 

8 27.4843 

9 30.6264 

10 33.7684 

Table 3-6 Frequency parameters ). = aCwt/J'/f))'b. of a simply supported circular plate (V =0.50) 

1 2 3 4 5 6 7 8 9 10 

3.76041 5.08371 6.33892 7.55395 8.74190 9.91010 11.0631 12.2041 13.3351 14.4578 

6.97843 8.38650 9.73463 11. 0415 12.3178 13.5705 14.8041 16.0219 17.2265 

10.1482 11.5978 12.9956 14.3548 15.6840 16.9889 18.2737 19.5416 

13.3045 14.7787 16.2078 17.6015 18.9668 20.3083 21.6298 

16.4552 17.9457 19.3963 20.8148 22.2064 23.5754 

19.6029 21.1050 22.5715 24.0085 25.4202 

22.7490 24.2597 25.7384 27.1898 

25.8939 27.4114 28.8996 

29.0381 30.5610 

32.1819 

CJ\ 
N 



Frequency parameters A are given with six significant 

figures. The parameters >t by other authors are presented 

in Table 3-7. It is seen that inaccuracy exists in the 

previous data except for Pardoen's values, probably due 

to errors in calculating the Bessel functions. Comparing 

Table 3-1 through 3-6, it can be known that the effect of 

Poissonsratio upon the frequency parameter A is significant 

only for the lowest frequencies. This effect is observed 

clearly in Table 3-8 wherein the ratio of X(0.5)/ A2 (0) 

is shown for selected modes of YJ and S with X(o.5) and 
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).!- (0) being the values of )..,2- for V =0.5 and 0 , respectively. 

The squared values AZ are used here to observe the differ

ence more clearly. When the ratios of the frequencies 

themselves are compared, the effects of Yare more pro

nounced as seen in Table 3-8. The circumferential stiff

ening is particularly important in the lowest axisymmetric 

mode where the frequency can be differ by as much as 35 per

cent for different V. The number of presented data in 

these tables must be sufficient for most practical needs. 

Another significant lack of data on circular plates 

is variation of frequencies for a plate supported by a 

translational spring only. Table 3-9 presents frequency 

parameters of the plate with four significant figures 

by use of Eq. (3-14,17). The mode shapes are identified 

by (n, s ). For a completely free plate (K = 0 ), the 

lowest and second frequency vanish and the plate physically 

shows rigid body motions of translation and rotation, 
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Table 3-7 Comarison of frequency parameters 

with those by other authors for V = 0.30 • 

n s Gontkevich [66J Wah [67] Pardoen (69] Present work 

0 0 4.977 4.94 4.9352 4.93515 

1 29.76 29.72 29.7200 29.7200 

2 74.20 74.15 74.1561 74.1560 

3 138.34 138.3181 138.318 

1 0 13.94 13.47 13.8982 13.8982 

1 48.51 47.89 48.4789 48.4789 

2 102.80 103.43 102.7734 102.773 

3 176.84 176.8012 176.801 

2 0 25.65 25.60 25.6133 25.6133 

1 70.14 68.89 70.1170 70.1170 

2 134.33 134.56 134.2977 134.298 

3 218.24 218.2025 218.202 

Table 3-8 Ratios of frequency parameters 

and frequencies for different Poisson's ratios 

n S ).,2{.5Y;No) W (.SVw (0) 

0 0 1.17307 1.35454 

0 1 1.01981 1.17758 

0 2 1.00743 1.16328 

0 10 1.00045 1.15522 

1 0 1.04736 1.20934 

2 0 1.02375 1.18212 

10 0 1.00257 1.15470 



~ 
Table 3-9 Frequency parameters J\ = acwJ1lD) of a circular plate 

uniformly constrained by a translational spring (Y=0.33) 

Yhode~w 0 10-1 
10 0 10' 102- 104- 10

6 

<n, S) 

1 (0,0) 0 0.668 1.172 1.861 2.183 2.231 2.231 
1.86* 2.18* 

2 (1,0) 0 0.795 1.410 2.440 3.479 3.731 3.733 

3 (2,0) 2.294 2.305 2.398 2.983 4.370 5.057 5.064 

4 (0,1) 3.012 3.016 3.052 3.390 4.701 5.447 5.455 

5 (3,0) 3.499 3.503 3.536 3.822 5.068 6.308 6.324 

6 (1,1) 4.529 4.530 4.541 4.648 5.567 6.949 6.965 

* LaUra et ala [80] 

~-- -~.- -----

00 

2.231 

3.733 

5.064 

5.455 

6.324 

6.965 

CJ1 
Ui 



respectively. As the nondimensional stiffness K = a~}fw/D 

is increased, the frequency parameters become higher 

and coincide with those for a simply supported plate when 

R = 106 is taken. The fundamental frequencies, obtained 

by Laura [80], for K = 10' ,102. are presented and they are 

found to agreeo 

Table 3-10 and Fig03-6 show the effect of a uniform 

added mass to the edge on the frequency parameters of 

a free circular plate for the selected modes (0,1) and 

(3,0)0 Other frequencies and nodal patterns will be 

presented in Sec.3-5-30 Here the effect of rotary inertia 

of the edge mass is neglected. It is interesting to 

observe th~t the effect of a added mass appears on (3,0) 

mode more obviously than on (0,1) mode, as the mass ratio 

is increased. 

d.S 

A 

J.O 

2.0 

o 0.2 0·1 0.6 0·8 /.0 /.2 1.4-
MA/l1p 

Fig.3-6 

Table 3-10 Frequency 
parameters of a free 
plate with a uniform 
added mass 

(0,1) (3,0) 

0.0 3.001 3.527 

0.2 2.770 3.108 

0~4 2.646 2.855 

0.6 2.569 2.679 

0.8 2.516 2.546 

1.0 2.477 2.441 

1.2 2.448 2.354 

1.4 2.424 2.281 

(/"lp: total mass of plate, 
MA:total mass of edge 
mass) 
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3-3 Simply supported circular plate constrained by partial 

rotational springs 

3-3-1 Review 

In most works conce.rned with vibration of circular 

plates, the uniform boundary conditions have been used 

and circular plates with mixed boundary conditions have 

received sparce treatment. This is mainly attributed to 

the mathematical difficulty in obtaining analytical 

solutions of the problem. 

Nowacki and Olesiak [86] have dealt with the problem 

using a Fredfolm integral equation but the results were 

few. Bartlett [87] obtained the fundamental frequency by 

use of a variational approach. The variational expressions 

were determined by separation of variables, and two dif

ferent procedures gave upper and lower bounds of the 

solution. Numerical results are given in good accuracy. 

Noble [88] also obtained the fundamental frequency from 

an integral equation involving unknown functions along 

the circumference of the plate. The solution of a certain 

static problem was used to find an approximation to the 

fundamental frequency. Hirano and Okazaki [89] employed 

the variational method to obtain the lowest two frequencies 

for plates having three combinations of free, clamped and 

simply supported edge. Hemmig [90] obtained both finite 

element and experimental results for the problem, but the 

number of frequencies presented are few. Thus, these 

previous studies revealed only the lowest two frequencies. 
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Moreover, apparently no one has been able to deal with 

the mixed boundary conditions for the case when a plate 

is constrained by elastic springs along part of the 

boundary. 

In this section, the author deals with the problem 

Of a simply supported plate having some partial rotational 

springs, and shows natural frequencies and mode shapes 

up to higher modes. Numerical results are also shown 

for partially clamped plates, utilizing the concept that 
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the edge condition of zero deflection and rotational elastic 

constraint is reached in the limit as the elastic spring 

constants are taken to be infinite. The analytical proce-

dure used is an extension of a previously developed method 
m 

[91] for accomodating spring stiffnesses which vary circum-
1\ 

ferentially around the boundary.. The method is straight-

foward and applicable to wide variations of edge constraints. 

An analytical solution of the differential equation of 

plate vibration is derived in a simple form, thereby avoid-

ing a formidable task of the variational procedure. The 

natural frequncies are obtainable to the desired accuracy 

by using the frequency determinant of larger order. Numer-

ical results presented in figures provide some interesting 

observations. 
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3-3-2 Analysis * 

A general solution to Eg. (3-1) for a solid circular 

plate is given by 

(3-22) 

where 

Wn (k r) = An In (k yo) + en In (it yo) 

IAI*.e. A* T (.P_) C*I (J» (IA-_fw..2..1iD) (3-23) 
VVt'l (r<v-) = t1 Vn r<.r + n h f?/I" R V J 

Consider a simply supported circular plate having 

rotational springs along parts of the edge as shown in 

Fig.3-7. Edge slope is opposed by the rotational springs 

h~ving distributed stiffness K~ (moment/unit length). 

The boundary conditions are therefore 

Fig.3-7 

* [92] 

where f1~(r,B) is the 

radial bending moment 

W,~~) 
f\y per unit length given by 

Ego (3-8). Since K'PCl}) 

varies along the bound-

ary, it is reasonable 

to expand the spring 

stiffness in Fourier 

series. 

DO 

K",(f)) = ILm COSine 
trl=O 

00 

+ [L! ~ih y;, () (3-25) 
m=/ 



where Lm and L~ are Fourier coefficients determined in 

the usual manner. Substituting Eqs. (3-8,22,25) into the 

boundary conditions (3-24) yields 

00 

~ I X- W:O.) + VA W:CA) - }) Yl2. V1/;, (A) l cos nB (3-26) 

[
00 { J. *" , 

+ . A WI? CA) + V'>"W!(A) - })n2 W;CA) I 81hne 
"~I 

= - A l 8d()) + 8;.(e) +{j3CFJ) + 34-((j ) ~ 

where A is the nondimensional frequency parameter given 

by ~= (ita)2. = w til. jp/D and 8" 82. , 9~ and ~q; are expressed 

as the products 

using nondimensional spring coefficients L~=aLm/D 

(3-27) 

-* and L;,= 

a tJ" / D. These products of trigonometric functions are 

removed by use of the trigonometric identities such as 

cosme COs ne = l {COS (;Y7+h ) (j + cos (m- n ) e I 
COsme s;hnB = i [Sih Cm+l1) e - sin (»1- Y1 ) f) j 

(3-28) 
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Suppose that the edge constraint has an axis of sym-

metry at e = O. Vibration modes in that case are separated 

into symmetric and anti symmetric mode with respect to the 

axis. Then, 

( 
COSne ) 

Wn(A) Sinha o (3-29a) 

where 

- ., I f-- / 
L() Wo + Z t-L;,. ~ 

6=1 
(n=() ) 

[ La W: + ~ I Lh w.' + t. L. (W: • .: + W/;-i/)} 1 coshe 
(n=L2 J '" ) 

-3l({)) = l LoW: + i [ Ln W: + t. L.: (W~.: + WI~-c))) ] .. i"JiB 

(3-30) 

( +: n)~) (n = 1,2, , •. ) 
n5.t. 

Derivatives of Bessel functions with respect to h'r are 

evaluated by formulas (3-8,16,17). From Eqs.(3-23,29a), 

one obtains 

Ch =- ~ An (3-31) 

Substituting Eq.(3-3l) into (3-29b) and equating coeffi

cients of COS ne (or Sin nf) yield for 



(1) Symmetric vibration mode 

z 1 ZAJn- ( /- V-Lo )( JnrJ In + In Tn+1 )/IYI I An 
+ I Lh ( J; I() + Jo I, )/10 J Ao 

+ ~ [j, [{ ( In-ti,+1 In+~ + In+-~ In+i+1 )/In+~ I AnT~ 
+ 1 ( Jln-~I-d I,n~l.' + Jli1-~1 I'n-il-i:l )/Iln-~l f A In-CI ] = 0 
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(3-32) 

or in matrix form 
(h=I,2, .. ) 

where 

and 

eoo eOI e0 2. ... - .. -- - Ao 
e,o ell e /1. 

.. - .. - .... AI --
e:z.o eZ.1 e2-2. 112. 

" 

e.oo = 4AJo - 2 ( J- j) - Lo ) be> 

eoj. = L~ bj. 
e;,o = 2.Li b() 

0 

ei/= 14AJ~+IL~~-Z('-))-L())} Pi. 
C L'i~JI+ Li ... j) OJ. 

bJ = ( 1)+1 IJ + 0 IjtJ )/IJ 

(i=i) 

l itJ) 

(3-33) 

(3-34 ) 



(2) Antisymmetric vibration mode 

Z ! ZAJn - (/- V - [D) (In+,IYl + Jh IV1-rt )/11'1 J An 

+ { LYI (J~ I 0 + Jo I I )/10 I AD 
00 

+ J;; Li [/ (Jnri+l In-r~ + Jvu-~ Inrirl )/InrL, \ An+L. 
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T { ( J'h-il+ I I In-C} + JIYJ-~/IlY1-~It-,)/llJ1-c I ! An-;" ) = 0 (3-35) 

(+-.n>~) 
- . n~i. (n=/,2,''') 

or in matrix form 

ell elL ets .... - ..... At 
e2./ e z,z. e:l

3 
.... - Az. 

0 (3-36 ) = 
e31 e31- 633 A3 

where 

(3-37 ) 

The natural frequencies of the plate are obtained by cal

culating eigenvalues A of the coefficient matrices of Eqs. 

(3-33,36). The mode shapes are determined by 

WCr,o)=fAh (~~~~) t J" ()\~) In(;') 

- In (A) 111 (~ ~) }/Ih (>.) (3-38) 

after solving simultaneous equations in terms of amplitude 



3-3-3 Results and discussion 

Arbitrary spring systems are physically meaningful 

as long as they are passive spring systems (Kf > 0) for 

all values of B. We now consider simply supported circular 

plate having one, two or three rotational springs on the 

boundary. For simplicity, it is assumed that each spring 

has the same degree of stiffness, although it is possible 

to utilize springs having different stiffnesses. They are 

symmetrically spaced with respect to e = o. That is, (I) 
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one spring is located on -ri. < 9 (0( of the boundary, (2) two 

springs are located -D«O (0< and 7l-~ < f) < 7(+ 0(, and (3) three 

springs are located on -~ <() < 0{ , 211/a-o{ (6 (.2:rrA+CX and 4rr/S-c;l.(B(41V3to<, 

Fourier coefficients of three spring systems are determined 

by 

(3-39) 

and are shown in Table 3-11. 

Table 3-11 

Lf) ~ akp 20< 0. K", 3c< a Kif' 
7f D 1T D 7T D 

Lm Z slhmoi (a /('1') 
WIn D 

4st'hmo( (at\(!) 
mIT D 

6s,;,md (tlKF) 
JtlTT D 

pn=2,4,b ... ) (ff1=3,6,'l··-) 

0 (m=J,3,s}',,) o (in = (, 2/ 4-, S, , ,. ) 



The rate of convergence of the fundamental frequency 

parameter using larger order determinants can be seen in 

Fig.3-a for a simply supported circular plate having one 

rotational spring (C( = 7T /4 , a Kr; / f) = 104) • Poisson's ratio 

is taken as 0.25 for comparability. Since no known results 

are available on circular plates constrained by some part-

ial rotational springs, it is appropriate to compare the 

present results for the limiting case with other known ones. 

It is obvious that the frequency parameter approaches that 

of a plate clamped along one quarter of its boundary as the 

nondimensional stiffness goes to infinity. It will be 

shown in Fig.3-10 that frequency parameters for Q~~/D =10+ 

and 0( =TT show very good agreement with the exact values of 
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a entirely clamped plate. Hence, aKCf 10 =104 can be regarded 

as "almost clamped." Bartlett [87] and Hemmig [90] presented 

the fundamental frequency for a circular plate partially 

clamped and simply supported at the remaining edge. These 

values are shown in the figure. It is noted that A approaches 

Bartlett's value when larger order determinants are used. 

2.7 .----;--_r----r----,.---.,..--....,. 

A 2.6 

2.5 

5 10 

[901 

[87] (upper and 
lower bounds) 

15 20 25 
Fig.3-8 Convergence of the fundamental frequency 

parameter;" (0( = 7f / 4 , a Kr / D = 104 ) • 



Figure 3-9 presents frequency parameters and nodal 

patterns of a simplY supported circular plate having one 

rotational spring of varying elastic stiffness (d. = 7f 14, 

V=0.3). Frequency parameters were calculated by use of 

20x20 matrices and errors are expected to be less than 

1 percent for most cases according to the previous conver

gence study_ Solid lines shown inside the plate boundary 

are nodal lines, corresponding to zero displacement of the 

plate. No nodal patterns are shown for the fundamental 

mode, because there are no nodal lines present. Nondimen

sional spring stiffness is taken as 0, 10'°, 10~ and 104 • 

The frequency equation is reduced to the exact one for a 

simply supported plate for a~/D =0. As the stiffness is 

increased and discontinuity of the boundary condition 

becomes significant, frequencies of the plate increase and 

nodal lines become deformed. No major difference, however, 

is observed between a.K'I'/ D =102 and 104- in nodal patterns. 

Figure 3-10 shows frequency parameters and nodal pat

terns of a simply supported circular plate having one 

rotational spring of varying angle (o.K'I'ID =104- ,}) =0.3) 0 

Nondimensional stiffness is taken as constant 10~ (almost 

clamped) and the angle ~ of the spring is taken ~/4 I "/2 

31£ /4 and "If. The case of 0( = rr 14 corresponds to that of 

~K~/D =104 in Fig.3-9. Frequency parameters in the paren

theses at 0< = 7i are the exact values for a clamped circular 

plate, and by comparing them with the previous ones, it is 

clear that o.KrlD =10 4 is proper rigidity to represent 

clamping at the edge. Interesting variations of frequency 
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AK'/t /O Mode 1~ __________________ ~4 ____________________ ~ 

Sequence 0 10° 102 104 

2.222 2.286 2.517 2.547 

S 

2 CD 3.787 4.095 4.131 

3.728 

3.741 3.837 3.866 

S 

3 
5.086 5.206 5.219 

A 

5.061 

5.087 5.287 5.337 

4@ 
5.452 5.477 5.727 5.767 

Fig.3-9 Frequency parameters and nodal patterns of 

simply supported plates with elastic constraint 

( 0< = 7T / 4 , lJ = a . 3 0, 2 a x 2 a rna tr ix) • 
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a .. 
Mode 
Sequence 

t 

7T/4 

2.547 

1T12 

2.770 

31T14 

3.047 

, 
(

Exact for ) 
1T Clamped Plate 

2 

3 

4 

4.131 4.184 

3.866 4.232 

5.219 5.536 

5.337 5.504 

5.767 5.898 

4.305 

4.578 

5.638 

5.776 

6.187 

3.196 
(3.196) 

4.6\0 
(4.611) 

5.905 
(5.906) 

/'" 

6.306 
(6.306) 

Fig.3-l0 Frequency parameters and nodal patterns of 

plates clamped along one segment and simply supported 

on the remainder (aK-.y/D = 10+ , V=0.30, 20x20 matrix). 
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parameters and nodal patterns are observed with the change 

of ~. In the 2nd and 3rd modes, frequencies of symmetric 

or anti symmetric modes derived from one degenerated mode 

at ()( =0 alternate in being higher or lower, and a nodal 

circle of the 4th mode changes its shape considerably. 

These nodal lines move so as to equalize the stiffness in 

each segment of the plate between the lines. 

Figures 3-11,12 and 13 show the variations of the low

est five frequency parameters with the spring sti·ffness 

parameter when the plate .is constrained by one, two and 

three springs, respectively. Solid lines denote symmetric 

modes and broken lines anti symmetric modes. For the case 
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of aK'f /D =0 the exact values of a circular plate simply 

supported all around are presented. All frequencies increase 

monotonically and considerable changes take place between 

10
0 

and 10
2

• Degeneracies exist for all values of a.K'I'/ j) 

for modes of the plate having thre.e equally spaced springs. 

In this case, the frequencies of the symmetric and anti

symmetric modes are the same. The values used in plotting 

these figures are presented in Table 3-12, 13 and 14. 

The variations of the frequency parameter with the 

angle of spring constraint are shown in Fig.3-14, 15 and 16 

when the plate is constrained by one, two and three springs, 

respectively. Since a nondimensional spring constant 

104 is taken, the rotationally constrained parts of the edge 

can be considered as clamped, as suggested by the preceding 

example. As d!1( 11 : number of springs) approaches 7T, the 



7 

6.321 L---------------~-=-~-~-~-~-==-~-~-==-~-~-=--~-~------_, 

6 

5.452 1----............... -----
_~--------1aID 

5.061 L----....... ~~-:.:: ... .;;..;...---I 
5 

4 
3.728 1-___ .... IIiiI"IIIr.-=-:;;- - -- - ---.. ----tSf.,---

3 

2.222 1----------
2 

o 10° 10
2 

(aK'P /0 ) 
Fig.3-ll Variations of the frequency parameters 

for a simply supported plate elastically constrained 

along one segment (0< = 7T /4, 1/ =0.30) • 
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7 

6 

5 

4 
1-__ "'fIfIJfIII'C::-~.-----

3 

2 

o 

.".#fIP ," , 
."."" 

-~.----..,. ... -

.",. ................. ..,-_ .. 
. _-....... -

Fig.3-l2 Variations of the frequency parameters 

for a simply supported plate elastically constrained 

along two segments (0< = IT /4, J) =0 • 30) • 
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7 

6 

5 

4 

3 

2 

o 

.----fP!iI'--

Fig.3-l3 Variations of the frequency parameters 

for a simply supported plate elastically constrained 

along three segments (01. = 7f /6, lJ =0.30) • 
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mode type of -/ 

num. mode 0 10 

1 S 2.222 2.22 

S 3.728 3.73 
2 

A 3.728 3.73 

3 S 5.061 5.06 

A 5.061 5.06 

4 S 5.452 5.45 

5 S 6.321 6.32 

A 6.321 6.32 

mode type of 10-1 

num. mode 0 

1 S 2.222 2.22 

2 S 3.728 3.73 

A 3.728 3.73 

3 
S 5.061 5.06 

A 5.061 5.06 

Table 3-12 

0 
10' 10 

2.29 2.45 

3.79 3.98 

3.74 3.78 

5.09 5.15 

5.09 5.19 

5.48 5.62 

6.34 6.41 

6.35 6.44 

Table 3-13 

10° 10' 

2.35 2.66 

3.84 4.21 

3.75 3.85 

5.11 5.21 

5.11 5.32 

10,2 

2.52 

4.10 

3.84 

5.21 

5.30 

5.73 

6.48 

6.54 

2-
10 

2.85 

4.47 

3.96 

5.27 

5.55 

103 

2.55 

4.13 

3.86 

5.22 

5.34 

5.77 

6.53 

6.56 

10
J 

2.90 

4.53 

4.01 

5.30 

5.64 

10 4 

2.56 

4.15 

3.89 

5.23 

5.38 

5.78 

6.56 

6.56 

101-

2.93 

4.56 

4.05 

5.31 

5.70 

-J 
W 



mode type of 0 num. mode 

4 S 5.452 

5 S 6.321 

A 6.321 

mode type of 0 num. mode 

1 S 2.222 

2 S 3.728 

A 3.728 

3 S 5.061 

A 5.061 

4 S 5.452 

5 S 6.321 

A 6.321 

Table 3-13 (continued) 

10-1 
10° 10

1 

5.45 5.50 5.79 

6.32 6.35 6.48 

6.32 6.37 6.56 

Table 3-14 

10-1 
10° 10' 

2.22 2.35 2.70 

3.73 3.80 4.04 

3.73 3.80 4.04 

5.06 5.11 5.34 

5.06 5.11 5.33 

5.45 5.50 5.66 

6.32 6.36 6.57 

6.32 6.36 6.56 

102 10
3 

6.08 6.14 

6.63 6.71 

6.67 6.69 

10
2 

103 

2.91 2.99 

4.24 4.31 

4.24 4.31 

5.56 5.62 

5.56 5.62 

5.80 5.88 

6.81 6.85 

6.82 6.93 

104-

6.16 

6.76 

6.69 

. 104-

3.05 

4.36 

4.36 

5.67 

5.66 

5.96 

6.86 

7.01 

"-J 
~ 



partially clamped plate becomes a plate clamped along the 

entire edge. The exact figures are presented at C;{M= rr • 

On the other hand, as ~ approaches zero, the frequency 

parameters of the symmetric modes decrease rapidly in the 

vicinity of C{ = o. Physically speaking, however, the effect 

of moment constraint might remain even for small~. It is 

observed in the figures that the frequencies of two modes 

which generate from one mode at (f. =0 cross each other. 

This crossing takes place (2N-l) times (N: number of nodal 

diameters) for the plate with one spring and (N-l) times 

for two springs. Bartlett [87] obtained the fundamental 

variation with the angle of a clamped edge, and Hirano and 

Okazaki [89] also presented the variation for the lowest 

symmetric and anti symmetric modes. Both variations show 

excellent agreement with those in Fig.3-l4, although the 

present results are slightly higher than those by the other 

authors due to the different Poisson's ratio. The values 

used in plotting these figures are presented in Table 3-15, 

16 and 17. 
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7 

6.321 

6 

5.452 

5.061 
5 

4 
3.728 

3 

2.222 

2 

o 0.2 

.". 

0.4 

,,"'" 
"",' 

fIIII'fIIII' 

0.6 

a/1T 

_-----.., 6.306 

----' 5.905 

_---· ..... ,-..-44.610 

_---13.196 

0.8 1.0 

Fig.3-l4 ariations of the frequency parameters 

for a simply supported plate clamped along one 

segment (o.K~/ D =10
4 

,)J =0.30) . 
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7 

6 

5 

4 

3 

2 

o 0.2 0.4 0.6 0.8 1.0 
2 a/7T 

Fig.3-l5 Variations of the frequency parameters 

for a simply supported plate clamped along two 

segments (aKr/ D =104 
, V =0.30) • 
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7 

6 

5 

4 

3 

2 

o 0.2 0.4 0.6 0.8 1.0 

3afT( 
Fig.3-l6 Variations of the frequency parameters 

for a simply supported plate clamped along three 

segments (o.K'I'/ D =10 4 
, Y =0.30) • 
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'.i'ab1e 3-15 One Rotational Spring (Hatrix Size 10x10) 

Mode Type of a./'fr 
Sequence Mode 0 0.1 0.2 0.3 0.4 0.5 

1 S 2.222 2.44 2.52 2.61 2.70 2.80 

S 3.728 4.01 4.11 4.17 4.18 4.19 
2 

A 3.728 3.76 3.83 3.95 4.10 4.28 

S 5.061 5.21 5.21 5.28 5.42 5.58 
3 

A 5.061 5.15 5.29 5.113 5.50 5.51 

4 S 5.452 5.64 5.75 5.81 5.85 5.94 

S 6.321 6.45 6.50 6.65 6.76 6.77 
5 

A 6.321 6.46 6.56 6.57 6.66 6.82 

0.6 0.7 0.8 

2.91 3.02 3.12 

4.21 4.28 4.43 

4.45 4.56 4.60 

5.63 5.64 5.71 

5.57 5.74 5.88 

6.09 6.17 6.22 

6.88 6.98 7.00 

6.85 6.91 7.09 

0.9 

3.19 

4.61 

4.61 

5.90 

5.90 

6.30 

7.14 

7.14 

1.0 

3.196 

4.610 

4.610 

5.905 

5.905 

6.306 

7.144 

7.144 

...J 
\.0 



Table 3-16 Two Rotational Springs (Ma.trix Size 10x10) 

Mode Type of 2ahr 
Sequence Mode 0 0.1 0.2 0.3 0.4 0.5 0.6 

1 S 2.222 2.61 2.69 2.81 2.89 3.00 3.06 

S 3.728 4.21 4.32 4.44 4.52 4.57 4.60 
2 

A 3.728 3.75 3.81 3.89 3.97 4.14 4.26 

S 5.061 5.25 5.26 5.26 5.29 5.38 5.49 
3 

A 5.061 5.12 2.25 5.42 5.56 5.75 5.83 

4 S 5.452 5.86 5.96 6.09 6.14 6.18 6.20 

5 6.321 6.50 6.51 6.54 6.68 6.83 7.05 
5 

A 6.321 6.43 6.60 6.68 6.70 6.70 6.74 

0.7 0.8 

3.16 3.19 

4.61 4.61 

4.47 4.60 

5.81 5.90 

5.90 5.90 

6.26 6.30 

7.14 7.14 

6.97 7.13 

0.9 

3.19 

4.61 

4.61 

5.90 

5.90 

6.31 

7.14 

7.14 

1.0 

3.196 

4.610 

4.610 

5.905 

5.905 

6.306 

7.144 

7.144 

00 
o 



Table 3-17 Three Rotational Springs (Hatrix Size 15x15) 

Mode Tvpe of 3a./rr 

Sequence Mode 0 0.1 0.2 0.3 0.4 0.5 0.6 

1 S 2.222 2.69 2.76 2.B7 2.95 3.04 3.OB 

S 3.728 4.00 4.07 4.16 4.26 4.36 4.46 
2 

A 3.72B 4.00 4.06 4.16 4.25 4.36 4.45 

S 5.061 5.33 5.41 5.51 5.59 5.67 5.74 
3 

A 5.061 5.32 5.41 5.51 5.58 5.66 5.74 

4 S 5.452 5.62 5.66 5.74 5.81 5.96 6.06 

S 6.321 5.76 6.82 6.85 6.86 6.86 6.90 
S 

A 6.321 6.38 6.52 6.70 6.83 7.01 7.0B 

0.7 O.B 

3.16 3.18 

4.55 4.60 

4.55 4.60 

5.B3 5.90 

5.B2 .5.90 

6.25 6.30 

7.05 7.13 

7.13 7.14 

0.9 

3.18 

4.60 

4.60 

5.90 

5.90 

6,30 

7.14 

7.14 

1.0 

3.196 

4.610 

4.610 

5.905 

5.905 

6.306 

7.144 

7.144 

00 
l-h 



3-4 Free plate partially constrained by translational and 

rotational springs 

3-4-1 Review 

Several references were found on vibration of circular 

plates supported either inside the plate or along the edge. 

Bodine presented the fundamental [93] and higher frequencies 

[94] of a circular plate supported on a concentric circle, 

and Singh and Mizra [95] treated axisymmetric vibration of 

a plate supported on two concentric circles. Nagaya et al. 

[96] obtained a solution for a plate with an eccentric cir-

cular elastic support. The boundary conditions at the edge 

vlere satisfied by means of the Fourier expansion method. 

For circular plates supported on some arcs, Irie and Yamada 

[102] analyzed vibration of a plate whose lateral deflection 

and rotation are elastically constrained on some circular 

arcs inside the plate. Okazaki et al. [103] dealt with the 

problem by the weighted residual method. 
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Free circular plates supported on some discrete points 

are also important structural elements and are found, for 

instance, in point-supported large optical mirrors [97]. 

Nakazawa [98] dealt with a free plate whose lateral deflec

tion is elastically supported at some points on the boundary. 

Chi [99] employed a similar procedure to obtain natural freq

encies and nodal patterns of a plate supported on three equal

ly spaced points on the boundary. Irie and Yamada [100] 

analyzed more general case of a plate whose deflection, ro-

tation and torsion are elastically constrained by some points. 



Ichinomiya and Maruyama [101] compared experimental results 

by the holographic interferometry with the values in [100], 

and good agreement was reported. 
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Difficulty in obtaining analytical solutions arises when 

non-uniform edge support is taken into consideration. In 

addition to the difficulty in the mathematical formulation, 

another difficulty may take place in the numerical calculation 

to obtain good convergence of the solution 0 Generally, ana

lytical solutions for mixed boundary conditions cause bad 

convergence, particau1ar1y for the case involving free edges. 

In contrast, it is relatively easy to have convergent values 

for mixed boundary conditions of simple support and clamp. 

Hemmig [90] presented some results for a free plate partially 

clamped along a portion of the edge, by the F.E.M. program 

(NASTRAN) and an experiment using the holography technique. 

Hirano and Okazaki [89] employed the same method as used in 

[103]. A method developed by Irie and Yamada [102] is also 

applicable to problems having nonuniform edge conditions 

only by taking circular arc supports along the edge. However, 

these methods introduced here are too complicated to practical 

engineers, and it is necessary to develop a simple and 

straightfoward method. 

In this section, a method shown in the previous section 

is extended under more general boundary conditions, namely 

a free circular plate elastically constrained by partial 

translational and rotational springs. 
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3-4-2 Analysis * 

Consider a free 

circular plate elas-

tically constrained 

along parts of the 

edge as shown in Fig. 

3-17. Some trans-

lational and rotation-

al springs having 

• w iL) d KC~' stl.ffnesses f\wan '/', 

respectively, are 

attached to portions 

of the edge. The 

differential equation 

(3-1) and the solution 

Fig.3-17 (3-22) are used, and 

the following boundary 

conditions are required along constrained parts of the edge. 

(3-40a) 

(3-40b) 

where the edge reaction and bending moment are given by Eqs. 

(3-8) and (3-13), respectively. Because the stiffnesses 

Kw , Kt of the entire spring system is assumed to vary along 

the edge, it is reasonable to expand them into Fourier series. 

*[104] 



m 00 * 
Kw(e) = IKM cosme + IKm sinme 

m<O m=! 

00 00 ~ 

Krj/ (e)= [Lm cosme + I L.m sinyYI(j 
m=o m=/ 

where Km ,K~ , Lm and L! are the Fourier coefficients 

determined in the usual manner. substitution of Egs. (3-

8,13,22,41) into (3-40) yields 

00 It 'A3 01:'+ Xw.,," - A [I + n2.(z-})) 1 w: + nl(3 -V) Wn l co<;n9 
n=o 

+ I{ A3 Wn*'+ XWr,: - A L I + n:L( 2-)))1 w: + hJ.(~ -}}) VlI.t l sinne 
n=! 
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(3-41) 

(3-42) 

00 00 1/ , 

II 'KWYl"+ )JAW: -l)r/Wt1 ~ cos-Yla + I{ X-WVl~ +V~ Wn* - lJn2.w/!s,hnB 
n~o n~/ 

(3-43) 

where 

00 00 

1,(9)= fKm COSme f Wn cosnf}) i{(j) = IKmcosme I Wn* sinne 
m=o Yl=o Yn"o n= } 

(3-44 ) 
00- 00 00_ 00 I 

Jd()) :: ILm Cfism() I Wn' cosne I fjd(})=L L-rt, cosme L W: slY/he 
m=o n=/ fYJ=o n=1 



1/ ~ / 17* .n3//*/D -L L ~ Llf ~ / wi th nffl = a Kl'II ])) nm = U r \m ) h1 = a IYI/ D) /)1 = a Lm / D 

and the primes denote derivatives with respect to "hI". 

Suppose that the spring system has an axis of symmetry 

at () = o. In this case, vibration modes reflect this sym-

metry and are separated into symmetric and antisymmetric 

modes with respect to the axis. Thus, one obtains 
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(3-45) 

and -};9)= f{-{o) =(h (f)) =J4W)= 0 • 

The functions f, (9) , fi- (() , . . . can be rewr i t ten as 

f,C()) = 

- I 00-

Ko ~ + Z. [Ki. Wi. 
PI 

t,( k4 Wn + i I If. Wo +- ~ k'. ( w.,.... + Win-il ) I ] Cosn9 

(3-46) 

(3-47) 



by use of the trigonometric identities such as Eqs. (3-28). 

Derivatives of Bessel functions with respect to ~Y are 

evaluated by formulas (3-6,11). 

Equating the coefficients of cosne or Sinne in Eqs. (3-45) 

and substituting Eq.(3-23) yield the following frequency 

equations in matrix form. 

(1) Symmetric vibration mode 

(l?oo (801 Q;02. ---- --

e\O ell (E,l. 

eZ.o ce21 eU. 
, , , . , . , . . 

where 

-p(() -PCO) 
(£;00 = 2 1 (f;Oj = 

/ Zro) ~ ~(O) 

Co 

~, 
-el. 

KjJj 

- I 

LjJj 

0 (3-48) 

K·I· 'J J 
(j=I,2~ .. ·) 

- I 

Lj IJ (3-49) 

(j = 1,2, ." ) 

(3-50) 
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(Kl~-jl + K ~J) I;, 

( LIC-j/+ Li~j ) If 
( i == I J 2) ... ; j = 0.1,2 ... ) 

(3-51) 



and 

P (h)= { n2.( /-n)( J -}}) - nA~ -Ko 1 In + A {,l-o- ») +)..2 }Jn~1 

pen) = { nJ.(I- f) (I - V) T hAl. - Ko } In - A { n1.(J -))) - X } It?1-/ 

'3-(1)= { h (n -/)(/ - J)- A2+nLo} JYI + A (/-V-Lo) JYI-t-I 

~(h)={ n (n -/)( I ~ V) + A2+ nL.o } IYI - A (/- J)-LtJ 1»+/ 

(2) Antisymmetric vibration mode 

6;/1 (812. el3 - - - - - - - C, 

leZ-J f~:l. elS q;2. 

f31 Q;32. t>33 
=0 

[j 

, 
, 

where 
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(3...,53 ) 

{3...,54} 
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(i,j=I,2/.") 
- - I 

~tj = 
(itj) ( L Ii.-J I - L itj ) 1.J. (3-56) 

The na·tural frequencies of the plate are obtained by cal-

culating the eigenvalues of the coefficient matrices of 

Eqs. (3-48,54) and the corresponding mode shapes are deter-

mined by Eq. (3-22) after solving Eqs. (3-48,54) in terms of 

amplitude ratio ('il Ao or C.z I A, • 

3-4-3 Results and discussion 

Consider a free circular plate elastically constrained 

by uniform translational and rotational springs along some 

parts of the edge. The stiffness of each spring may vary 

independently from the others. As shown in Sec.3-3, when 

a plate is constrained along two opposite circular parts 

(- 0< < f) < 0( , 7f - 0< < e < 1f - o() of the edge, the spring system along 

the entire edge is expanded into a Fourier cosine series with 

coefficients 

I J2lI"( ctkw) km=- D COsme de 
1T () 

for the translational spring, and 

Z. -(I) -(z) ) L;n= tnT{ (f\ 'I' +- I-\,/, COSrmr SinWlO( (m:: J I 2,··.) (3-58) 

for the rotational spring in the same fashion, with 
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Figure 3-18 shows the lowest six frequency parameters 

and nodal patterns of circular plates elastically constrained 

by translational and rotational springs along a quarter part 

of the edge. The solid lines shown inside the circular 

boundary denote nodal lines; i.e.,lines of zero deflection. 

The fundamental modes have no internal nodal lines. In this 

figure, moving from left to right, the stiffness of a trans-

lational spring is gradually increased, starting from a com-

pletely free plate and going to a plate simply supported 

along a quarter of its boundary. Then, sufficient rotational 

rigidity is added to make the boundary segment effectively 

clamped. The generation of two sets of modes, symmetric and 

antisymmetric, from the degenerate modes of a completely 

free circular plate having one and two nodal diameters, is 

clearly seen. 

A more comprehensive study of the variations of the 

frequency parameters with increasing spring stiffness is 

shown in Fig.3-19. Solid lines denote symmetric modes and 

broken lines antisymmetric modes. It is observed from the 

figures that considerable increases of frequency parameters 

take place between nondimensional rigidity 10° and 109 in 

both types of springs. The values used in plotting these 

figures are presented in Table 3-18 and 19. 

Table 3-20 shows the convergence study of frequency 

parameters for the lowest six modes of a plate constrained 

- - 6 
along a quarter part of the edge (fffZ = Kfj} = 10 ) presented 
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/'\::)=10 
J<fj:=Q 

o 0.418 
( tr-Qns/ ation ) 
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kW=/03 
K$J=O 

0.683 0.758 
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1 .102 

2 0 1.834 2.237 2.328 2.559 

3 

4 

(rotation) 
A 

1.210 1.572 1.671 1.782 

2.832 2.854 3.065 

2.294 

3.074 3.225 3.343 

3.012 3.136 3.808 3.973 4.108 

Fig.3-18rrrequency parameters and nodal patterns of 

circular Elates elastically constrained by translational 

and ro~o1il.al springs along a quarter of the edge (ji =0.33) . 
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Table 3-18 Frequency parameters A of a free cir-

cular plate elastically constrained along a portion 

of the edge ( RW= 0 , o(/1f =0.25, V=0.33). 

~ mode 0 10 1 102 10
3 

104 106 

1 0 0.42 0.60 0.68 0.72 0.76 

2 1 

s 0 1.83 2.12 2.24 2.29 2.33 

A 0 1.21 1.47 1.57 1.62 1.67 

3 \ : 

2.294 2.55 2.80 2.83 2.84 2.85 

2.294 2.51 2.89 3.07 3.15 3.23 

4 3.012 3.14 3.59 3.81 3.90 3.97 

5!: 3.499 3.58 4.03 4.19 4.21 4.22 

3.499 3.61 4.06 4.27 4.31 4.32 

6 \ : 

4.529 4.58 4.90 5.22 5.35 5.46 

4.529 4.54 4.58 4.68 4.76 4.85 

Table 3-19 (K~= 106 
, C\' /7f =0.25, ).J =0 .. 33) 

~ mode 
10-1 10° 10' 102 104 10° 

1 0.77 0.85 0.99 1.05 1.08 1.10 

21: 
2.33 2.36 2.45 2.50 2.54 2.56 

1.67 1.67 1. 70 1.73 1.76 1.78 

31 : 
2.85 2.88 2.99 3.05 3.06 3.07 

3.22 3.23 3.25 3.29 3.33 3.34 

4 3.97 3.98 4.02 4.06 4.10 4.11 

51: 4.23 4.27 4.40 4.54 4.56 4.57 

4.31 4.33 4.43 4.46 4.48 4.49 

6 { : 

5.46 5.46 5.48 5.51 5.56 5.56 

4.85 4.85 4.85 4.86 4.89 4.89 



Table 3-20 Convergence study of frequency 

parameters for a partially constrained cir-

cular plate ( KJ:J = K$J=lO , o(/7T=0.25, V=0.33) 

~ 1 2-A 2-S 3-A 4 matr~x 3,...S 
S/Z.e. 

20x20 1.18 1. 87 2.67 3.10 3.47 4.28 

30x30 1.14 1.82 2.61 3.08 3.39 4.18 

40x40 1.12 1.80 2.59 3.07 3.37 40.14 

50x50 loll 1.79 2.57 3.07 3.35 4012 

60x60 1.10 1.78 2.56 3.34 4.11 

70x70 1.10 1.78 2.55 3.34 4.10 

80x80 _. 2.55 4.09 

90x90 4.09 

also in Fig.3-l8. The frequency parameters apparently 

converge within the range of three significant figures, as 

the matrix size (twice as the employed terms of Fourier 

series) is increased. It is noted that the rate of conver-

gence is different depending upon the mode of vibration. 

Since the numerical calculation in Fig.3-l8 through 21 was 

carried out by use of 60 x 60 matrix, good accuracy is ex-

pected for all the 'results presented. Poisson's ratio is 

taken as 0.33. 

Figure 3-20 shows variations of frequency parameters 

with the change of angle ~ for a plate constrained along 

one part of the edge. Since the stiffness are taken as 

K(,Y = 10
6 

and R~= 0, the constrained part of the plate can 
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Fig.3-20 Variation of frequency parameters of 

circular plates constrained along a part of the 

the edge (KIe=106, K7J = 0 {simply supported], y = 
0.33),A :Irie and Yamada [100]. 
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m~ 
1 

2\ : 

3{: 
4 

51: 
6{: 

Table 3-21 Frequency parameters A of a circular plate simply supported along one segment 

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
-----------.----- __________ ----_. ____ 0 ____ -------------._-.;..--

0 0.33 0.45 0.66 0.85 1.07 1. 32 1.66 2.02 2.20 2.23 2.231 

1.816 1. 816 1.88 1.98 2.21 2.42 2.51 2.51 2.53 2.68 3.33 3.71 3.733 

0 1.18 1.3l. 1.54 1.80 2.12 2.54 3.11 3.65 3.72 3.73 3.733 

2.795 2.796 2.81 2.82 2.83 2.91 3.21 3.72 4.05 4.06 4.19 5.01 5.064 

2.294 2.57 2.71 3.03 3.42 3.80 3.93 3.94 4.27 5.00 5.06 5.064 

3.200 3.202 3.29 3.41 3.77 4.10 4.14 4.16 4.62 5.21 5.24 5.43 5.455 

4.052 4.057 4.15 4.19 4.20 4.32 4.88 5.25 5.28 5.58 5.63 6.18 6.324 

3.499 3.79 3.96 4.27 4.34 4.39 4.88 5.33 5.35 5.97 6.32 6.324 

4.571 4.573 4.61 4.74 5.19 5.60 5.62 5.76 5.77 6.06 6.47 6.78 6.965 

4.529 4.53 4.53 4.65 5.11 5.51 5.55 6.08 6.59 6.73 6.96 6.965 

CD 
OJ 



be considered as almost simply supporteJ.. Irie and Yamada 

[100] have obtained the frequencies of a free circular plate 

supported at a point, and the present values for symmetric 

modes are in good agreement with their values in the vicinit,., 

of 0( = 0 0 The differences of these values of A are less 

than 0.1 percent, when ~ =0.01 is taken. For antisymmetric 

modes, the frequency parameters approach those for a free 

plate because the effect of a zero deflection constraint is 

diminished for small ~ on a nodal line. On the other hand, 

the plate becomes a uniformly simply supported plate as 

approaches 7f. The limiting values of A for 0<. = 0 and 1T 

are presented in the figure. The number of nodal diameters 

( n) and interior nodal circles (S) for these limiting 

cases are also given. The values used in plotting the 

figures are presented in Table 3-21. 

- - G 
In Fig. 3-21, stiffnesses are taken as K[:}= f(~J =10 and 

the constrained part is therefore almost clamped. The fre-' 

quency parameters vary between those of a point clamped 

( c< =0) and complete.ly clamped (0( = 7f) circular plate. In 

the vicinity of 0< = 0, the frequency parameters for anti

symmetric modes tend to approach those of a completely free 

plate. However, the values for symmetric modes are not 

very close to those of a point supported plate even when 

0< =0.005 is taken. Comparing Fig. 3-20 WJ_ th 3-21 , it is 

observed that variations of the corresponding modes in both 

figures show similar trends, although in F'ig.3-21 frequencit 

of different modes approach each other and veer away, for 

example, near .\=4.6 and 5.9. The values in the figure is 

presented in Table 3-22. 
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circular plates constrained. along a part of the 
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Table 3-22 Frequency parameters 
::-.::=:....----===---======--:::::::::::-:----

~ 0 
mode 

0.05 0.1 0.2 

1 0.737 0.86 0.92 1.03 

2(S1.943 2.03 2.14 2.40 

A 1.026 1.24 1.41 1.64 

3\ S 2.904 2.96 2.99 3.04 

A 2.437 2.62 2.79 3.13 

4 3.227 3.31 3.47 3.86 

5\ : 3.630 

4.35 4.47 4.55 

3.84 4.05 4.42 

~ of a circular plate clamped along one segment 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.17 1. 36 1.61 2.00 2.56 3.09 3.17 

2.72 2.99 3.07 3.11 3.19 3.79 4.56 

1.92 2.26 2.71 3.35 4.30 4.60 4.61 

3.09 3.31 3.87 4.52 4.58 4.68 5.81 

3.56 4.09 4.49 4.59 4.69 5 .• 79 5.90 

4.37 4.57 4.57 4.81 5.90 5.93 6.26 

4.58 5.05 5.77 5.91 6.05 6.30 6.90 

4.53 4.62 5.03 5.82 5.94 6.44 7.14 

1.0 

3.196 

4.611 

4.611 

5.906 

5.906 

6.306 

7.144 

7.144 

to 
(I:) 



3-5 Free plate with nonuniform edge mass 

3-5-1 Review 

It is shown in this section that how the method 

developed in Sec.3-4 can be utilized to analyze a free 

circular plate having varying mass distributed around 

its boundary, a type of problem which can be encountered 

in practical situation. This problem has received prac

tically no treatment, but several references were found 

for the case when circular plates are reinforced by uni

form rings. Kirk and Leissa [105] studied axisymmetric 

vibration of a circular plate reinforced by a concentric 

ring and presented the variation of the fundamental fre

quencies with some ring parameters. Takahashi treated 

a circular plate with its inner boundary built-in and a 

rigid ring around its outer boundary [106] and a plate 

having weights or a bar on the outer boundary [107]. The 

analysis was conducted by minimizing the Lagrangian of 

the plates. stuart et ale [108] presented a short note 

discussing the effect of edge beam on the frequencies. 

These references dealt with internal or edge ring 

having uniform mass and stiffness, and there are no 

literature concerned with circular plates having non

uniform edge mass. In the present study, it is assumed 

that mass distributed along the edge has no stiffness, 

100 

.but the more general problem of a plate having a nonuniform 

edge ring with both translational and rotational mass and 

stiffness can be treated by the same general method. 
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3-5-2 Analysis 

Consider a free 

circular plate of radius 

a having an additional 

strip of mass added along 

its boundary, as shown in 

Fig.3-22. The density of 

the added mass is m (mass 

per unit length) and, in 

general, m = m «() ); that 

is, the mass density is not 

uniform, but varies around 

the circumference. The 

boundary conditions for 

the problem are determined 

from the equations of mo-

tion for a infinitesimal 

length of the edge mass, namely: 

(3-59a) 

M 1 2 c>vV 
yo ( ().. e ) = - ctW 0 yo (a, B) (3-59b) 

where V ... and MY' are the shearing force and bending moment 

given by Eq. (3-8) and (3-13), respectively. Equation (3-

59b) was written in a form to account for the rotary inertia 

of the edge mass, with I~ being mass moment of inertia per 

unit of circumferential length. Inasmuch as it is difficult 
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to envision a physical body attached to the edge having 

significant rotary inertia, the right hand side of Eq. 

(3-59b) will be taken zero in subsequent work. 

The distributed mass is now expressed in the form 

of a Fourier series, 

(3-60) 

where the mi. and mt are determined in the usual manner. 

substituting Eqs.(3-22,60) into (3-59) yields 

~ m H / 
+ I [X W;(A) +A2 Wh*"(A) - A {I +n2.(2 ~p)l W:{A) 

11=/ 

(3-61a) 

f f "z W:'i.>.) +)J). Wn~N - Vn'Wn(i.) \ cos n () 
n,:,o 

00 f/ I 

+-~ t X~· VUt{A) + V.A vvtCt\) - VnZ w;O,) 1 s inYl e = 0 (3-6lb) 



where 

1,((}) = fmi, cosifj f ~(>-) cosn8 
coo ri=O 

(3-62) 

the primes denote differentiation with respect to -kr, 

and where )11Z, mt and A are nondimensional parameters 

defined by 

(3-63) 

Expanding the right-hand-side of Eq. (3-6la) by the 

use of trigonometric identities such as Eqs. (3-28) and 

equating coefficients of trigonometric functions having 

the same periodicity, Eqs. (3-61) yield an infinite set of 

homegeneous, algebraic equations in the undetermined 

constants AI), ... , C;. 
For plates with edge mass distributed symmetrically 

about & =0, the frequency equations thus derived take 

the same form as Eqs. (3-48,54) and can be determined by 

substituting _)..'1-(::;) into Ki and taking L~ to be zero. 

The eigenvalues of the determinant of the coefficient 

matrix give the nondimensional frequencies A. 
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3-5-3 Results and discussion 

To demonstrate the application of the method of 

analysis described in the previous section, consider a 

circular plate having its boundary a completely free of 

external constraints, but having a uniformly distributed 

mass attached along part of its boundary. Let the total 

added mass be MA, with 

(3-64 ) 

104 

where Inc is the constant density (per unit length) of the 

added mass and 2(3 is the included angle of the boundary 

segment to which it is attached, as shown in Fig.3-23. 

Fig.3-23 

mass coefficients are 

Choosing the coordinate 

system to take advantage 

of the symmetry of the prob-

lem, the free vibration modes 

divide into two classes, 

those symmetric and anti-

symmetric with respect to 

* -Jf .t. () = O. Then, m;. = Jr1i. = )3(8) 

= f4({))= a in Eg. (3-6Ia), and 

typical values of the non-

dimensional Fourier cosine 

(3-65) 
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where Mf is the mass of the plate by itself, 7fd"P. 

Numerical results for frequency parameters and 

nodal patterns are shown in Fig.3-24 for various segments 

2(3 of added mass. In this figure, it is assumed that 

the density of the added mass remains a constant as !3 is 

increased (i. eo, I1A 111, = (3 I 71 ), with HtllMp = 1 when added 

mass occurs completely around the boundary; that is, the 

total mass added proportional to its circumferential strip 

length. Results are given also in Table 3-23e 

With no added mass «(3 ITT = 0) the frequencies and nodal 

patterns are those of the classical free plate. The funda

mental frequency (other than the zero frequencies corre

sponding to rigid body translation and rotation) has a pat

tern of nodal lines consisting of two equally spaced diam

eters. The nodal pattern corresponding to the second fre

quency has one interior nodal circle, and the third one 

yields three equally spaced diameters. 

As strip mass is added around the boundary (i.eo, in

creasing (317f ), as can be expected, the natural frequencies 

all decrease. However, the decreases are not at a steady 

rate, as seen in Fig.3-25. Furthermore, the frequency 

changes are accompanied by drastic changes in nodal patterns 

within the same symmetry class, as seen in Fig.3-24. 

Of particular interest is the behavior of the modes 

which are degenerate at (3 17r = 0 , giving A =2.315 and 3.527. 

The lower curves of Fig. 3-25, begining at A =2.315 cross 

each other three times as (J 17T is increased, yielding a 
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A 

s 
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106 

{3/7r 
T_----------------------~A~----------------------~\ 
o 0.25 0.50 0.75 1.0 

2.315* 2.113 1.868 1.797 1.666* 

2.315* 2.03'7 1.956 1.749 1.666* . 

3.001 2.852 2.679 2.493 2.441* 

3.122 2.911 2.697 2.477 

3.527* 3.124 2.785 2.630 2.441* 

Figo3-24 Frequency parameters and nodal patterns of a 

circular plate having a partial edge mass (MIr/l1p = t3 / 7f , 

!I =0.30, * degeneracy), 
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Fig.3-25 Variation of frequency parameters with 

the angle of a partial edge mass --- constant 

added mass density (MAl ME'= (3llT , V =0.30) • 
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~ mode 0.0 

31 : 
2.315 

2.315 

4 3.001 

Is 3.527 

5 lA 3.527 

Table 3-23 Frequency parameters with the angle of a partial edge mass--

constant added mass density (/1,4/l1p = (3/1T , )) =0.30,20 x 20 matrix) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
----.. ~ -- +-._------_.- ---_._----------

2.11 2.10 2.07 1. 96 1.87 1.80 1.79 1.76 1.70 1.666 

2.27 2.11 1.99 1.96 1.96 1.88 1.79 1.71 1.67 1.666 

2.90 2.86 2.78 2.70 2.68 2.65 2.51 2.46 2.46 2.441 

3.34 3.25 3.01 3.00 2.91 2.73 2.70 2.66 2.58 2.477 

3.37 3.13 3.11 2.94 2.79 2.76 2.69 2.56 2.46 2.441 

~ 
o 
CO 
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fundamental mode shape which can be either symmetric or 

antisymmetric, but returning to the same degenerate (2,0) 

mode for (3 17f = I 0 But the curves begining with the 

degenerate (3,0) mode, after crossing each other five 

times, do not coalesce at /3 11T = I but, rather ,one of 

them joins with a completely different curve, degenerating 

into the roots A=20441. 

Additional results are presented in Fig.3-26 for the 

change in A as a function of fl when the total added strip 

mass 11/1 remains constant, such that MAIM,= I. Thus, as 

~ ~ 0 the limiting case becomes one of a point mass equal 

to that of the plate, and the frequencies for the symmetric 

modes are distinct (i.e., not degenerate) and lower than 

those of the corresponding antisymmetric modes. The curves 

for the symmetric modes are drawn to stop short of (317f =0 I 

for no numerical results could straightfowardly be obtained 

for this singular value. However, the antisymmetric modes 

and frequencies are unaffected by the presence of a point. 

mass at the end of a diametral nodal line. 

All numerical results presented here obtained from 

using 20th order determinants truncated from the infinite 

characteristic determinant. Convergence studies showed 

that results of sufficient accuracy were obtained from 

this order of truncation. A typical example of the rate 

of convergence of A is shown in Table 3-25, which cor

responds to three points in Fig.3-25. As could be expected, 

convergence for the higher frequencies requires higher 

order determinants than for the lower ones. 
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Fig.3-26 Variation of freguncy parameters with 

the angle of a partial edge mass - constant 

added mass (MAl Mp=l. 0, V =0.30) • 

110 



~ made 0.01 

3( : 
1.86 

2.30 

4 2.80 

5\ : 
3.21 

3.50 

Table 3-24 Frequency parameters with the angle of a partial edge mass--

constant added mass ratio (MAIMp =1. 0, )/ =0.30, 20 x 20 matrix). 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
---------.-- ---_._ .. -- ---_. __ .-. -...... --- .... -_ .. --.. -_-._---'---- ._----------. __ .. __ ._----_. __ ._._---. 

1.90 

1.95 

2.81 

3.17 

2.80 

1.94 1.85 1. 71 1.65 1.65 1. 70 1.70 

1.75 1.75 1.80 1.80 1.73 1.65 1.61 

2.66 2.51 2.55 2.58 2.46 2.40 2.40 

2.82 2.85 2.80 2.65 2.60 2.61 2.60 

2.85 2.71 2.55 2.51 2.56 2.51 2.45 

Table 3-25 Convergence of frequency parameter 

( J1A/l1p = (.J /7f =0.5, )J =0.30, symmetric modes) • 

determinant (2,0) (0,1) (3,0) 

10xl0 1.868 2.679 2.927 

20x20 1.868 2.679 2.911 

30x30 1.868 2.679 2.910 

1.70 1.666 

1.61 1.666 

2.42 2.441 

2.51 2.477 

2.40 2.441 

I-..\. 
~ 
~ 
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CHAPo4 CLAMPED POLYGONAL PLATES 

4-1. Introduction 

Free vibration of clamped polygonal plates is studied 

in this chapter, and "polygonVU here refers a regular poly

gon with the equal sides and angles between the adjacent 

sides. Polygonal plates are less encountered in practical 

situations when compared to rectangular or circular plates. 

Furthermore, it is difficult mathematically to obtain a 

deflection function which satisfies the given boundary 

conditions exactly & For these reasons, there has been 

only a limited number o~ technical papers concerned with 

vibration of polygonal plates. 

A general analysis is presented for the determination 

of natural frequencies and mode shapes of the plates, and 

the analysis is applied to triangular and polygonal plates 

in Sec.4-3 and 4-4, respectively. 

4-2 Analysis * 

Figure 4-1 shows a rectangular plate which is simply 

supported at the edges and clamped along some segments C, 
( f =1,2, ... I P) located inside the plate or along the 

edges. Denoting the length of two edges a T h 1 the X lJ

plane of a rectangular coordinate o-x¢8 is taken in the 

neutral surface of the plate. The differential equation 

of motion governing vibration of the plate is given by 

(4-1) 

* [129] 
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negarding unknown reaction force and moment acting along 

the segment as unknown harmonic force and moment 1 Q.(;l,'d) Hl-cx,~)J 
. t eJw acting on the plate, the deflection of the plate is 

written as 

a b 

W(X/I) = I II Q({,(,1))q(:i'~;UIft\)+-I1 ... {a'1I');Y'Ji(;!"i~//})id1l'dU (4-2) 
o 0 

by use of the Green's function of the plate 

(4-3) 

where ,P is the mass per unit area and r is the length 

in the direction normal to the segment. The derivation 

of Egs. (4-2,3) and its physical interpretation were made 

in Sec. 2-2. cu." and ~1I(;l/~) are the natural frequency and 

normalized eigenfunction of a simply supported rectangular 

plate, respectively, which are expressed as 

Wm:l.n __ " pD j(~1f)2+ (Yl
b
Tf)2.J2 . 1./ '1 2. . rrnr:t.. 'htr'J l "'" , Wtftn("t.1rt)=";a..b SIn--a Slh/) 

where D is the flexural rigidity of the plate given by 

D =£f//l2 (l-l) (E :Young' s modulus, f, :plate thickness, 

V :Poisson's ratio). 

(4-4) 
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When external force 

act on the segment 

C,: Uf(A)=Qp+A COS(),) V,Dd)=bp + ;(j sin Br (P=/,2,···P) 
(4-5) 

the deflection of the plate is written as 

W (X, 'cf) = r {Q fA) G (X, '/; Uf(4) I 1f,{Jd» p rJP 
f/1) 

p=/ 0 en. () ;; ) (.:l. L., 
+ 111'(;4) (S'm(j, C;u - cosO, 'lI1h '-I(:x.,~;U,(d)/0(4)} (;(XJ 

f r (4 ... 6) 
where f, is the length of the segment C, and A denotes 

the length measured along it and &, the angle between the 

segment and X axis. Expanding the force and moment dis-

tributed along the segment into Fourier sine series with 

unknown coefficients 

(4-7) 

Equation (4-6) is written as 

I /Xl 00 I ff{ (p) C;) MCp) rep) 1 
W(t./~)='p I~IW~I1- W2. Wm.,(t,ifJ 6J~ Q~ Imn,i, +llr.~VtIJ»,i (4-8) 

LCt) J (~) 
by use of Eqs. (4-3,7) . 1It1l1~ and Iltilf~ denote the definite 

intergrals 

(4-9) 

When the plate is clamped along the segments, the follow-

ing constraint conditions must be satisfied. 



115 

Fourier sine series 

By substituting Eqs.(4-11) into the equations obtained by 

the substitution of Eq. (4-8) into (4-10), and equating all 

coefficients of sin (j7i1J/Q,) to zero, the following equation 

is derived. 

and 

( P , ~ =1,2, ..• , f; i, j =1,2, ••• ) 

By introducing nondimensiona1 expressions 

kn{A)=(m'+j1l
n).)L- ,.\Y1f4'J 'Atr=pafW'/D (J).=a/b) 

o I}> pl. m .). \ I? • ~ 
0rnn, t = J~ Jlln 7TJf{'l.)SJhnl1 (f{l:) sm&7i"2 d.B 

I 

h~::i. = mJ'inB, f cosrrmf, (i) Si'nJ17r~(8) Si';1L7r"idS 
() I 

~ pnCOS&p [ s,'nrhTi5;a) COSnrrqW) S;n i7f2 d~ 
o 

Equation (4-l2) is rewritten in the convenient form 

==0 
net) 

Yj 

(4-l2) 

(4-13 ) 

(4-14) 

(4-16 ) 



116 

where l j denotes a column vector, and the product 

of the column vector and the transposed vector in the 

parentheses ( ) gives a square coefficient matrix. 

The natural frequencies W of the plate are obtainable 

by calculating the eigenvalues of Eq.(4-l6) and the mode 

shapes are determined by 

(4-17) 

{ 
. (1)) Vf en L T 

from the calculation of the eigenvectors (o./1i)a~ nY',~ 5 • 

In the numerical calculations, the number of terms (m, n ) 

of the infinite series and terms of the Fourier sine series (,oJ) 
may be truncated at appropriate finite number, considering 

the convergence and accuracy of the solution. 

4-3 Triangular plate 

4-3-1 Review 

A number of studies concerned with triangular plates 

with combinations of boundary conditions were introduced 

in [1], but most of them dealt with only the fundamental 

modes and the number of accurate results is still limited. 

Chopra and Durvasula [109,110] has treated simply supported 

symmetric and antisyrnrnetric trapezoidal plates, and shown 

the frequencies for a triangular plate as a special case 

of the trapezoids. Orris and Petyt [Ill] conducted a 

finite element study for trapezoidal plates and also 
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presented the frequencies for a triangular plate. Williams 

et al [112] used trilinear coordinates to obtain analytical 

solutions for a simply supported triangular plate. 

For a clamped triangular plate, Cox and Klein [113] 

used a deflection function satisfying the boundary condi-

tions exactly but the results obtained were insufficient. 

Hersch [114] presented a lower bound for a clamped equi-

lateral triangle, and Ota et al. [115] obtained fundamental 

frequencies of clamped isosceles triangular plates. In 

[111] Orris and Petyt also calculated frequencies of 

clamped isosceles triangles but no results are given for 

a equilateral triangle. In most references, only the 

fundamental frequencies were considered and the lack of 

accurate results including higher modes is quite obvious. 
eral. 

This problem was also considered by Reid[116] and Koerner
A
[117]. 

4-3-2 Application of the method 

A triangular plate can be formed on a simply supported 

rectangular plate by appropriately setting several clamp-

~ng segments inside the plate or along the edges. Three seg-

ments CI>C2 and Cs of equal length make an equilateral triangle 

on the original plate of aspect ratio ~=2f3 as shown in 

the figure of Table 4-1. One of the segments is at least 

located on the .;( axis. By the location of some segments 

and application of the theory, the natural frequencies 

and mode shapes are calculated numerically. 

As there is one geometrical symmetric axis on an iso-

sceles triangle, symmetric and antisymmetric vibration 
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modes arise with respect to the axis. By separating 

both types of vibration and considering only a half domain 

of the plate, the size of matrix in the frequency equation 

can be reduced into half. 

Table 4-1 presents the frequency equation for an iso-

sceles triangular plate, and also the way of locating the 

segments and taking integers (m, Y1) for each type of 

vibration and aspect ratio ;{A= (). / b of an original rectan-

gular plate where the actual plate is placed. The S-type 

mode denotes symmetric vibration about the symmetric axis 

(broken line) and A-type mode anti symmetric vibration 

about the axis with a nodal line (solid line) on it. 

Table 4-1 Clamped triangular plate 

S-type mode A-type mode 

~ (I) 11 0) 

0000 
mn.~ I)'.j 

r[-'· 8/1.) ( ~ "J j I>) ~ c.} \ a. CL) =0 (4-18) 
mn,i fnni 11md i'tt11:J 1i QJ 

f/1=( YJ~( fmYl(~) 
~ (~) M(J} 

ml1.t. )"'J 

m = 2., 4 I ,-. 

n = IJ2,J 
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4-3-3 Results and discussions 

Figure 4-2 presents frequency parameters and nodal 

patterns of a clamped equilateral triangular plate. The 

frequency parameters obtained were converted into the 

values in terms of apothem yz (radius of a circle inscribed 

in the actual plate). Solid lines inside the plates are 

nodal lines. In the figure, sets of two frequency para-

meter s have close values and denoted with * They are 

"degenerated" frequencies and supposed to have the identi-

cal values. The slight errors between them are caused 

by the different equations used and the truncation of 

terms employed in the infinte series. 2-8 mode,for ex-

ample, can be made by the superposition of 2-A mode. The 

number of terms used in the series are presented in the 

JS 

2.g78 
(15-96 ) 

t. 131 ** 
( 15'-64) 

2S 

3A 

3.912 * 
( 12-48) 

S.158 ** 
C/5-64) 

4A 

4.003* 
( 12-48) 

6.337 
(18-80) 

Fig.4-2 Frequency parameters A = Ydw/'P/D)~ (}Ii :apothem) 
and nodal patterns of a clamped equilateral triangular 
plate ( *: degeneracy). 
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parentheses. (15-96) denotes that l5x15 matrix was used 

with 96 terms for (rn, YI ) in Eq. (4-18) • 

The convergence of the fundamental frequency was 

examined in Fig.4-3 by successive truncation of terms 

for both (m, n ) and (;;, J ) in the series. As more terms 

are employed for (m, Y1 ), the frequency parameter becomes 

lower. In contrast, with the increase of terms for (i ,j ) 

resulting the frequency matrix of 3i x3j order, the para

meter goes higher. In both cases, the convergent character-

istics are obvious. 

Table 4-2 compares the fundamental frequency obtained 

by the present method with those by other authors. The 

value by Hersch [114] is a lower bound and all other values 

are higher than his value. The present value is in good 

3.IS 

J2 48 64- 80 96 112 128 

mxYl 
/-_-'--_-'--_-'-_--'-_---'-_---' __ -'------1 = 90xflO 

4 6 7 8 

Fig.4-3 Convergence of the fundamental frequency 
parameter with the number of terms in the infinite 
and Fourier series. 



agreement with those by Ota et ala [115] and Walkinshaw 

[122] . 

Table 4-2 Comparison of the fundamental frequencies 

Present HerschV~ ota [/IS] Walkinshaw [122] Yu [124] 

2.878 2.617 2.88 2.873 3.077 

4-4 Pentagonal, hexagonal, septagonaland octagonal plates 

4-4-1 Review 

Waller [118] experimentally obtained nodal patterns 

a 
of completely free pentagonal, hexgonal and octagonal 

1\ 
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plates. Kaczkowski [119] determined the fundamental freq-

ency of a pentagonal, hexagonal and octagonal plate. 

Conway [120] has used a point-matching technique, the method 

of meeting the boundary conditions at discrete points, 

together with the membrane analogy [121] and presented the 

fundametal frequency for a simply supported hexagonal plate. 

Walkinshaw and Kennedy [122] also employed the point ..... 

matching method to deal with forced axisymmetric response 

of polygonal plates and the frequency parameters were 

shown for the plates with three through twelve edges. 

Shahady et al. [1231 introduced an interesting approach 

to treat the plates of complicated shapes by making use of 

conformal mapping and the Galerkin method, and the 

fundamental frequencies of simply supported polygonal 

plates were determined. Yu [124] presented a similar 

procedure by use of conformal mapping and the Rayleigh

Ritz method but the results obtained differ from those 



in [123]0 Laura and Marinelli [125] made a comment on 

this point. Roberts [126] also used the conformal mapping 

method to determine the fundamental frequency for simply 

supported plates of polygonal and rhombic shapes. His 

values agree well with those in [120,123]. Cheung and 

Cheung [127] dealt with simply supported polygonal plates 

by the finite strip method. 
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In these studies, however, only fundamental frequencies 

were considered and practically no analytical results are 

found for higher modes of polygonal plates except for a 

work by Gutierrez et ale [128] who obtained the second 

natural frequency of simply supported polygonal plates by 

use of the method developed in [123]. 

4-4-2 Application of the method 

According to the same procedure in 4-3-2, inscribed 

polygons are formed on the original plates and lateral 

deflection and rotation of the plate are clamped along the 

entire boundary of the polygonal plates. One of the seg

ments is conveniently located on the X axis. The frequency 

equations derived by the procedure are presented for penta

gonal~ octagonal plates in Table 4-3 through 4-6. These 

tables also provide other necessary equations and aspect 

ratios. In the numerical calculations, 48 or 64 terms of 

the double infinite series and several terms of the Fourier series 

were used for each mode by considering convergence character-

istics of the solution. 80 terms of the infinite series 



were employed for the calculation of the fundamental 

frequencies. The rate of convergence o.f the solution 

with the increase of the terms for these polygonal plates 

was better than that for a triangular plate shown in Fig. 

4-3. 

The frequencies of small pieces of plate made by the 

separation of a polygonal plate from the original plate 

are calculated together, but these values can easily be 

removed because they give the known values or relatively 

higher values than those of the actual plateD When they 

cannot removed easily, mode shapes of the plate were drawn 

to distinguish them. 

Table 4-3 Clamped regular pentagonal plate 

S-type mode A-type mode 

(4-19 ) 

1; =-11 + ll/z.- b,)l /1,=-() (~/=O); f;z=- ~, (J -~) I Z-= bJ.l (~:J.=JTf/5); t-= liz, (;=j. + U-{l.)i 
(()J = rrls-) ; J1 :(/ + 2CPs27T/.O/2 cos TTls co.slf/lo , ~/:: cas2T!/i'/{J+2C()S£8/s), 11."'" f/).C!JS7f/S 

Table 4-4 Clamped regular hexagonal plate 

SS-type SA-type AS-type AA-type 

V---i--~ ill ill ill ~.) / f1 p.) I 
r I 

/1. (I' r 
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m.n= I.~, .. · m=I.3,··· 
h=2,4,·" 

i'IJ=-2.4-,··· 
n=/'J,'" 

(4-20) 

/11,11= 2. 4-, .. , 

Table 4-5 Clamped regular septagonal plate 

Q(~ 11{:) Ifi1" CD I 

~ c.
1 / Q CD, 11,r~ 11, I 

Ii (I) M .(1) 
!11h,~ f)") 

:1 ClI, (a/TO&/~) mn.1I 

LI-' ~ 't) i~} 9; (>.) fz. e.l j e~1 it en (</-) h.m(4) l 1-1~.;r~J mh.U 
/'Ij mnj rnn.,/ mh.;. n.nj 9mnj flJ ( o./tf) 0/1

) = 0 ( 4-21) Jill. 
I'll h j~'Il>') "'h.O 

~ Ll) H .1$) 
#1"'~u ~'J '''') 

/} m~~'; (allr)Qj 
'11. (4). Ht-·l l4J I'1In .L 

t,=~/+((12-PI)g) Jt,==(j (8,=0); iz==g,(/-'lJ, 1z.=b).,8 {f);z=.rrr/'l} [1J.=e./e,) 
t~ = ~38 I 1a= Z2. + (&4-- 6J.) i!. (OJ= :1TV7 )) i"f:;::b3 + (//2.-6B Ji!. /19=t<f.t( I-lf)'~ (f)f~7f17) 

t, = fJlCfJS 2Tll7 J ~2. -= ez COS:I1l/ 14- ~ 6] = e, .rll1lf/lf.J g4 -=- 2 e2 c!;S7r/7cps 7T/I'f 
e, ::; //(1 + 2 cos 2rr/7) . e,:= 1/( cos 1l11tf+ ('()S.iTl/f1- + cos Srr /14) 

J'Y1== 1,3,'" I »1=2,4"" 
n=J,Z.J,··· 

Table 4-6 Clamped regular octagonal plate 

pSSS-type SSAA-type AAAA-type SA-type 

!(,: A ® ® EB r---W--
/1' '(N/ '/ H'I 

()"'ttt: l 

~ . tt> h!;,') 1 I ~(~ 
-It OJ r co 'G. OJ ,\1 n"! !?ttl,,, Jtj f)':) 

J1i1f.t. 111./ my 7:1 

[[-' 
3(;J.), (j;n':~ (a/Tr) a}J.) I , .. ) . (.1.j t (:I.) a (4 =-0 IKIf,II =0 [[-1 -\8 ... , /J,"i - J'.J [.)~ 

m n f~(k) t:z:;) · h~) M,(l} /If.1l Mllt>-) (;1..) If," itlili r:/ (4-2 ~. ~) n~ flt-) .~ \1 "y hllf,j /J t-j 
1 

J Cl). 3. (j) 11~) 
- (4-22) lAo", c. j \ Ilfn:J' J I 

"':/ I 

3} 

+ 
·I11,n = 1)3. '" m,n = z,'I-,'" lAo - 1 :> ... r" -,2 d.. ... 

,." - , ~ , '" T /. - I T, 



4-4-3 Resul"ts and discussion 

Table 4-7 compares the present frequency parameters 

with those obtained by other authors for the fundamental 

and second axisymmetric mode. The present values agree 

well with those by Shahady et ala [123], but are slightly 

higher than the values of Walkinshaw and Kennedy [122] 

by the point-matching method which is known to yield lower 

values than the exact ones in general. Laura and Marinelli 

[125] pointed out that Yu's results [124] were several 

percent higher than those by other authors and the exact 

values for a rectangular plate. 

Table 4-7 Comparison of frequency parameters 

pentagon hexagon septagon octagon 

Present 3.068 
[f2J] 

Shahady et ala 3.074 

Yu [124.] 
[122} 

Walkinshaw et aL 3·.061 

3.106 

3.105 

3.155 

3.098 

3.128 

3.125 

3.165 

3.120 

3.145 

3.138 

3.171 

3.137 

Figures 4-4 through 4-7 show frequency parameters and 
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nodal patterns of a clamped pentagonal, hexagonal, septagonal 

and octagonal plate, respectively. The frequency parameters 

obtained from Eqs. (4-19) through (4-23) were converted by 

multiplying A by rc/a (n: apothem--radius of a circle 

inscribed inside a polygon). Since regular polygonal plates 

have some symmetric axes, vibration modes reflect the sym-

me try and degeneracy of frequencies takes place. Physically, 

the degenerated modes are supposed to have the identical 



3.068 
( 15-80.) 

$'.602** 
UO-48) 

6.8/8*** 
(20-640) 

4.410 :1<

( 10-48) 

S.611- ** 
([0-48) 

6.82S H -l! 

(20-64·) 

8.028 tr 
(20 -64) 

2-A 

4 

4.410* 
( 10-4B> 

o 
S.987 
(10-80 ) 

'l.J02 !! 
(25'-64-) 

8· 045 ~V 
(20-6'/-) 

Fig .. 4-4 Frequency parameters ).. = h (wJ/'/r> ) ( n : apothem) 
and nodal patterns of a clamped regular pentagonal plate 
( * :degeneracy) .. 
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1 

3./06 
(12-80) 

6.7'72 
( 12-48) 

1.543 **;1-
C/2-48) 

4.4&0 if' 
( 12-48) 

S.781 "ok 
((2-48) 

'1.08/ 
(12-48) 

K. 04-5;: 
([2-48) 

4 

4. 4877f
( 12-48) 

o 
6./04-

(12-80) 

'/. S31 1I-H 

(/2- 48) 

6 
IHf 

8.0 0 *'* 
(12-48 ) 

Fig.4-5 Frequency parameters and nodal patterns of a 
clamped regular hexagonal plate, (*:degeneracy). 
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3.128 
(21- CO) 

s. '1ro *11' 

(21- 64) 

6.963 tH 

(2/-6'/·) 

17. 624-»: 
(21-48) 

4.510 * 
(2[-64) 

S.71f4- ~* 
(.2/- 64-> 

6.967 *Y:7f

(21-64) 

a./£; I itt; 
(21-64-) 

4 

4.SI3-l'r 
(21- 64) 

o 
6.158 

(2/- 80) 

7. 6/6 t* 
(2/-4fl) 

8. /56 "'ll 
(21-64-) 

Fig.4-6 Frequency parameters and nodal patterns of a 
clamped regular septagonal plate, (*:degeneracy). 
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5 

6 

3.146 
(16-80) 

5.804-** 
(/6-61-) 

7.02/*** 
(/6-64-) 

7. 67/ U 
(/2..;48J 

2 

3 

5 

7 

t.8121(-* 
(/2-48) 

7.025 'H-lt

(l2-48) 

8· /I J 
(12-48 ) 

2 

4 

6 

7 

4.542* 
CJ2-48) 

o 
6./98 

(16-80 ) 

'1.667 U 
(16-64) 

8.310 
(16-64) 

Fig.4-7 Frequency parameters and nodal patterns of a 
clamped regular octagonal plate (*:degeneracy). 
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frequencies, but the values obtained here for the same 

class of modes are slightly different (e.g.,A=4.4l0 for 2-8 

mode and A=4.4l6 for 2~A mode in Fig.4-4) due to different 

equations used and the truncation of the series. The 

differences of the frequency parameters are, however, 

less than 0.4 percent for most cases. It is pointed out 

that the frequency parameters take different values with

out the occurrence of degeneracy for 5th mode of a hexagon 

and 7th mode of an octagon as seen in FigsA-5 and 4-7. 

In this case, one mode shape cannot be made by the super

position of the other mode. For axisymmetric modes with 

no nodal diameters on it, degeneracy does not occur as seen 

in the fundamental and 4th modes of polygonal plates. 

When the. nodal patterns of the same mode number are 

examined in the figures, it may be noted that there are 

·certain similarities among the patterns. In Fig.4-8(a), 

the frequency parameters presented in Figs.4-4 through 

4-7 are plotted to show the variation with the number of 

sides. The values for a clamped triangular, square and 

circular plate are also presented in the figure. As seen 

clearly, the frequencies become higher as the number of 

sides is increased. Conversely, the frequencies are de

creased with the increase of sides as seen in Fig.4-8(b) 

when the frequencies are expressed in terms of Yo (Yo: 

radius of a circle circumscribed of a polygon). To eliminate 

the effect of different area of polygons on the frequencies, 

the parameters are converted into the values A = re (aJ/f>/D )112 
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Fig.4-8 (continued) 

(Ye :radius of plates with the equal area). The frequency 

parameters of polygonal plates of mean radius become lower 

slightly with the increase of the number of sides, but 
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they take almost equal values to those of a clamped circular 

plate when the number of sides are more than six. The effect 

of plate shape is found in polygonal plates whose sides are 

less than six. These plates have higher frequencies than 

other polygons with many sides , and inevitably have different 

mode shapes. 



CHAP.5 CLAMPED PLATES OF IRREGULAR SHAPE 

5-1. Introduction 

This chapter presents an analytical and experimental 

study on vibration of clamped plates of irregular shape. 

A general analysis developed in Sec.5-3 is applied to a 

clamped cross-shaped, I-shaped and L-shaped plate in Secs. 

5-4, 5 and 6, respectively. In Sec.5-7, natural frequencies 

and nodal patterns of a clamped L-shaped plate are experi-

mentally determined by use of the Chladni method. The 

experimental results are compared with the numerical results 

obtained in Sec.5-6. 

5-2 Review 
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Only a limited number of literature was found on vibra

tion of plates of arbitrary shape, probably due to difficulty 

in obtaining an analytical solution. When a plate shape is 

slightly changed from a circle, the conformal mapping [123, 

130,131] or perturbation technique [132] has been used for 

the analysis. For more general problems, Pnueli [133] pre

sented a method to calculate lower bounds for simply supported 

or clamped plates of arbitrary shape, but the results shown 

were insufficient in accuracy. Vivoli and Fillippi [136] 

employed layer potentials for the analysis of a clamped semi

circular plate and Khurasia and Rawtani [137] studied arc 

aerofoil shaped plates. PBa4ea and Pa.k08()' [138] analyzed 

vibration of ~-shaped and trapezoidal plates simply supported 
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or clamped at the edges. Interesting variations of the freq-

encies and nodal patterns were presented with the change of 

plate shapes, starting from a rectangle. 

Some experimental studies have been obtained, for example, 

to simulate a marine and impeller blade [134] and turbine 

blade [135]. Maruyama and Ichinomiya [139] experimentally 

obtained the natural frequencies and corresponding mode shapes 

of a clamped I-shaped plate. A technique of time averaged 

holographic interferometry was used for the determination of 

vibration modes. 

Despite the fact that irregularly shaped plates are found 

in many practical situations, no analytical results have been 

obtained on vibration of the plates considered here. 

5-3 Analysis 

The frequency equation for a simply supported rectangular 

plate clamped along some segments inside the plate,as shown in 

Fig.5-1, can be obtained from Eq. (2-20). 

( ap, bp+.pp) 

h Cp 
(();,b/) (QI+ip'. bp') 

C ' p 

( ap) 61') 

0 a x 

Fig.5-1 



135 

(;inYnl1cAr ~/Jlf) ~in'{mlrJ.b ~}~) 
T CP) .1f Qxj 

00 00 Wi c.osmndp ~,~(7r) W GDsYl111:1g ~l~) lli?, rr:~) 

I[ I 
a ':) =0 

I 
/'fl" Y1=/ f",yl>-) 

~iYlYJ1f~f' ¢J7I.i(~) si»YJ7f8z' ¢>mJ(~/) 
q) 

JIQ)'J 
(5-1) 

Y1 cosn1lW 1:"iJ~) YI WSn1i~i ~j (ri) Tf.Q ll'1(f! T Y"j 

I I 

where ~,i (7p) = lsin nff P,(i) sin i. If idl > 11. ,.(ff) {r inm7T {lflJ sin i l(id2 
(5-2) 

and CX, = a,la ) '?trl) = (br + Rfl Jib> (Jf= bp/b )f;'(~)= ((1./+ Pli)/a 
(5-3) 

(5-4) 

It is possible to apply Eq. (5-1) directly to irregularly 

shaped plates cl·arnped along the edges, but the plates of 

irregular shapes considered here have sharp corners inside 

the plates which may cause bad convergence of the solution 

in the numerical calculations. Therefore, the matrix equation 

(5-1) is rewritten in the form of single series, and procedures 

for such manipulation are different depending upon geometry 

of the plates considered. 

(a) Plate with two symmetric axes XX and YY y 

For a rectangular plate having 

some internal segments located syn-

metrically about XX and YY axes as X 

shown in Fig.5-2, four types of 

vibration modes (SS,SA,AS and AA 
C, 

I 

I!i -+-
L'~ 

Cpl 

y 

Fig.5-2 

x 
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type) arise and the integers m and n in Eg. (5-1) must 

take odd or even number depending upon the mode. The 

following formulas are used for the summation of the series 

f nSihnX. = :!. G;l1hQ(If-l.) ± siYlhOX 
11(g) n2+Q2 4 Sinh aT[ 

(+: n=odd ) (O(;(Of) 
- even 

(5-5) 

~ COSnx. = L CoShanf-X) =+= cosh ax _ _ 1_/(_//+ I } (;:n=odd ) 
'riff; Yf'-+ a2. 1a. SinhaTf 4al.. J even 

( 0 <.;( ~1T) 

The coefficient matrix of Eg. (5-:1) is first written in the 

form to which the formulas (5-5) can be applied. 

L 
aIm (d,) 0 

nyg) 
0 1b"Jif) 

Ibnl,(it) 0 +I 
n(~) 0 ()/f1{~;> 

where 

0 AJmlif~)(Jt) A) 0 0 

0 IB m ((ir~ fdg') A ) 0 /bllt/~') 

IBn {rJ.,; (J,8 I 'A) 0 IblJj{~) 0 

AJi1,~ (Jr~ rX3) A) 0 0 0 

~/i{'lt)SinnTT(J{ ¢,,~d7;) n COSnll(Jg f 

¢n,L'(~)0;nnTl~l Pn. I.'(~) nCOSf1lf(3J/ 

ID () I I \) _ '\ I [OlnnTT(lfSIJ1nn(3{ n gi)1J71T~;?OSfl7!(J/ 
10m (/1!1 (33' f\ - L 

n{~) fm~(A) n wsn1T f;f~/YI n7f ~f n2COsYJ1l(J/CDS}1Tr(3/ 

(5-6) 

(5-8) 

(5-9) 



If the infinite series in Eqs. (5-8) and (5-9) are express-

able in terms of certain functions,the coefficient matrix 

(5-6) can be written by use of single series in m or YI only. 

The summations in Eqs. (5-8) and (5-9) are written as 

+ 
(:!::n=~~) ~,(Jit) mlcoshl1J,7/~l 

for Alm/~ ('?t, f3{) A ) 

+ 

¢m,id/J sinYrJliril L jJ: 

rf..i1j'P mcosm7lri1j- Ih."hfJ,71 

'tn,i{ff) Sl'nhrMrJ3 

tfnJ)tr) (}, cosh l'hlldg 

SinnTf(3,r Sinmr(3l 

I 

L -'- YlSinmT(jf Cosfl7r rJ{ = m,sl:hfJ1,1T 
h(t)il'll)1()-.) 

miL (It;?) sinhniTl C~~3) 

~,i(~t;') n,cOJhrMr(/jl) 

(5-10) 

(5-11.) 

SinhJ1w('-fJf )sinhm;fT( /Jg' ) 
151 1-(1/ 

{fi,S; nhl!l,7{ ~ tr} corhm/i (l~i ) 

-!'fJ; cosh !Iliff ( I ~i) cosh/Me ~~, ) 
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S i hh fn/f{ ~p' sinh m,T! f3{ 

+ m,S'i}?hmirr~f t{)Sh»ltTr~{ 

(±:h~) 
flit COshYllJ1Tf;p' wshm,7{~f 

for IBm ( 8/, f3g', A ) 

S);,hn,7TdpsinI11Tlr)3 

+ YJJs,'nhnrrripC05hnt11c{j 

(:!::m=~) 
(J,2. cosh n7fclr eoshnmrXJ 

I 

138 

(5-12) 

sin hn.1f ('d; ) Sinhrh1fC~~I) 
YI,s inhnill( ~-~ ) CbShnill{, ~~1 ) 

-t. ClJShYJ,rr( I-~P) ((i5hn,7f (/~j ) 

(5-13) 

for !Bn[d."cXltA), where 'fm'i-e~Pr)sinhyn;1T0:!J~,)represents ~/i(l-if)sihhmlll~l 

for ~ > (I{ and <fm/~ (~)sinhh1iTi(/-~l) for (1, < IJ{ 

and 

I 

~/!.O/)) = [ slhhmm7, s'nCrrEdil. 
I (5-15) 

lfn.Z (ftl) = 1. sin hn,7Tf/ s/n i7Ti! dg 
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Then, each element in Eg. (5-6) is given by 

(+:n=odd,-:n=even) 

(+ :m=odd, - :m=even) 

~.i ( I ~7, )sinh/ll,ll (/~,) Y:"d ~ f;)/11lcoshi1lJ7f(!~~~ ) 

~,d 1-.,: )sinh/tI,7f(, ~;i) 'ft,..i(!t' )llItCDshWilf~~ N) 

(5-16) 

t,.(f t/''> si~hhiIT0'j) r",z( ~~) n,Coshl1iff(/:t ) 

r.,;( I~:f) sinh#,7fC~~l) r..d!-;l)tll COshr;,71t~) 

(5-18 ) 



and 

+ sinhYl,Tldp I ~/nhn,Ttip /1,C{)ShtJ;rr~ J 
r}'{'()shYhlldp 

(+:m=odd,-:m=even) 

ilz.SinhnTJ 

The equation for determining the mode shapes is obtained 

from Eq. (2-25) • 

/ uCP) 
(Rf/ 0..) nX,~ 

(~( /1f) (l;~ f 1,(, 

(If/b) J1:~Z 

140 

(5-19) 

(5-20) 
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The formulas(5-l2) and (5-13) are applied to Eq. (5-20) and 

the equation for the determination of the mode shapes is 

given by 

(5-21) 

where 

I1T¢..,!ipJ.sinmfY [SinhnTr(/-X)slnhn1f{ cif ) sinnnarx.s1nhnarc<p ] 
n(~) nsmhn1f X I-ttt 

,Ii L <R..,~:sinmry [Si n hYJj1T(~ -X) 111 coshn.Tf(/~) si hhnillX ncosh n,Tfrfr ] 
1Nr(/Irt; n(1) n,8,nhnlIf X f (5-

m"J [¢,.,d1~)SinmTfX [Sinhm;rr('-yY) SinhlYlj/T( f!!',) sinhrnilfY sinhmi7l~1 J 2.2 
m(~) rnsmhrn;rr I (1f 

I ¢..i(t,?sinmli)( [sinhmi1f('-Y)m,coshrnn(i3p') g;nhmiliYm, COSMJiW] 
m{~) md:Jmhrn,7T -y 1-(1f 

wi th X=- X/ a > y = 'J / b . 
(b) Plate with a symmetric axis on the diagonal 

Figure 5-3 shows a square 

plate having some segments 

located symmetrically with 

respe.ct to the diagonal axis 

zz. In this case, reactions 

Qz ,Hz (X = .x ,tf) along the z 

Fig.5-3 

z 



segments Cp, Cp' can be expressed by reactions ()lr Hz by 

interchanging m and n. Making use of these relations, 

the frequency matrix of 8x8 order obtained for a whole 
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square domain in Fig.5-3 can be reduced to the following 

equation by considering only a half of the plate intersected 

by the diagonal line ZZ. 

sinmlTdg ftff~) sinnTTv{Jrfm/i;) 
-r 

~ o.:~) SinrnTitJ.f~ J~) 
II.~ f j 

rnCOS'fmldf~.~(~ ) mCOSrn~g ~jf1) nCOs-mTo<g ~/~) 7li, Hf/>? 
(+:S-type, 
- : A-type) 

ff-J +- a Xj 
=0 pr-IY'I"d(7ln(~ E;;nmfp{~lJI) s/nYlTipg't/~/) sinmn(Jz'rA 'CJf) 

(PJ 
PfOy:; (5-23 ) 

11:) Z 

"C()Sn1T~t,~W) n cosnli8l~ .G'!) 
1\11 1 mCIJSJmi~{ ~/tfJ 1fh'l1/f! Ii 7') 

The coefficient matrix of this equation is written as 

f QI/tI(dp) 0 Am,i~, riz,'A) !A;»,l (~/~: A) + /h~llz) 0 

Ilh.i(ff) 
(+:S-type 

JrI""1 IBm(~fdZ)) IBm(~;'~t'/~) Ib",/lz') 0 0 -:A-type) 

}b",,iJ'1,) 0 JB Tn W;!It" ~ ) IBm (~,f{. 'A) fb",:J{7J) 0 
+ (5-24 ) 

0 O/r,.(fif) #1m.ictf'v{'f A) ;Arn,L(~',(ii») 0 + IOh/lf) 

where the elements are presented in Egs. (5-7) through (5-9). 

Considering that rn and h in Eg. (5-24) take all integers 

(i.e., ~,n =1,2,3, ... ), the following formulas are used in 

II and /B. 
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si"hm,ll (/~ rJ.p).r inh /rIm(I_~3) 

= rMIs;:hl11,71 m,sl~hl!ti!~d./)COSh!Hi[(J~;) - rli \1 n ~' l- f L-I,\b 2.$111 ~2J' /711 

Then, the elements of Eq. (5-24) are given as 

The mode shapes are determined by 

(J,/rr) () J) 
(PI/f)) MY,j 

'-

rJllTT) ();t.J 
(J//bJ 11]:) 

(5-25) 

( 5-26) 

(5-27) 

- YJ7 • ~/tJ rj11t7mJ (5-28) 
:lSI/) l71 l J 

( 5-29) 
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rI. .~p)sinhmi1T(I-yY) sinhm;rr( o<~ ) 
rm.\, 1-«2 

t.,(~) sinhmiITr/)Sil)hYrl;rr(I~) 1 T 

. ~l~)mISinhml1f(~{)coshml1f(I~Z) 
x smYmrX 

. w'Lcft) sinhmifT(lr~ sl'nhmlrr(:J~) 

rA.r!tr,)mlsinhYt1;1f('-Y) coshmi1f(. ~(,) '1t.t -Yo l-{1z 

5-4 Cross-shaped plate 

. Pn,,l(?,)Yf1iSI nhm;rrUt) COShmi1T(tJ ) 
+smmnY ~ 

rh .(1&) sinhmilf(/-X) S/l1hmi1t( /36') 
'tf".L r . )C I-;;r 

rll '(9)tn,sinhm,Tf(I-xX) coshm'Tf( ~{) 'Im.L I - J-(3i 

(5-30) 

5-4-1 Application of the method 

Figure 5-4 shows a clamped cross-shaped plate which 

is geometrically symmetric about the XX and YY axis. 

Several segments are located on the original plate to make 

a closed cross-shaped form. Since symmetric and antisym-

metric vibration modes about these axes occur on this plate, 

t;f y 
bf-----t--t---....--------, 

x 

Ct X 

Fig.5-4 

it is sufficient to con-

sider a quarter part of 

the plate and locate the 

the following four seg-

ments there. 

C,: G<,= i -r;-) '1,{l)=( i -~) K 

C2 : cXz=O ) 1z(i.)=(~-J;)+f:l 

c": }/(i)=( i -~ )Z1 (S,'= ~ -J; 
C[ t{li)=(i -r,)+~l ) ~2= 0 

( o£. l ~ I) (5-31) 



Both deflection and rotation are rigidly constrained along 

the segments CI and C/, and only rotation is constrained 

along thesegments C.z. and Cl. When Egs. (5-31) are substi

tuted into Egs. (5-16) through (5-19), relationships between 

the arguments must be considered as presented in Table 5-1. 

Table 5-1 

I 
ex I = 0< I 0(, > 0<2 : ~ < ~/ ~ > (3).1 

I 
otz. < 0(, 0(2 = rXl It> (3,' ~ > ~: 

-------------+-------------
f, .. < rX/ f,' > cKl : ~/ = (lJ/ (5(>(3: 

12/ > eX/ t./ > cf2 : 15:/ < (j,' ~: = ~/ 

Equations (5-12,13) are applicable for cXi,=CXi- or i3i.=(3i (i = 

1,2) except for 

= 

(5-32 ) 

and 
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Then, the frequency equation is given by 

I OJ (1, 7f) tlx,~ 

(PI/ a) J1:':~ 
( WIlt) (rUZ') ) 11(2.) 

IMw,ij -/M(2),ij 
(A/a) X,i, =0 (5-34) 

(1(1) 
(P/~) y.~ 

J1,c1) CPr/b) y,(, 

( 2i/b) 11:~L 

where 
(ntlf> 

1fv/{t>lb' = 

:r 
O/Wi lr/.p) 0 0 fr1'lf,dr,}g~ A) 161n.~{ip) 0 0 0 

[ + 
meg) 

0 l&.iCff} 0 IH rn (~f~ fir ). ) f1/",((3P (jJpt(ft) 0 b '(f{) 'Ply g 

(+ :fJ=odd ) - even 

r 

ibnliJl,) 0 IHn{dp/x'j,}. ) 0 all (rJ.f) am (d:) Ib":Jlq) 0 

+tl [ + 
neg) 

0 ClIh(~I) frn,~(j;~~Z' A) 0 Ibn.icJjJ 0 0 

(+ :In=odd ) (5-35 ) 
with 

- eVen 

sinnmd, 0 0 ¢fA.;.Cf,,) 0 0 

()/m(~)= 0 mCosnmo{, 0 > Ibm,iCf/) = 0 ~,.c.{~') 0 (5-36) 

0 D In 0 0 ~,/ti) 
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siIJhmff(3/ 0 0 '/:,}f,) 0 0 

()/tt\((?/)= 0 m,coshmlifo/ 0 Ibm.i(?P) = 0 fm,~q,) 0 (5-37) 
> 

0 0 ml 0 0 'fm,iCA) 

'Im,i.{?' )8/~nhmtTl(I-(i{) "- ~,i.l7t)YT1lcoshl'!1,.rr(!- (){)'fm.i.(I-f,) m I 

$m;i.(r"fi[.'A)= mts:'ht1t,7T t(m,i(f,)Sinhm,7f{I- 6r) -~,iJP,)n1tCoJhm,Tf(l-~) '!.t,i.,(/-l,) WI 

Ym,c'O-7z)sihh Wh7fOt' ~,i(l-74)mfCOshMITl~{ frn,i,(J-t.) iYh 

(5-38) 

Sym. 

(5-39) 

at1){(3p) ,lhn.c.1q), (lfn{,.},) , Ibn,Un) , t!i,".i.rJ,~clJ'~) and IH, .. (cft,tl.z ,A) can be obtained 

simply by substituting the arguments into Eqs. (5-36) through 

(5-39) • 



The parameter m,==/m2-Xlrf!11. and Y!J=))J.'1.n2 _}/jrr2 can be 

imaginary for m<.>v'1f and Mn<'A/7r, respectively. In that case, 

partitioned matrices (5-37) through (5-39) become 

Sil1m,ll~/ 0 0 ~,~ (t:) 0 0 

al",(~p= 0 Ji11 COS miTT (1;, I 0 /bltl,Ll(p) = 0 Rn/iiJ () 

> 

0 0 })1, (J 0 ~;Jfi.) 

~/")JinWJ;rr(f-f,{) -'-¢m,;f7tpnICOS'fl1(Tl(t -~() <A,i.1I-7t )Jr7, 

fr rn,'<r,}{,X!=, #I, S/~ml71 ¢1/I,iI~) .ihlYlifl (I-ill) -~m.il7< ) YIf,cOS fA;lf (1- ~[) ~~,i (1-'f,) 111/ 

t,l! 1-Z,)sinmiT1(!;,' ~/dl-~)fl1J (J)SWrfT(3{ nz,~(J-~) flh 
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(5-40) 

(5-41) 



5-4-2 Results and discussion 

Figure 5-5 shows the frequency parameters A = a (wvf/D )Yz 

and nodal patterns of cross-shaped plates clamped along 

the edges. The results obtained for a clamped square plate 

in Sec.2-3 are also presented to trace the changes of the 

frequencies and patterns with the shape parameter. SS, SA 

and AA type modes are obtained for the platetand AS type 

modes take the identical frequencies of SA type modes (de

generacy) because of the geometrical symmetry of the plate 

and aspect ratio JJ. =1. b. As the parameter 11= F; decrease 

from 0.5 (square) and the shape of the plate becomes more 

irregular, the frequencies monotonously increase due to the 

decrease of area and the effect of the shape. The nodal 

patterns necessarily change from the normal modes given for 

a square plate. No nodal patterns are presented for the 

fundamental modes in the figure. The results presented 

were calculated by use of 30 x 30 matrix (i. e. , i xj= 5 x5) 

with m (n)= 32. The convergence of the solution will be 

examined for a L-shaped plate in Sec.5-6. 

The variation of the frequencies can be seen more 

vividly in Fig. 5-6, wherein the parameter t= cr; deter

mining shape of the plate is taken as the abscissa. The 

values of SS, SA(AS) and AA type modes are shown by solid 

lines, chain lines and broken lines, respectively. As seen 

from the figure, the rate of change of the frequencies 

varies ·from one mode to another. 
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18.85 17.98 (88-5) 17.58 

17.31 (88-4) 14.82 

o o o o 
14.91 12.79 (88-3) 11.67 11.50 

13.57 11.60 (88-2) 11.44 11.46 

9.400 6.745 (88-1) 6.031 5.994 

t= 0/=0.20 !t=cPr=0.30 t=&=0.40 

Fig.5-5 Frequency parameters and nodal patterns 

of a clamped cross-shaped plate (SS mode). 

l~LJ 



16.31 

12.45 

t= &=O.:z 0 

15.84 (SA-3) 

14.35 (SA-2) 

9.459 (SA-I) 

t= 0;=0.3 0 

14.61 

13.14 

8.630 

'1:= 0,=0.4 0 

Fig.5-5 (continued) (SA mode) 

14.50 

12.84 

8.561 

t=£= 0.50 
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16.27 (AA-2) 15.57 15.56 

17.93 12.50 (AA-1) 10.62 10.40 

)'? = t1;=O. 20 t= £=0.30 d1= 07=0.50 

Fig.5-5 (continued) (AA mode) 

5-5 I-shaped plate 

5-5-1 Application of the method 

Figure 5-7 shows a I-shaped plate clamped at the edges. 

Since four types of vibration arise here as in a cross-shaped 

plate, only a quarter part of the plate is considered and 

the following segments are placed. 

y 

C, : (XI = ~ -~ ~ ~(l)~~+(~ -~)K 
I 

x --t--c, 
C( iE'-2ta~ 

'" -~ 
f2.h 

.Ji 

Cz : 0<2. =- 0 » 7z{l) =chl 
X (5-43) 

C ,. }.'(l)=(~ -S~ ) if., (51'= bz I • 

X C ,. }/U.) = i l > (3:/= 0 a ~. 

Fig.5-7 (0<1<1 ) 
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...... 
....... ...... , --- --- --

10 

----_._-

-SStype 
---SA 

5 --- AA 
l' I I 4 

0.2 
I 

0.3 0.4 ~_ r 0.5 
0,- 01 

Fig.5-6 Variation of frequency parameters 

of a clamped cross-shaped plate (,u=l.o,O?=J,) 
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Both deflection and rotation are rigidly constrained along 

the segments C, and C{, and only rotation along C.2. and C{. 

The relationships among the arguments must be known to 

derive the frequency matrix. 

Table 5-2 

0<, = CXI 
I 

CX, > 0(2 I 7, :> (3/ 1t > (3:/ 
I 
I . 

cX.1. < 0(, ()( 2. = O{). I 1z. < 8,' fz. "> (JJ.' 
------------~-------------

f,r < eX, 1;1' :> (J{2 I ~(= 15,' /S(> &.2./ 

f:t> 0(2. 1 f:,{ <fJ{ /21"_ /)/ 
{}l. - (')J. 

Considering the relations in the table, elements of the 
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matrix (5-6) are determined according to the same procedure 

in the previous section. Since the relation between Ii and 

0<, cannot be determined uniquely (Ji~o(/)' the matrix elements 

involving these arguments must be integrated as follows. 

J)..2. 1
2r;{, 

S,nhnt11(L-d,) 0 sinhn,1fh'S;l1lll lrJl 
=---

nsinhn,7f 
2«, 

-111 Cf)shn71(J~o(')l sinhn,71f/SI'nil1ldl 
o 

I 

sinhnnrd, 1 S;~hnirr(l-r;)sini7rld.l 
+ ~ + 

Sinhn,lItA, l~inhn'7ffi sini-rrgdii 

I 

ncoshn,1td,( sinkr'lI7TU- h) sinbrlolR 
/Ur 

I 

n, (.oshnl7fdi sinhnm 3£ sin [1f l dl. 
o 

( + . m=oJJ ) -' even 
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(5-44) 
The frequency equation obtained for a I-shaped plate takes 

the same form as Eqs. (5-34,35), where the elements are given 

as 

Sinmrro{l 0 0 cfm.i,c1~) 0 0 

at rr. (dt) = 0 mc.osmrrO<, 0 16 ·ct.r) = ) m,1. r 0 ~if{) 0 (5-45) 

0 0 it? 0 0 ~,(Jt:!J 

JinhM;Il(5/ 0 0 'Pm,~ ('f,) 0 ~ 

Olrr.lct,) = 0 }tt, cosh;;Ii'{l~/ 0 /brn)J~)= } 
0 ~,~(~) 0 (5-46) 

0 0 1r1, 0 0 ~.i({z.) 

V'Jn,·,j1 -7,)sinhy,1irref tm,~([-7,)m,cosh'rJfi{i6( ~,dl-Z)MI 

tf!ht,L(r"Pg~).)= m'S~hmliT !frn,~u-'{,) sinhYn'7fB,' Wn,~(t -'1,) Yt1lcoshmili~( w"i.(I-'!tJ m, 

(5-47 ) 
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sinhmi[f(J-(3I)sinhm'-lf~( ~' sinhm,1f(l-Z(Jr) m,sinhmt1f(f-(5{) 

Sym. 
-m~COshm,1T 

e, 

with 

The other elements are obtained simply by substituting the 

given arguments into these equations. When m=)fn1.-x/rrV/J. and 

r7/ = ,j)A.2 17:J.- Mr.tbecome imaginary for m<)Jrr and JJn<AtrfJ respectively, 

hyperbolic functions in aim, /b/tl,~ , Gill.;. and JHh1 should be 

rewritten by using trigonometric functions. 

(5-48) 

(5-49) 

(5-50 ) 



J I 

18.06 (88-5 ) 17.61 

18.81 (88-4 ) 15.60 

16.35 (88-3) 13.27 

14.43 12.16 (88-2) 11.52 

12.08 8.404 (88-1) 6.714 

h=£.= 0.2 t;=~=O.3 'h= ~=O.4 

Fig.5-8 Frequency parameters and nodal patterns 

of a clamped I-shaped plate (88 mode). 
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16.56 

12.93 

h=J2=O.2 
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14.95 (AS-2) 13.17 

12.99 (AS-I) 9.96.2 

14.81 (SA-3) 14.64 

16.64 (SA-2) 13.53 

9.855 (SA-1) 8.790 

'=~=03 t=&=Oh rz:=~=O.5 

Fig.5-8 (continued) (SA and AS mode) 
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(AA-3) 16.73 

16.84 (AA-2) 15.63 

13.46 (AA-l) 11.00 

t=~=o.3 t=£=O.4 ~=&=O.5 

Fig.5-8 (continued) (AA mode) 

5-5-2 Results and discussion 

1/2 
The frequency parameters ), = 0. (wJPI D) and nodal patterns 

are presented for clamped I-shaped plates in Fig.5-8. 

Since geometrical symmetry does not exist with respect to 

the diagonal axeS in this case, four distinct modes of 

vibration appear on the p~ate and degeneracy does not occur. 

The results were calculated by use of 30 x 30 matrix (i.e., 
, , 

~ x J =5x5) with m(YJ)=32. Variations of the frequencies 

are shown in Fig.5-9 and jt is noted that the rate of change 

is more conspicuous than that of cross-shaped plates. 
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10 

=-_-_ ~~type 
---- AS 
---AA 

0.3 0.4 ~=h 0.5 

Fig.5-9 variation of frequency parameters 

of a clamped I-shaped plate (,u=l.O,}i=J;.) 

160 



5-6 L-shaped plate 

5-6-1 Application of the method 

Figure 5-10 shows a clamped L-shaped plate which is 

symmetric about a diagonal axis ZZ. Since symmetric and 

antisymmetric modes of vibration arise about the axis, it 

is sufficient to consider a half part of the plate. The 

following segments are located on an original plate. 

lfir----........----7I'Z 

C,: ti, = I ~ 7, (i) = Y; 1.. 

c,': t'=l? fi(= 0 ( 0< l5: I ) 
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(5-51) 

Z C, a 

Table 5-10 

where 

Both deflection and rotation 

are taken to be zero along the 

segment ef, and only rotation 

is taken to be zero along Ct 

and C,". Substituting Egs. (5-

51) into Egs. (5-24) through 

(5-28) yields 

(it/a) I1x~l~ 
, 

(Pl/D) t1~~: =0 (5-52) 
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~f1Il~{7r) 0 1H",(r!.,·rl.XtA) /HJH(rf'Pit~) !blJli('1J) 0 

+ (5-53) 

o 01,. f(!f> fr", .• (~: a:. >.) fill.z Cf,',fit, ~) 0 + fbii'll) 

( + : S type - : A type) , 

with 

(5-54) 

o o 

(5-55) 

o 

(5-56) 

~ m ,t ( r, A; ). ) = )II, s~ h /Jiill [~,"{M III f ifm .;('(,Jsin hm,n (/-tf£ ) -~,J{,J (Mhm,1[ (/ -(Jl) ] 

(5-57) 
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(5-58) 
-/ 

!Hm{(3//Xz I A) = 8inhtl1iTT slhhm,7i(J;:f 

m I Cbshl»jTf(1! 

I H''Il~/~(1Jilh) m,sinhh1,71 m,s;nh'fjf,7[(t-~{) s,hhm,Tl{[-~f.)sinh!I1,7T~f i' SihhiH,Tf (1-2r>I) 

-m;t{)shm,rr({-~l) ~' sinhl1l,f{( '-2~f) -htcoshm,1i(I-~)ashJHI1Tf31 
(5-59) 

(5-60) 

(5-61) 

(5-62) 

n~.i(f-f{) 
n, s/\(}~1T~! 'h n;" COS &1f~i. 'I. J1 
7T . 2. n 2. SO, J1J1T 1f i,:z-4-YJ,2. smn i1T 

", + , 

ifjm.JJj,f1', ~) I 
n{~,~(I-f1J tn.~ (I-Ii) s/nhnili(); ~/~{I-?i) n,c,oshn'7i(5: 

YJ, sinhn.u 

(J, *.~u-r{) rn,~(f- t;J S;nhniTffi w,.~({-~[) n[OshJ1ili~: 
(5-63) 



5-6-2 Results and discussion 

Table 5-3 presents the convergence characteristics of 

frequency parameter A. for the lowest five modes of a 

clamped L-shaped plate, when terms i x j of Fourier series 

increase. The frequency parameters converge within the 
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range of four significant figures for A-I, S-2 and A-2 mode, 

and it is noted that all the frequency parameters tend to 

converge although the rate of convergence is different 

depending upon the modes. In the numerical examples, 6 terms 

of Fourier series were used. The convergence for the 

infinite series in m,Yl was quite satisfactory, since 

the frequency equation was expressed by single series in 

m or n only. m (n)=32 terms of the infinite series, 

which is sufficient to assure the complete convergence, 

were used for the calculation here. 

The frequency parameters and corresponding nodal pat-

terns obtained here for a L-shaped plate are presented with 

the experimental results in the next section. Variation of 

the frequencies with the shape parameter t is shown in Fig. 

5-11. Table 5-3 Convergence of the frequency parameters ).. 
• ~ode, 
l xJ S-l A-I S-2 S-3 A-2 

2x2 7.273 9.095 10.19 11.65 12.00 

4x4 7.449 9.139 10.24 11.99 12.23 

6x6 7.502 9.145 10.25 12.08 12.24 

8x8 7.527 9.145 10.25 12.11 12.24 

10xl0 7.543 12.13 

12x12 7.556 12.15 

(~=0.6, m= 32) 
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Fig.5-ll Variation of frequency parameters 

for a clamped L-shaped plate (#=1.0) 
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5-7 L-shaped plate (Experiment) 

5-7-1 Review on the experimental studies 

The experimental methods on plate vibration are dis

cussed and the results obtained by the Chladni method 
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are presented in this section. The experimental methods 

are divided into two categories: the well-known Chladni 

method and a technique by use of holographic interferometry. 

The Chladni method is a simple and useful experimental 

procedure to obtain nodal patterns of flat plates. When a 

plate is excited at a certain frequency corresponding to a 

natural frequency of the plate, some nodal lines (i~'.r zero

deflection lines) appear and fine sands splinkle on the plate 

and move to the lines. After some seconds, a nodal pattern 

is formed with the particles. It is naturally known that 

this method cannot be applied to curved plates. Chladni, 

in his pioneer work [140] in 1802, gave illustrations of 52 

figures for a square plate, 43 circular~ 30 hexagonal, 52 

rectangular, 26 elliptical, 15 semi-circular and 25 tri

angular. After a century and a half, Waller [118] made an 

extensive study of Chladni'Sfigures in uniform metal plates 

of various different shapes. A new means was introduced to 

excite a plate using a chip of solid carbon dioxide. Since 

then, the Chladni method has been frequenctly used, in many 

cases, to show validity of numerical results obtained by 

analytical solutions. Ochs and Snowdon [141,142] presented 

experimental works to obtain transmissibility across rectan

gular and circular plates with constraints. Some interesting 
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Chladni's figure are shown. One of the recent works dealing 

with the Chladni's figure of circular plates is by Ravenhall 

and Som [143]. Three different test specimens of brass, 

aluminium and steel, are used and an empirical formula is 

presented, utilizing the relationship which exists between 

the number of nodal lines and the frequencies. Steinberg 

[144] collected experimental results of plates of various 

shapes having di.fferent arrangements 0 

In contrast with· a long history of the Chladni method, 

the holographic interferometric technique has a short history 

of a quarter century. A remarkable progress has been made 

and its recent development is given in [145]. Since detailed 

descriptions on the method are beyond the scope of the present 

work,-its principle and experimental apparatus should be re

fe.rred to [146,147,148,149]. Besides the works by Maruyama 

and Ichinomiya [150,151], this technique is widely applied, 

for example, to a point-supported square plate [152], a rib

stiffened rectangular plate [153] and a triangular plate 

[112] . 

5-7-2 Experimental procedure 

The experimental apparatus used here is illustrated in 

Fig.5-1J. A thin steel plate was clamped between two thick 

steel plates having L-shaped inner boundary. The test plate 

was excited by means of an electromagnet exciter, which was 

positioned at various locations under the plate depending 

upon modes of vibration. Powders of cork were used, instead 
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of sands, in this experiment to increase the contrast of 

the patterns for photographic purpose, and also to avoid 

adding extra mass of powder to the plate. Otherwise this 

additional mass may shift the natural frequencies. The 

frequency dial of the oscillator was adjusted until a fre

quency was reached to the state, in which the particles 

splinkled on some areas of the plate while remaining still 

on noqal lines. This indicated that one of the natural 

frequencies was reached and the particles defined a nodal 

pattern. Another indication was the sound which occurred 

at a resonant frequency. The accurate resonant frequency 

was checked by using a digital counter. This procedure was 

repeated for other frequencies. 

169 

It was the most formidable part to make a test plate 

set-up shown in Fig.5-13, and also the most important part in 

the experiment because it considerably depends on the initial 

success of achieving the boundary conditions whether an excel

lent agreement is obtained between theory and experiment. 

A procedure of making the set-up was as follows. A L-shaped 

inner boundary was roughly cut from two steel. plates with 

dimensions 500mm by 500mm by 9mm. These two thick plates 

were connected with 12mm and Smm screw bolts. Then, inner 

boundary was precisely formed by a milling machine. Because 

of diameter of the milling drill, corners of the inner bounda

ry remained round, but it is expected that these round corners 

practically have no effects on the frequencies since the 

plate deflection is almost zero in the vicinity of the corners. 
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In the idealized boundary condition of clamp used in the 

analysis, it is assumed that deflection and rotation are 

perfectly zero along the edge. In the experiment, however, 

the supports clamping the test plate are also elastic, even 

though they are thick, and the idealized condition is never 

made. Some steel bars with LJ-shaped cross section were 

attached around the inner boundary, as shown in Fig.5-l4 p 

to increase stiffness of the support and it turned out that 

this reinforcement actually increased the frequencies of the 

test plate. 

Fig.5-l4 Test plate set-up 



5-7-3 Results and discussion 

Figure 5-15 shows photographs of Chladni's figure 

generated on the test plates with the shape parameter t = 
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0.6 and 0.8. Photographs are present.ed with the frequencies 

at which the figures were made and the results obtained 

by an analytical method. Resonant frequencies are converted 

into nondimensional parameters. For all the modes, frequency 

parameters obtained by the experiment are lower than those by 

the analytical method. This difference can be attributed to 

the experimental error, particularly due to the incomplete 

boundary conditions used. The maximum difference between 

analytical and experimental values is found in the 8th mode 

(A-4) of 7.2 percent for t=0.6, and the 3rd mode (S-2) of 

5 06 percent for fa =0.8 ° Conversely, the minimum difference 

is in the first (8-1) and 5th mode (A-2) of 2.8 percent for 

t; =0.6, and the 15th mode of 2.1 percent for j; =0.8. The 

difference is increased as ~ is taken to be smaller and 

the plate becomes more irregular. In both cases of ~ =0.6 

and 1; =0.8, good agreement was reached for the fundamental 

modes. It has to be pointed out that the percentage dif-

ference doubles when the frequencies are expressed in terms 

of cycle-per-second (Hz) due to the relation j = c"A.:l • The 

constant C can be given by calculating 

(5-64 ) 

where Young's modulus: £= 2.1xlO4- [kg/mm f ], mass per unit 

area: PIA. = 0.80xlO 9 [kgosec.2 Irnm4] , a =300mra,)) =0.30 and -It. = 
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Fig. 5-15 Frequency parameters and nodal patterns 

obtained by the Chladni method and the analytical 

solution for clamped L-shaped plates (fa =0.80). 
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(Chladnis figure) 
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Fig.5-15 (continued) (~=0.60). 
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r------.... 
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it =Oo80rrun, and therefore 

(5-65) 

As seen in the photographs, some nodal patterns are 

distorted and are difficult to define the exact shapes. 

This phenomenon can be attributed to non-uniformity in plate 

thickness and nonhomogeneity in the plate material, and also 

to difficulty in forming geometrical syrrunetry of the test 

plate. 
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CHAP,6 PLATES OF OTHER SHAPES (BIBLIOGRAPHY) 

6-1 Introduction 

Available references are introduced in this chapter 

on vibration of plates of various shapes which were not 

analyzed in the present study. Besides the plate shapes 

considered in the previous chapters, several different plate 

shapes are possible and actually found in practical situ

ations of engineering. 

No exact solutions exist and little has been done for 

the problems of trapezoidal and parallelogramic plates. 

The method presented by the author for clamped polygonal 

and irregularly shaped plates is readily applicable to 

the trapezoidal and parallelogramic plates with combinations 

of simply supported and clamped edges. Although no numeri

cal calculations were done in this chapter, the frequency 

equations for the plates are presented for future study. 

For annular plates, the exact solutions can be found 

in terms of Bessel functions, and a reasonable number of 

numerical results has been obtained for the case when the 

plate boundary is uniform. However, no results were found 

for annular plates having nonuniform boundary conditions. 

The analytical method developed by the author for circular 

plates with various boundary conditions can be extended to 

the plates with nonuniform edges. 

A similar remark can be made for sectorial and annular 

sectorial plates. The exact solution is obtainable for 



a special case of sector having two straight edges 

simply supported, but the accurate results are limited. 

The present method can be applied to sectorial and annular 

sectorial plates with nonuniform boundary conditions on 

the circular edges. 
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An elliptical plate, a generalization of a circular 

plate, has the exact solutions which are expressed in terms 

of Mathieu functions. Inasmuch as elliptical plates have 

far less practical significance than other plates, only a 

limited number of literature was found. 

Rectangular plates with narrow cracks (slit, slot) 

or holes have received sparce treatment. This may be at

tributed to difficulty in obtaining analytical solutions, 

despite the fact that these plates are frequently found 

in many technical fields. 

6-2 Trapezoidal plate 

Klein [154] first solved the problem of a symmetric 

trapezoidal plate simply supported all around by use of 

collocation method (point matching) and presented the funda

mental frequencies. Excellent studies are recently obtained 

by Chopra and Durvasula for symmetric [109] and linsymmetric 

[110] trapezoids, and the natural frequencies and nodal 

patterns are calculated up to higher modes by the Galerkin 

method and Fourier sine series in transformed coodinates. 

Orris and Petyt [Ill] introduced quadrilateral and triangular 

plate bending elements and applied to simply supported and 
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clamped trapezoidal plates, but the results presented 

are limited to a certain range of parameters. Donaldoson 

[155,156] presented an approximate method of analysis for 

the forced vibration of a quadrilateral or triangular plate 

under arbitrary conditions. Sepaha et al. [157] dealt with 

a trapezoidal cantilever plate. 

A thorough and accurate numerical study remains to be 

done for trapezoidal plates with clamped edges along the 

entire edges and some other remaining boundarv conditions. 

Table 6-1 and 2 include the frequency equatiols for the 

determination of natural frequencies and nodal patterns 

for symmetric and unsyrruaetric trapezoidal plates, respec-

tively. The possible boundary conditions by the present 

method are shown in Fig.6-l. 

Fig.6-l possible boundary conditions 

Table 6-1 Symmetric trapezoid 

5 type 
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tphere 
&~i = [' S/nh11ifp 8/n nlT?, d,'n ilfE di!. 
~t.~ = Wl.rih()p l' COSlhlf/'p ~/j1nT({j. sini:rrztlB 

+JJ...ncosBe l'c/hl1flf~f cosnlfcp St'nl7Tltl.'l. 

t= E/l 1 '/,= 0 ({),=O); 11.= i ll-t») ~ = l ((74 = rail (2/)'(fJ-f))) 
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Y/1 = 2. .. f,) ... 

Table 6-2 Unsymmetric trapezoid 

IL I 
l'n n fmn{;') 

- 0 (6-2) 

J,=i!..) ~=O (FJ1=O); lz.=lcotJ;/JA, 71.=i (Bz=Oi.) 
.t== ~ 1 (),< +cot"Oi) -( cotJi +cotjz.)2: } > &= I 
14= I-lcotoz/,u) 1t4=l. (P+=Tf-Oz.) 

Min = J'Z.l3,··· 

Equations (6-1) and (6-2) are derived for the plates clamped 

all around, and the element 11? and/or 11;) in the equations 

are eliminated for other sets of the boundary conditions 

shown in Fig.6-1. 
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6-3 Parallelogramic plate 

More publications have been obtained for the paral

lelogramic plate than for the trapezoidal plate. As pointed 

out in [1], most of research prior to 1966 dealt with the 

cantilevered parallelogramic plate to simulate airplane 

wings. Durvasula solved the problem of clamped [158) and 

simply supported [159] trapezoidal plates by using the 

Galerkin. method and beam functions, satisfying the boundary 

conditions of zero deflection and normal slope on all edges. 

Durvasula and Abdel Fattah [160] presented an experimental 

work for the problem and compared nodal patterns determined 

by using fine grains of iron filings with the previous ana

lytical results. Nair and Durvasula [163] considered paral

lelogramic plates with different edge conditions involving 

simple support and clamp by the Ritz method. Comprehensive 

results are presented for the natural frequencies and nodal 

patterns for differnt combinations of side ratio and skew 

angle. These authors [164] applied the partitioned (sub

domain) method to a clamped parallelogram and comparison 

was made with the values obtained by the Galerkin method. 

Mizusawa et al. [165] analyzed the problem by the Rayleigh

Ritz method with B-spline function. Cuntze [161] and Rami 

Reddy [162] also treated the parallelogramic plate. 

Table 6-3 presents the frequency equation for a clamped 

parallelogramic plate, and the element MY' and/or!1f) are 

eliminated to consider other combinations of the boundary 

conditions as explained for the trapezoidal plate. 



Table 6-3 Parallelogramic plate 
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6-4 Annular plate 

A comprehensive study was made by Raju [166] to yield 

the natural frequencies of annular plates having nine 

possible combinations of boundary conditions along the 
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inner and outer boundary. Marchi and Diaz [167,168] treated 

axisymmetric vibration of annular plates by means of the 

integral-transform method, and the method was extended to 

a plate with elastic edge conditions. 
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Ramaiah and Vijayakumar [169] considered the location 

of nodal circles on annular plates and showed that annular 

plates of narrow width behave like long rectangular plates 

of the same width. Wilson and Garg [170] compared natural 

frequencies of annular plate segments with those obtained 

by using curved beam theory. Eastep and Hemmig [171] em

ployed perturbation series of the modes of a circular plate 

and boundary curve by truncated Fourier series, and applied 

the method to an eccentric annulus. 

Notable studies were obtained by Nagaya [172,173,174] 

on circular plates with eccentric holes (eccentric annulus). 

The Fourier expansion method was used, satisfying the inner 

boundary conditions exactly and the outer boundary conditions 

by truncated Fourier series approximately. This problem was 

also treated by the finite element method [175]. 

6-5 sectorial and annular sectorial plate 

An exact solution is obtainable for a sectorial and 

annular sectorial plate simply supported on the straight 

edges, but it appears that the known results are limited to 

the case whose solutions correspond to integer order Bes.sel 

functions due to the lack of Bessel function subroutine 

program for noninteger order. Westmann [176] considered a 

sector having a free circular edge by the Rayleigh method 

with one term approximation. Ramakrishnan and Kunukkasseril 

[177] considered annular sectors with two simply supported 

edges but, as pointed out above, the results are given only 

for the sector angle of 30°,45°,60° and 90°. 
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Ramaiah and Vijayakumar [178] used the Rayleigh-Ritz 

method with suitable coordinate transformation for the 

annular sector. The natural frequencies for various values 

of sector angle were obtained for all the nine combinations 

of clamp, simple support and free boundary conditions along 

the two circular edges. Rubin [179] solved the resulting 

equation of the plate with two straight edges simply sup

ported by the Frobenius method. 

For clamped sectorial plates, Ben-Affioz [180] applied 

the Rayleigh-Ritz method assuming a deflection function 

which satisfjes the clamped edge condi tons at the circular 

edge exactly. Rubin [181] presented variation of fre

quencies with the sector angle by the method of minimum 

potential energy. Bhattacharya and Bhowmic [182] employed 

Kantrovich method to present an approximate solution for 

a sector plate having two clamped straight edges and arbi

trary conditions along the remaining edges. No numerical 

results, however, are given in the paper. Mukhopadhyay 

[183] employed a semi-analytic solution for the problem. 

6-6 Elliptical plate 

Shibaoka [184] and McNitt [185] published analytical 

works for vibration of a clamped elliptical plate by the 

energy method. Mazumdar [186] dealt with clamped and 

simply supported plates by the method of constant deflec

tion lines. Pnueli [133] introduced a method to determine 

lower bounds of the solution and it was applied to a clamped 



elliptic plate, and Johns [72] presented a simple formula 

to determine the fundamental frequency of the clamped 

plate. Nayfeh et ale [132] used a perturbation technique 

for clamped elliptical plates, and the frequencies and 

nodal patterns were presented for the lowest six modes. 

For a simply supported ellipse, Leissa [187] employed 

the Rayleigh-Ritz method with a polynomial solution and 

the fundamental frequencies over a range of aspect ratio 

and Poisson's ratio were shown. Sato {18B] used the exact 

solution in terms of Mathieu functions for the simply sup

ported plate, and also treated an elliptical plate elastic

ally restrained along the edge [189J. 

Waller [190] determined experimentally resonant modes 

of free elliptical plates. An analytical work was done 

by Beres [191] using the Rayleigh-Ritz method with a 25-

term polynomial function, and the numerical results were 

compared with those in [190J. Sato [192] considered a con

focal elliptical ring-shaped plate using Mathieu functions 

and the experimental results were also presented. Forsching 

[193] dealt with a cantilever semi-elliptical plate. 

6-7 Rectangular plate with narrow slits 

Plates with narrow slits {crack, slot} may be found 

in the applications of structural engineering. Due to the 

complicated analysis involved in the procedure, only a 
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few references have been found for vibration of the plates. 

Solecki [194] formulated the problem but no numerical results 

were given. Lynn and Kumbasar [195] dealt with simply sup

ported rectangular plates having a narrow slit parallel to 
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the edge, and variation of the frequencies was shown with 

the length of a slit. Keer and Sves [196] developed a method 

to analyze the bending of cracked plates, and Keer and Stahl 

[197] extended the method to vibration problem of the plates. 

Hirano and Okazaki [198] presented an analytical work of a 

rectangular plate with cracks parallel to the edges and 

simply supported on the other opposite edges. In all these 

references, however, only rectangular plates were concerned 

and no results were found for circular plates with slits. 

6-8 Rectangular plate with .holes 

Plates with holes Gan be used to decrease the total 

mass of the plates in structural engineering. Takahashi 

[199] and Kumai [200] have dealt with a rectangular plate 

with a circular hole by using the Rayleigh-Ritz and point 

matching method, respectively. Basdekas and Chi [201] 

presented an approach to analyze dynamic response of plates 

with holes of various shape. Monahan et ale [202] treated 

the problem by the finite element method. Kristiansen and 

Soedel [203] obtained the fundamental frequencies of clamped 

.square plates having some different holes. Paramasivam and 

Sridhar Rao [204,205] employed a finite difference and applied 

to a square plate with stiffened square holes. Hegarty and 

Ariman [206] used a least-square point matching method to 

analyze a rectangular plate with a central circular hole. 

Akus and Ali [207] made use of variational principles in 

conjunction with a finite difference to deal with a rectangu-



lar plate with one or two rectangular cutouts. Rajamani 

and Prabhakaran applied a method in [201] to the determi

nation of dynamic response of composite plates with cutouts 

simply supported [208] and clamped [209] along the edges. 
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CHAP.7 CONCLUSIONS 

The present study dealt with free, transverse vi

bration of thin, isotropic homogeneous plates of various 

shapes. The effects of such complicating factors as 

anisotropy, inplane forces, variable thickness, surround

ing media, large (nonlinear) deflections, shear deformation, 

rotary inertia and material nonhomogeneity were not con

sidered. Two types of analytical solutions were derived, 

utilizing the Fourier series, to study vibrational 

characteristics of the plates. The solutions were obtained 

in the following procedures. 

Considering a rectangular plate with internal line 

elastic supports and regarding the reaction force and 

moment along the supports as unknown harmonic force and 

moment, the stationary response of the plate was expressed 

in terms of Green function. The force and moment dis

tributed along the supports were expanded into Fourier 

sine series with unknown coefficients, and the homogeneous 

algebraic equation for the coefficients was derived by the 

constraint conditions along the supports. The natural 

frequencies and mode shapes were determined by calculating 

the eigenvalues and eigenvectors of the equation. (Solution 

(a» 

Considering a circular plate, the general boundary 

conditions including the effects of non-uniform elastic 

springs and edge mass were expanded into Fourier series. 

The exact solutions of the differential equation govern-



ing plate vibration were substituted into the expanded 

boundary conditions, and the frequency equation of the 

plate was derived after some algebraic manipulations. 

{Solution (b» 
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In Chapter 1, solution (a) was developed for vi

bration of a rectangular plate elastically supported along 

some segments parallel to the edges. The solution was 

first applied to a clamped rectangular plate and the nu

merical results were compared to those obtained by other 

authors. Applying the method to a simply supported plate 

with a cross-shaped support and to a plate clamped at the 

outer edge and an internal rectangular support, the effects 

of varying the length and stiffness of the supports were 

evaluated numerically and their physical significances 

were discussed. 

In Chapter 2, solution (b) was used to analyze vi

bration of circular plates having various boundary con

ditions. Fundamental equations were first derived for 

circular plates having uniform boundary conditions, and 

the numerical calculations were carried out only for the 

case when a reasonable number of accurate results was not 

found. Considering a simply supported plate having non

uniform rotational elastic constraints, the frequency 

equation was given in a simple form, and the natural fre

quencies and nodal patterns were calculated. As a more 

general case, a free circular plate elastically constrained 

by both translational and rotational springs along parts 

of the edge was considered. Variations of the natural 



frequencies and nodal patterns were presented with the 

change of constraint parameters. This analytical method 

was extended to a free circular plate with nonuniform 

mass added to its boundary, and how the frequencies de

crease with the addition of partial edge mass was clari

fied quantitatively. 

194 

In Chapter 4, solution (a) was conducted for vibration 

of a simply supported rectangular plate clamped along some 

segments located at arbitrary positions. The general solu

tion thus obtained was applied to a clamped polygonal plate 

by locating some clamping segments so that they form a 

regular polygon on the original plate. The detailed fre

quency equations were derived for a clamped triangular, 

pentagonal, hexagonal, septagonal and octagonal plate, and 

the natural frequencies and nodal patterns were presented 

up to higher modes. The numerical examples revealed that 

the natural frequencies and nodal patterns of the polygonal 

plates could be separated into some groups, and the vibra

tional characteristics of the polygonal plates with more 

sides than six are quite similar to those of a clamped 

circular plate with the equal area. In contrast, the 

effect of plate shape was found distinctly in triangular, 

square and hexagonal plates. 

In Chapter 5, making use of an anlysis presented in 

Chap.2 and an idea used in Chap.4, frequency equations 

were given for such irregularly shaped plates as cross

shaped, I-shaped and L-shaped plates. Since it was ex

pected that the solutions, expressed in terms of double 



Fourier series, would cause bad convergence, the fre

quency equations were then rewritten in a single series 

form. By this analytical manipulation, accurate numerical 

results were obtained and the natural frequencies and 

corresponding nodal patterns were presented with the 

parameters denoting geometric irregularity of the plate 

shape. An experimental investigation was carried out for 

a L-shaped plate, and the frequencies and nodal patterns 

determined by the Chladn;i.. method agreed well with the 

analytical results, showing the validity of the analysis. 
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A thorough survey was conducted attempting to collect 

related technical papers published mainly in this decade. 

The latest papers published up to the middle of 1979 were 

included. This survey clearly uncovered that vibration 

problems of the plates considered in this study have been 

received sparce treatment, in spite of the practical sig

nificance in engineering, because they have been considered 

quite difficult to obtain analytical solutions. Therefore, 

it seems obvious that this study is a considerable contri

bution in this field. The plates which were not analyzed 

in the study but might be included within the dissertation 

title were summarized for future use in Chapter 6 as a 

bibliography. 

Analytical procedures described in the study are 

useful in extending the methods to further applications, 

and the resulting frequency equations were shown in con

venient forms so that practical engineers can readily use. 

The numerical results presented both in tabular and graphi-



cal forms are useful for comparison and physical inter

pretation by other researchers, and may offer fundamental 

data for the design needs. For convenience, natural fre

quencies were expressed using the same definition through

out the study a 
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Concerning future aspects of the problem, the follow

ing comments can be made. The solution (a) has an excel

lent advantage of its applicability to clamped plates of 

arbitrary shape, and it is possible to make a computer 

program package for general use. Furthermore, the author 

believes that this method is extendable to simply supported 

plates of arbitrary shape. The solution (b) also has 

applications to annular and sectorial plates with various 

edge conditions. Although the complicating effects of 

plate such as anisotropy, varying thickness and so forth 

were excluded in the study, the analytical procedures 

developed here may provide basic ideas in accommodating 

these effects in the analysis. Particularly, orthotropy 

of plate can be easily considered in the analysis by 

using eigenfunctions of a simply supported orthotropic 

rectangular plate in solution (a). 
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