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1. Introduction

This chapter is intended to introduce and organize a
common contexts and their contents to be dealt with in the follow-
ing chapters. For this purpose, the common terminology for
models to be analyzed later is presented with some materials
with which to survey the background. Though the description
of the problems varies from chapter to chapter, the problems
themselves are recognized from the commeon point of view and
accordingly generalized in this chapter.

In section 1.1, the objectives and motivations are
cescribed. Section 1.2 is intended to create generalized
space allocation problems discussing:

1.2.1 Resource

1.2.2 Material

1.2.3 Relation

1.2.4 Geometry Description

1.2.5 Performance Measures

The background of the space allocation problems is
surveyed in section 1.3 in the following order.

1.3.1 One-Dimensional Forms

1.3.2 Two-Dimensional Forms

1.3.3 Three-Dimensional Forms

1.3.4 Graphic Processing in Space Planning



1.3.5 CAD in LSI Design

The materials given in 1.3 do not completely cover all
the space allocation problems, but still they extract the
common recognition of the problems.

Section 1.4 concludes the remarks of the space allocation

problems.

1.1 Objectives and Motivations

The space allocation problem may roughly be described
as follows:

a) to make up an optimum resource by building material

spaces under the given criteria.

b) to divide the given resource into optimum materials

under the givep criteria.

The objectives of this paper is to present new methods
and optimum solutions, or near optimum solutions at the least,
practical enough for engineering.

These types of problems are actually and easily found in
such programs as to how to apply a number of tiles on the
floor, how to allocate rooms within a restricted area, how
to load cargos on a truck, how to patch tasks on a gantt chart
and so on. In the field of engineering too, there are same

type of problems related to the extension of information



processing for manufacturing system. These problems include
a cutting stock problem in metal sheet industry, machinary
layout problem in a factory, multi-job scheduling problem in
a computer ,L.SI design in CAD, etc.

Before using a computer for these problems, either an
engineer, a planner or a designer has to spend quite a few
days in solving or designing them through "trial and error"
and "experience", which are the only approaches available,.
To make matters worse, the problems described above are
essentially combinatorial, therefore there are a number of
solutions, and the engineer has to select the best possible
one. Certainly the recent development of computers of high
speed processing with huge memory capacity has done much
to eliminate such diificulties. However, efficient methods
have not yet been established except for a few cases. Under
such circumstances,-an approximate solution to the problems
would bring a great deal of economical effects to industry.
In fact, a computer-aided manufacturing system for metal
sheet cutting, developed by Mitsubishi Electric Company,
adopted the method to be presented in chapter 3. This saved
9882 hr/yr and 7.2 workers in producing desired products by
raw metal sheet shearing as compared with the productivity
before the system development.

Also, the method to be presented in chapter 4 is actually
applied in Murata Machinary Company to a shear CAM system

which is developed in chapter 8. The efficiency of raw metal
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sheet utility reached around 90% --- a rise from 70%.

The studies on the problem start with the motivations
under the situation mentioned above. Most of the problems
to be dealt with in this paper are known as ''Non-Polinomial
Problems'", meaning "Polinomial Time Algorithm" on the dis-
cription size n of the problem has not been found
as yet. Therefore, this paper aims at practical approaches
to the space allocation problems, which will give optimum

solutions practical enough for engineering.

1.2 A General Model

A space allocation model, from which subsequent problems
are drawn, is described by considering resource, material,

geometry description, relation and performance measure,

1.2.1 Resources

Resources mean spaces either composed of given spaces or
which can be divided into separate spaces. Such spaces are
blanks nested by material spaces, buildings consisting of
given functional rooms, a gantt chart for job shop scheduling

dispatched by jobs, computer processing capacities assigned



by tasks, holes filled in with bricks and so on.
Resources are written by a set R,

R = {Ry, R ..,Rm}.

27"
A resource Ri is often devided into a subset such as:

= 1T (R;), To(Ry), ..., T (R},
where R D 7. An example of this is found in the computer
multi-job scheduling where T1 is an input, T2 is a subroutine
library, T, 1s processing and T4 is an output.

3

1.2.2 Material

Materials mean either spaces into which resources are
divided or spaces with which to compose resources. Such
materials include the ones sheared from blanks of raw metal
sheets, rooms allocated in a building, machines located in a
factory, tasks for multi-job scheduling, CM time for TV time
scheduling, boxes loaded on a pallete and so on.

Materials are written by a set M,

M= {Ml, MZ""’ Mn}.
There are sometimes space constraints which restrict materials.
The space constraints are written by a set Ci’
C = {Cl, Courrns Cn} restricting as

M. CC,, i=1,2,..., n.
1 1



1.2.3 Relation

There is a case in which the resources and the materials
have a mutual relation in their elements. Such a relation
is called a "binary relation'". A notation which shows the
binary relation can be introduced as:

Ri B Rj R; has the relation B with Rj
and Mi B Mj My has the relation B with Mj

Such an example is found in the relation of a room Mi

with the adjoining room Mj'
1.2.4 Geometry Description

Spaces dealt with in the problems have their own shapes.
Therefore, geometry descriptions for the spaces are essential.
In order to describe any shapes of the spaces, a generalized
description method need be introduced. The method must also
be effective not only for the geometry descriptions but to remedy
graphic processing which occurs in space allocation. Such
graphic processing to be overcome includes collision problems
between spaces and recognition problems on where the spaces
are allocated. From the viewpoint mentioned previously,
"Formulated Pattern Method”(é;veloped by Prof. N. Okino is

applied as the description method if such situations come out.

"Formulated Pattern Method" (FPM) is simply illustlated as



follows.

The given space P is devided into primitive spaces Pi

3

and P is presented by the use of a union operator in a set

theory as below:

a
P=Up., (1.1)
. i
i=1

where a is the number of primitive spaces. Primitive spaces

are divided into half spaces Pi then we gain, by the use

j 2

of an intersection operator,

a b
P=tJ3 (O P.. (1.2)
i=1 j=1 *J

where b i1s the number of half spaces of primitive one Pi’

As set Pij = {x yPi (xX) 2 0}, Eq. (1.2) becomes

J
a b
P=uU M {x]|P,. (x)=0}. (1.2")
i=1 j=1 J

As to the application of this description method to
graphic processing in the space allocation, the usage of

"Boundary Evaluator’ is offered in chapter 7,



1.2.5 Performance Measure

Performance measures for the problems depend on the
situation in which a problem occurs. The subsequent chapters
mainly treat the followings as the performance measures:

a) A minimum waste in cutting and trimming situation
b) A minimum cost in packing situation
c) A minimum partition situation

Each of the above is briefly discussed in the following

section.
a) A minimum waste in cutting and trimming situation

An extremely common industrial problem is of the follow-
ing type: cutting material items to satisfy a set of orders
for non-material size of a resource. The material-depletion
form of the problem occurs frequently where cutting is
necessary and has been treated extensively under various
names, such as "stock cutting", "scrap reduction’ and "trim
loss'". Exactly parallel one-, two- and three-demensional
forms are displayed in connection with cutting length,
sheets, and blocks respectively. Otherwise, if we consider

"locating" instead of "cutting", the depletion problem



becomes a packing problem. As the performance measure in the
stock cutting case, the trim loss (the waste) needs to be
minimized. In general, the problem of this type is known
as the '"knapsack problem".
b) A minimum cost in packing situation
A complex problem may arise when a number of similar

products are made in a wide variety of sizes. Each of the
products is to be packed in an individual cardboad box.
A typical instance can be found in ball-bearings. If each
product is packed in the smallest box that will contain it
exactly, the warehouse space for stocking the completed
articles, transport costs based on volume and the actual
box costs will all be reduced to the minimum.
c) A minimum partition situation

When the resource is divided up into the materials
whose shapes are restricted, the number of the materials
needs be minimized. A similar performance is found in
making the materials in the simplest shape in as large
area as possible from complex shape resources. In an automat-
ed LSI pattern development, this performance is needed to
minimize the developing time due to the number of patterns

decoded from the original LSI pattern.



1.3 Background

1.3.1 One-dimensional Form---Knapsack Problem, Optimum

Packing, and Space Allocation Problem

Consider a group of materials Mj (j = 1,2,..., m)
and a resource R. The problem is simply to pack (allocate)
as many materials as possible into the resource without
any protruding. Let us set uj to the area of Mj,

the price of Mj and w to the area of R. The problem is

d. to
J

described as

M8
o
i

minimize ., (1.3)
j:]. J J
n
subject to Zou, X.%Ww (1.4)
=1 J J
J
where Xij =11 Mj is packed

0 Otherwise
The inequality Egq. 1.4 is derived from the geometry
condition under which the sum of the material area packed
should be smaller than the area of the resources. If we
. as the weight of the given j-th item and w

J
as the sum of the weight allowed to load items and dj as

regard u
the price of the j-th item, this problem 1s known as a

“"Knapsack Problem" which occurs in some cargo loading

operation. Gomory<2)<3)<4) solved it by formulating it as

-~ 11 -



"An Integer Linear Programming' for "All Cutting Plane

Method". Bellman and Drefus applied "Dynamic Programming

Method" to the problem and Kolser

(5)

the use of "Branch and Bound Method".

approached to it by

It seems that Kolser's

method is most efficient among them, but the program

dimensions solvable are ranged from 3 to 100 items by Kolser

using IBM 7094,

In the case where some resources are given, the problem

becomes packing of all the materials in the resources.

Let us consider the materials as bricks and the resources

as holes. Then, the holes are of a similar size, and the

bricks are all Qf the same cross-section as the holes but

different in length. (Fig 1.3)

NN

2’

Q\\\\\\\\i

N
N

NAN

§ NNNNNNY
N

I

A\

Hole Hole Hole Hole
1 2 3 4
(a) Holes
1 s | > 7 |8

2 ] 3 6
/Y

(b) Bricks

Fig. 1.3 Optimum packing problem
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The problem is simply to pack all the bricks into the

holes without any protruding. This type of the problem is
known as '"Optimum Packing in One-Dimensional Form'.

"TV Spot Reservation Problem”(6) and "Time Tabling Problem"
(7) are two examples actually found. A.R. Brown described
the detail of the treatment of this problem in his "Optimum

Packing and Depletion”{S)

Instead of surveying this problem, let us introduce
another problem in the same situation as the above.
If we treat the bricks as jobs and the holes as the
machines, the problem becomes "Job Shop Scheduling Probem'.
In order to describe the problem, let us formulate the

problem as follows:

m m
minimize 2 (max P, - P.), (1.5)
=1 3=1 0 |
n
subject to P, =% . L.y, J = C e .
J 3T Fl XlJ, J 1,2, n (1.6)
n
z = =
j=1X.j 1, Xij 1 or O (1.7)

Where P. is a processing time of the machine Rj’

Fi is the job time Mi’ xij = 1 implies the job Mi is

processed by the machine Rj and Xij
An objective function adopted as the performance measure is

= 0 implies otherwise.

the situation of the cutting stock which extracts a minimum

waste shown in Fig. 1.4 by cross-hatched lines.

- 13 -



Pro-
cessor R] T] T8 22;{;4P]
// &

Fig. 1.4 Job shop scheduling problem

As the second term becomes constant without wait
times, the objective function is rewritten by

m
minimize max Pj (1.8)
j=1

Eq. 1.5 shows 'mean weighted finishing time" and
Eq. 1.4 shows "maximum finishing time'" in job scheduling
problem. To be more general, sequence conditions under
which job Mi must be preemptive before processing Mj are
added to the problem and the problem becomes more
sophisticated. The researches into this aspect have been

made by E.G. Coffman.(g)

- 14 -



One of the typical problems that belong to job shop

scheduling is "Flow-shop Problem”glo)(ll>(12)(13)

This is the N-P complete problem, on which S.M. Johnsonglo)

I. E. Ignalgll) I. Nabeshimaglz) and H. Kubo(lg) attempted to
solve it. S. M. Johnson presented and analyzed the
formulation of the problem and gave to 2-machine n-job
problem a simple rule. I. E. Ignal, I. Nabeshima and H.
Kubo tried to apply "Branch and Bound Method” to the
problem and they made an effort to establish "more
efficient lower bound'". But solvable number of the
machines for the problem is maximum 200 by H. Kubo's
method using a computer with large capacity (FACOM 230/
75). In order to solve a practical problem in a factory,
more efficient method should be desired even if it cannot
reach an exact solution within a reasonable calculation
time and a reasonable cost.

Another performance measure of the space allocation
is offered by D. M. Simmon§14) The problem discussed
arises when an architect tries to arrange rooms of fixed
area but unspecified shape in a floor plan in such a way
as to minimize a given linear combination of the distances
between all pairs of rooms. 1In one dimension, this is
the problem of ordering line segments along a simple axis
or rooms along one side of a corridor. In this problem,

the rooms take the place of the materials Mi and the fixed

-~ 15 —



area implies the resource.

The performance measure for the problem is the average
daily traffic between two rooms---walking distance and
traffic densities. Therefore, the expected total distance
traveled by people of all distances is minimized. 1In this
case, the space allocation problem becomes an ordering
problem rather than one of the space allocations. The
formula of the problem by D. M. Simmons is as follows:

n i
minimize ¥ X C,. S.., S.. ¥ 0 1.9
i=1 j=1 1J 1] it (19

This is being visualized as the problem of ordering a set
of rooms of nonuniform known length along one side of a
corridor where the cost accessed for each pair (i, j) of
rooms 1s some scalar multiple Cij of their separation Sij'
The operation Sij is the sum of the half-length of rooms i
and j added to the length of all the rooms between them.

i
As % Cij Sij for i # j becomes the same formulation as
=1

the mean weighted job shop scheduling regarding the room
length and Cij as the processing time and the job weight
respectively (where the sum of the half-length of rooms i
and j is ignored), it becomes possible to make use of SPT
rules that figure out the lower bound for applying the
branch and bound method to solve the problem. D. M. Simmons

solved the problem by finding this property. The maximum

- 16 -



number of rooms for his numerical experiments 1s 15
by the IBM 360-40/65 which is roughly 370k bytes memory

available.

1.3.2 Two-dimensional Form ---Cutting Stock Problems,

Multi-job Shop Scheduling

The approaches to the cutting stock problem are
well known owing to Gomory and Gilmore€3>(4) Their first
approach is to formulate the problem as a linear programming
and to develop the efficient simplex method originated for
the problem. In this problem situation, stocks take the
place of resources.

The formulation and algorithm developed by them are

as follows.

Let us define the notation:

Lys L2,..., Ly stock length
11, 12,..., 1m : ordered material length
Nl’ No,..., N the number of pieces of the ordered
material
aij (j=1,..., n) the number of pieces of length
li created by j-th activity.
c. (j=1,..., n) the costs of the stock length

cut by j-th activity

- 17 -



x. (j=1,..., n) the variables assigned to j-th
activity

The objective function to be minimized is

cqy X1 + Ccy Xg + + Ch X, (1.10)
The variables X1, -0 Xp must satisfy m inequalities,
251 Xl + ajg Xg + ... +oag, Xn.z Di- (1.11)

(i =1,..., m) '

By the use of the vector notation, the problem is
minimizing ¢l X (1.12)
subject to A X=N (1.13)

, - Ty 2 yIoa =

where C (Cl""’ c ), X (Xl""’ x ) A {aij}’

and N = (n nmir_Their method is based on the relation

' EERRE
between the primary problem and the dual problem. The
dual problem against the problem described by Egs.

(1.12) and (1.13) become

maximizing N U (1.14)
subject to AT Uusc (1.15)
where U is the variables (ul, U, « v e um)Tfor the dual

problem. If the both problems are optimized, it is known

T
as C U=NT U. The algorithm presented by them is based on

this principle and it is briefly described as follows.

1. Select feasible X so that AX = N where the activity

3 T . ) .
Af = (ali’ Bosseros ami) is figured out by solving a

subproblem as a knapsack problem.

T
2. Determine U so that A U = N.

3. Test optimality of the solution and its dual by

- 18 -



4, If CTX=NTU the solution is optimal for the

activities selected. If not, go to step 5.

5. Select a new activity As = (als’ Bogs oo ams) s
so that Al USc, . (1Sksm).

6. If Asis a really new variable to be entered into
the basis, changelx;intoAk and update A and C.

7. Determine U so that AT U =2=0C.

8. Determine X so that A X = N. Then go to step 3.
An important point in this algorithm is that all
possible activities are not listed in each step. This
saves a great deal of memory for calculation. It is

considered that the algorithm is the revised simplex

method.

In the continued research work, they have formulated
the problem as a generalized knapsack problem and solved
it by Dynamic Programming. S. H. Hahn applied the
D. P. method principally developed by them for the cutting
stock problem with defects.

Mathematical programming approaches to the two-
dimensional problem have briefly been surveyed as above.
On the other hand, two-dimensional optimum packing
problem is identified with the very geometric two-
dimensional problem by Codd, in scheduling hardware

facilities of a large, multi-programming computer.

- 19 -



This problem is called a multi-job scheduling problem,
and in its problem the resource and the materials are
regarded as a program load and programs, respectively.
Codd's procedure(15) attempts to place program's
component rectangles on theilr load diagrams according to
a set of placement rules. The programs are ordered
according to the rules dependent on priority or precedence
or, in the absence of both, on the longest running time.
The placement rules offered by him consists of the
following three.
The program being considered is P.
Rule 1 --- Fitting criteria
(1) P's rectangle must be within the upper bound of
facility.
(2) P must not intersect any rectangles placed
earlier.

Rule 2 —--- Left justification

(a) No program may start unless another is terminating.

(b) P's rectangle should be placed as far left as

possible.
i L 1 L L
r I —] —=—
W, ;' We ¢ j
: W k
W Wy -
. U He {
W J W, Z
V77T 77T T77 77770 LI /
Pattern 1 Pattern 2 Pattern n

Fig. 1.5 Simplex method model
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Upper Boundary

W/A//, 8 ,////%
77 7
S ok /

Time

Fig. 1.6 An example of Codd's rule

Each program to be scheduled will give rise to several
rectangles on several load diagrams. The object of this rule
is to pack the schedule tight so that it is less likely to
be affected by changing situations or requirements. It
is obviously less densely packed to the right, leaving
room for manupulation in the event of unavoidable changes.

Rule 3 --- No fragmentation

The "vertical' space---facility extent---is not split
unless absolutely necessary.

These rules are satisfied, considering each program

in turn as mentioned earlier, by a stepping procedure
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looking for "pyramid" bases or to extend existing 'pyramid'.
The pyramid concept is best illustrated as shown in Fig. 1.6,
where rectangles A form one pyramid and B and C others.
The heavy lines are their basis which are always either:

(a) the upper boundary,

(b) the lower boundary, or

(c) the uncoverd part of a layer of an existing

pyramid.
The pyramid can be built up or down from the basis,

and the whole process is easy to specify in terms of
manipulation of the coordinates of the rectangles.

The similar procedure has been developed for metal sheet

nesting by M. Yoneyama.

1.3.3 Three-dimensional Form---Packaging Problem

Three-dimensional form of the space allocation problem

is known as a generalized knapsack problem being studied

by P. S. Gilmore and R. E. Gomory<3)<4)(5) and as a

packaging problem by R. C. Wilson€l6) It is not sufficient
enough to do research in this aspect only.
This section briefly describes the latter problem.
In many consumer goods product lines, a class of

similar products are produced in a large number of different

physical sizes. Each product must be packed into its own
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cardboad box. The costs are minimized if each product
is packed in the smallest box which fits the product
exactly. The savings from using a different size box
for each product are offset by the higher price of
boxes purchased in small guantities and the additional

erdering, inventorying, and handling costs of many

different box size. If one assumes that demand activity

for the period is known exactly for each product,
the problem is to determine:
1. the number of n of different size boxes for
the line of m different size products,

2. the dimensions of these n boxes, and

3. which products to insert in which box in order to

minimize the total cost of packing during the period.

The problem is formulated as below.

m n n
Minimize x X a. C. X.. + 2 vy. k., (1.
i:l 3:1 J J 1J le J .]
m
] S‘ = 3 =
subject to .: bij xij 1 (4 1,..., m) (1.
i=1
m
z . b.s Xa. > ds
i=1 a5 Pij ®ij i (1
or that
m
z . .. .. o= P
i=1 23 le Xij = 0. (J =1,2,...,m) (1
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The notations used are defined as:

a; the forecasted demand activity for product
i during the period, in units (i = 1,..., m),
cj total cost of box size j (j = 1,..., n),
cjlz purchase cost of the box size j (j = 1,..
., h),
cj2 cost of the warehouse space occupied by the

box size jJ,

kj system operating cost if the box size jJ
is used, and

v ==§1 box j is used
0 otherwise

di minimum acceptable activity of box size j

in the period, and
Xij =11 if the product i is packed in the
box size J
0 otherwise
A constraint Eq. 1.18 implies each product must be packed
in only on size box. Constraints Egs. 1.19 and 1.20 imply
if the box size j is to appear in the solution, economics
of purchasing requires that at least dj of the box size
j be purchased during the period, or else none are to be
purchased. In the objective function, the first term is
the cost when the product i is packed in the box size

j and the second term is the total operating cost of the



number n boxes in the system.

The resources are the boxes and the materials are
the products in the program obviously.

In the environment in which this problem arose, the
number of different products, m, was about 2000 and the
number of meaningful increment, h, in each dimension was
150, giving n = 3,375,000. The number of variables
therefore exceeds a billion and the number of constraints
imposed by Egs 1.18 and 1.19 exceed 10 million. For
this reason, a heuristic method is presented. The method
consists of three steps---step 1, box size generation,
step 2, box reduction, step 3, selection. The list of
candidate boxes is generated in the step 1. The list is
augmented by comparing each subsequent product with the
boxes already on the list and adding a new box if none on
the list are within the acceptable tolerances. In the
step 2, each box is eliminated step by step from the
initial set ( established in the step 1) so that the cost
is least incremental. Then, the number of boxes is
decided to satisfy Eq. 1.18. 1In the step 3, the results
of box reduction are examined as to wether they satisfy
the restrictions Egs. 1.19 or 1.20. Also the total cost is
calculated. If the total cost becomes relatively flat by
inspection, step 3 is concluded. If not, alternative box

sizes which are the function of the operating cost are

seeked and tested again.
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R. C. Willson succeeds in saving over 25% of the cost
of present cardboad boxes and space costs per year.

In chapter 5, the similar situation of the problem
is discussed to determine the box size and the carton

size in which the boxes are packed.
1.3.4 Graphic Processing in Space Allocation

In the survey made in the previous sections, the
geometries of the resource and the materials are simplifi-
ed as rectangles and cubics in order to turn the problem
to mathematical programming. Therefore, the problem is
not dealt with from the viewpoint of graphic processing.
In spite of the efforts to make the problem simple,
information is needed on how the materials are located
within the resources or how the resources are cut out
into the materials, at least. For instance, Dynamic
Programming approach by P. C. Gilmore(S) and others
prepare the two arrays to show the material location.
The two arrays store the upper value coordinate of the
material located sequentially on the x- axis and y axis
within the resource.

As shown in the above simple instance, another
important phase of the space allocation problem is the

graphic processing.
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The graphic processing necessary in the space
allocation problem must solve the problems of how the
material and the resource geometries are described and
stored into the computer, how the existence of the materials
within the resource is recognized by a computer, and how
the relation of the locations between materials or
between the resource and the material can be recognized.
There are few attacks in the field of mathematical programm-
ing but there are some found in the field of architecture
space planning. The space allocation situation is called
Space Planning in the Computer-Aided Design of archi-
tecture. Let us inspect the graphic processing in archi-
tecture in the respect of the space allocation problem
briefly.

In space planning, the rooms for a house is considered
as the materials and the area allowed for building the
house as the resource.

The most common problem formulation in space planning
deals with the weighted distance between an arranged set

of rooms€17) The objective function is

2)1/2 (1.21)

i _ 2
where d,. = ((xy - x3))° + (y; - Yj)

1] 3
or similar distance function, based on Cartesian coordinates

and subject to the limitation that a room occupies only
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one location. Of course Egq. 1.21 responds to only one
special relation between rooms. The other relations
such as direct adjacency, sightliness, specific distance
constraints and others are combined with the distance
relation.

The basic operation for the generation of alternative
solutions for space planning problems involves the
relocation of a single domain or a set of domains. The
Cartesian points represented by a domain were altered
though their attributes, shapes and dimensions remained
invariable. A basic test involved in all relocation
operations is an evaluation of a proposed empty domain
so0 as to determine if the space required to locate
the rooms is completely disjoined from all other filled
domains. This can be considered as a test to ascertain
whether an empty domain will completely encompass the
solid domain it is receiving. Alternatively, it can be
a test to check whether the solid domains already
located have points in common with the solid being
located. Furthermore, any alternative space planning
can be generated and evaluated if the following
capabilities are available and faciliated.

(1) Representation of domains of any shape
(2) Determination of any dimensions or attributes

of a represented domain.



(3) Identification of any desired set of adjacent
domains
(4) Determination of any dimensions or attributes
of a set of adjacent domains.
The above capabilities seem to well define those
needed for space planning. C. M, Eastman(lg)
compares four ways of the data structure of space
planning representation among themselves: plain
arrays, hierarchical array, string representation,
and adjacency structures.
Plain arrays use the two-dimensional array.
In this representation, each subscripted variable in
a predefined array represents a rectangular unit area,
that is, domain. The subscripts of the domain_provide
the definition of its x and y Cartesian coordinates.
The value of a variable in the array denotes its state.
The domains used by an array to represent the room and

the actual array used to represent the room are shown

in Figs. 1.7, and 1.8(a) and (b).

855" " o0”

N
i J«:
3.
0
- o
.9-9

Fig. 1.7 Orthographic Q/. 4 ;
projection of the plan g )

’ ©'-97 _4-5* ]—~——2 - N
of a room ;,

7
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1.8 (b)

Fig.

1.8 (a) The domain

Fig.

array used to represent

represented by an array

a room

Variations of the plain array representation

have been developed that lessen memory requirements

One of them has been developed

and processing time.

at Stanford Research Institute for use as a robot's

Instead of a

internal representation of the world.

single predefined grid, they use a method of sub-

dividing any given rectangular domain into 4 x 4 grid

further subdivided into 4 x 4

Each cell can be

cells.

Homogeneous domains are not sub-

grids recursively.

Subdivision is only required at the boundaries

divided.

A diagram of domains expressed in such

of elements.

1.9.

a representation is presented in Fig.
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Fig. 1.9 The hierarchical set of domains defined by

the SRI array

In a string representation, domains are defined

according to a particular strategy for collecting

homogeneous point locations. The state of a particular

point location is determined by summing row prefixes
in the y coordinate and scanning the appropriate rows

in the x coordinate. The application of this domain
definition technique to the floor plan shown in Fig.
1.7 produces the actual data structure as shown

in Fig. 1.10.



The letter suffix expresses the state of blocks:
W, A, B, C, E represent walls, objects A, B and C, and
empty space respectively. The prefix defines the
vertical extent of a set of domains. Thus a prefix,
along with each symbol string within commas, defines a
domain.

A single rule of adjacency in both coordinates
that allow a single accessing rule give a new
representation. Especially the rule should be applied
so that only single domain may be adjacent to each
other in either coordinate. This is called an adjacency
structure. This example produced in Fig. 1.7 is shown

in Fig. 1.11.

5{6.5W, 10.0E) T
5(5W, 2.1E, .57, 20, 5W, 10.0E) - —
5(5W, 1.6, 1.44, 25E, .5W, 10.0E) :

5(5W, LIE, 2.34, 2.1E, .5W, 10.0E) L
5(5W, 61, 3.1A, 1.5E, .5V, 10.0E)
5(5W, 3E, 3.1A, 2.15, 5W, 10.0E)
5(5W, .55, 2.4A, 2.6E, 3%, 10.0E)
5(5W, 1L1E, 13A, 3.1E, .5V, 1J.0E)
1.0(.5W, 5.5E, .5V, 10.0E)

1.0(.5W, 555, 10.5W) i
45(.5W, 1558, .5W)

£3(5W, 1.8B, 11.2E, 2.5C, .5W)
1.2(.5W, 6.0B, 7.0E, 2.5C, .5W)
5(16.5W)

Fig, 1.10 The actual
Fig. 1.11 An example of

data structure used
simple adjacency structure

in the string repre-

sentation



The adjacency structure with variable sized domain is

the algorithm extended from the two-dimensional array. In this

algorithm, the domain size corresponding to the element
of the array is variable. This is shown in Fig. 1.12.
Table 1.1 shows the comparison of four space planning
representations.
In this paper, the space representation is
presented by "Formulated Pattern'" developed by Prof.
N. Okino, and the algorithm needed for graphic processing

of space allocation is discussed in chapter 7.
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1.3.5 C.A.D. in L.S.I. Design

Today the production method for Large Scale
Integrated circuits adopts the following design
process. Each unit cell, which is the basic element
structure of the circuit being integrated by transistors,
diode inter connections and so on, is allocated within
the circuit area allowed for wiring it, and then the
unit cells are wired mutually among themselves. As the
number of the cells and the needs of the circuit become
larger and more sophistcated, the determination of the
location and wiring of the cells become more difficult.
And the difficulty exceeds human ability. Therefore,
the design process must be automated. This problem is
the same as the one mentioned in section 1.3.3 in that
the performance measure must be suited for minimizing
the wiring area.

As the wiring depends on the predetermined place-
ment of the cells, wiring automation procedure is
developed first. The recent Works(19>(20>(21) treat
the placement problem-of the cells by developing build-
ing-block methods. Fig. 1.13 and Fig. 1.14 show the
examples of the results of the building block methods.

The way shown in Fig 1.13 is called a bottom-up method

and the way shown in Fig. 1.14 is called a top-down

method.
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On the other hand, the following problem occurs
in the manufacturing process of printed circuit
masks. The masks are divided into small rectangles
and developed by the machine called a pattern
generator which can. prcduce any size of rectangular
masks. The number of rectangles divided to produce

a mask becomes so large that it is necessary to

or develop-
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reduce the possibie number of r

ing the mask. Therefore the problem can be described
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minimize K (1.22)
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discussed and presented.



1.4 Conclusion

This chapter attempts to describe a common
recognition of the problems. For this purpose, the
generalization of the models of the problem and the
survey cof the problems are attempted.

It is known that the various types of the
problems occur depending on the situations and their
circumstances and that the suitable methods must be
developed for them. For the recognition of the
problems, we must approach from the two phases:
mathematical programming and graphic processing.

Though there are scarcely discussions arise on the
graphic processing except in the architecture field,
the effort for the graphic cprcessing in the space
allocation problem must be made. This is because
the problem is always restricted by the geometry of
the resource and the materials. This implies that
the procedure for the graphic processing must be
developed and established for the space allocation
problem. Such processing involves the method of
geometric space description, the data structure of
the space placement, the space recognition method, etc.

As to the mathematical programming, the most of the
methods surveyed, except for the Codd's rule, are based

on the iterative calculation process, each step gradually
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bringing the solution to the optimum. But the
improvement of the solution is very slow and a

number of memories and huge calculation time are
required for a computer. The methods being presented
are based on P. C. Gilmore and R. E. Gomory's work in
most cases. But they essentially treat the problem in
one-dimensicnal form, so their methods.become less
efficient than those that treat the problem in two-
and three-dimensional forms.

The most of the problem formulations for the space
allocation problem such as the Knapsack problem is
known as the N-P complete, which means there is not
an algorithm being found out by the polindmial
order calculation time for the program description
size n. Therefore, the heuristic methods are developed,
which give optimum or suboptimum solution by straight
or small calculation. In so developing, the problem
must be thought over with regard to its situation and
the necessity for the complete optimum solution.

From the viewpoint mentioned above, the followings
should be taken into consideration:

(a) Compare the situation of the problems already
studied with the one occuring.
(b) Check the necessity of 100 per-cent optimiza-

tion carefully.
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(¢) Analize the software and hardware facilities
available,
(d) Consider both treatment of mathematical
programming and graphic processing.
The subsequent chapters present new approaches
to the space allocation problem, considering the

above items,.
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2. A practical New Solution to Flow-Shop Scheduling

Problem-—~1%—Dimensional Space Allocation Problem---

2.1 Introduction

In an optimum packing situation, a problem in
one and a half dimensional space allocation arises.
A typical problem is simply to pack all the bricks
into the holes without any protruding. This is called
" Optimum Packing Problem ". The problem can
also arise if we consider '"processors' instead of
holes and "jobs" instead of bricks. This is clearly
the same as the packing problem and it is called
"Job Shop Scheduling Problem". Assuming a particular
packing situation where a satisfactory feasible
solution has been found, there may be a further re-
guirement to achieve the "best" arrangement. In the
job shop scheduling, two well-known "bests'" are:
(a) To minimize a maximum processing time among
the given processors ( minimal-length schedule)
(b) To minimize a mean flow type of the processors
(mean flow-time schedules)
One of the job scheduling problems is encounterd

in a flow shop type production line and a computer
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task system. If we treat the computer task system,

a program is processed by a number of distinct
machines during its passage through a computer system.
Since all programs pass through the input, execution,
and output phase, a task system can be viewed as a

set of chains of m tasks, where i-th task in the chain
must be executed on processor P;. Determining a
minimal-length schedule in such a situation is reffer-
ed to as the flow shop problem. Jobs are regarded as
tasks in this problem.

There are a number of studies on the flow shop
scheduling. The first method to the problem is
presented by S.M. Johnson(4) and his method is called
"Johnson's rule". This rule is based on an exact
analysis on n-chain, 2-processor flow shop scheduling
problem., E. Ignal and L. Scharge(5> apply a branch
and bound method to the flow shop scheduling problem
after almost ten years since Johnson's study. Then,
there are some studies, the purpose of which is to

improve an efficiency of the branch and bound method.
(6)(7)

However, the method based on the branch and bound
requires the computer memory in use to be so large, and
a lot of computing time is needed for solving the

problem. Therefore, it is not easy to solve a practi-
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cally large scale of the flow shop scheduling problem.

This chapter presents a method to find a solution
for an n-chain and m-machine flow shop scheduling
problem admitting no task passing. By using this
method, it is possible to get an approximate solution
for a problem of a practical scale. In relation to
2 and 3 processor problems, the method produces the
same results as Johnson's method does.

This method proceeds as follows. At first,
the binary relation of all the jobs is examined in
connection with the precedence relation. From the
results of the examination, the preference relation
can be derived. The latter relation makes it possible
to draw a directed graph. By using this directed
graph, it it possible to find out a utility function
for each job to be calculated. The values obtained
in this way are then compared, and the chains are
scheduled in the order of value. 1In addition, this
chapter deals with experiments in which this method
is applied to flow shop scheduling to obtain an
optimum solution. The results by numerical experi-

ments prove that the method gives a practical solution,
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2.2 A Formulation of the Problem

For the m-processor flow shop problem, let

the task system (7,3) consist of n chains Cys Co,

where each chain has m tasks Ai’ B,..., Zi’

. C
’ 1

n’
A 9B, 2 ... RZ;. < implies task A, must be execut-
ed on processor Py and once Ai finishes, task Bi must
be executed on processors P2 and so is this relation
till task Zi must be executed on processors Pm'

Fig. 2.1 shows an example. In Fig. 2.1 tasks Zl’
ZZ""’ Zn on processor Pm,..., and By, Bz,..., Bn

on processor P2 are executed in the same order as

Al, AZ"" A, are executed on Pl‘ This is shown in

Fig, 2.1 as a gantt chart.

1 2 4 an-t, n,
L B"i 11: 87 3Bn—7! Bn]
1 Y1 1 Y? J‘______ 1 Yn—l{LYn ]
1 Z] 1 il 27 I ____E_L]_U]g;zn,

Fig. 2.1 A gantt chart of flow shop scheduling.
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Let us define some notations before formulating
the flow shop scheduling problem as follows:

A set of kX chains to be scheduled.

Tk

q(qk, 3) A schedule length, which is obtained
by k chains scheduling, on processor j.

tkj A processing time on processor jJ

in the k-th chain.

Then the minimal length flow shop scheduling
problem is formulated to find out a sequence of

chains as

min. F = q(Gh, m), (2.1)
subj. to a@y, 1) = a0y _q> 1) + tyqs (2.2)
(03, §) = max (a(@%, J-%), a@%_1, 3))
+ tkj
32 8. (2.3)
k=1, 2, , I,
where q(Gb, j) = 0, jg=1, 2,..., m,

a(0,, J) in Eq. 2.3 implies a finished processing
time on processor j. This formulation is derived

from Fig. 2.1 easily.
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2.3 A Utility Function under a Weak Order

Relation in the Flow Shop Scheduling

A utility function for chains is established to

the flow shop scheduling. In the discussion, a

weak order is assumed for a set of chains in the re-
lation of preceedingly processing between any two
chains, and the weak order is mapped to a directed
graph. The utility function of chains is derived

from a measurement of nodes in the graph.

2.3.1 Preference as a Weak Order

A binary relation R on a set X is a set of
ordered pairs (x, y) with x € X and y € X, where
X =1{1, 2,..., n}. We write xRy to mean (x, y) & R.
The binary relation will be assumed to have certain

(6)

properties.
pl. reflexive if xRx for every x & X,
p2. idrreflexive if not xRx for every x & X,
p3. symmetric if xRy = yRx, for every x, y & X,
p4. asymmetric if xRy @ not yRx, for every
X, v € X,
p5. antisymmetric if (xRy, yRx) ¥ x = y for

every X, y &€ X,
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p6. transitive if (xRy, yRz) = xRz, for every
X, vy, 2 &X,

p7. negative transitive if (not xRy, not yRz)

not xRz, for every x, y, z & X,

p8. connected or complete if xRy or yRx for
every X, v & X,

p9. weakly connected if X+ y & (XRy or yRx)
throughout X.

A binary relation that has or is assumed to
have certain properties is given s spacial name.
One is a weak order. The weak order is defined
as fonllows:

Definition: A binary relation R on a set X

is a weak order if R on X is asymmetric and
negatively transitive.

Now, taking preference < as basis (read x3y
as X is less preferred than y, or y is preferred

to x), we shall define indifference =~

15N

X ~y (not x 4y, not y< x). (2.4)
When preference relation |4 on X is a weak order, the
following theorem is well known.

Theorem 2.1 [P.C. Fishburn] Suppose-< on

X is a weak order, being asymmetric and negative

transitive, Then
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a. exactly one of X 4y, vy 3 x, x ~ y holds
for each x, y € X;
b. < is transitive;
c. ™~ is an equivalence (reflexive, symmetric,
transitive);
d. (x2 vy, vy ~2)&x< 2z, and (x ~y, vy 2)
= S

e. R is transitive and connected.

2.3.2 An Order-Preserving Utility Function

It is known that a utility function exists
based on the next theorem as well.
Theorem 2.2 [P.C. Fishburn] If < on X
is a weak order and x/~ is countable, then there
is a real-valued function u on X such that
x 3y ©u(x) <u(y), for all x, y € X. (2.5)
x/~ in the theorem means the set of equivalence
classes of x under ~.
The utility function u in 2.5 is said to
be order-preserving since the numbers u(x), u(y),...
as ordered by < faithfully reflect the order of x, vy,
under-< . Clearly, if (2.5) holds, then

X3 y& v(x) < v(y), for all x, y € X,
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for a real function v on X if and only if [v(x)
< v(y)® u(x) < u(y)] holds throughout X.

Under the conditions of Theorem 2.2, 2.5
implies that, for all x, y € X, x ~ y& u(x)

= u(y), and x 2 y & u(x) < u(y).

2.3.3 Precedence Relation on the Flow Shop

Scheduling

In order to apply the results of preference
relation to the flow shop problem, we adopt a
precedence relation as a preference relation. The
precedence relation is defined as follows:

If a2 chain x must be processed before a chain
y, we call that the relation between x and y is
precedence, where x, y € C and C is a set of chains.

When the chain x and y is precedence relation
and x is preceedingly processed before y, we denote
it as.y 3 x, for x, y € C. 1If the precedence
relation is a weak order, threre exists a utility
function u which is order-preserving by reflecting
the order of chains from 2.5. Therefore, establish-

ing the utility function for the chains in the flow
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shop scheduling, we may make a schedule as the
order of chains by rearranging the value of utility
functions corresponding to chains from the largest

one to the smallest one

2.3.4 A Directed Graph and Tournament

Let us define V as a set of vertices and
A as a set of ordered pairs of elements of V.

A is called the set of arcs. Then, a pair (V, A)
is called a directed graph or digraph D. The
directed graph is called a tournament when for all
x #y in V, (x,y) 1s in A, or (x,y) 1is in A but
not both.

Regarding a set of chains X as the set of
vertices V and a precedence relation among all the
chains as the set of A, the directed graph D is
made up from the preference relation of chains in
the flow shop scheduling.

The next theorem is known about the tournament.

Theorem 2.3 [Reclei] Every tournament (V, A)
has a complete simple path (a hamiltonian path).

This complete simple path corresponds to a

schedule which satisfies the preference relation.
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In this way solving the flow shop scheduling
problem is transformed into finding the complete
simple path on the tournament.

If the precedence relation is a weak order,
being asymmetric and negative transitive, a complete
path obtained from the tournament has the property
shown in Theorem 2.4.

Theorem 2.4 The tournament (V, A) is acyclic
when and only when the precedence relation is the

weak order.
We prove this theorem according to J.G. Kemmeny
and J.L. Sne11€2)
Proof. Suppose that the tournament has a cycle,
(a, b), (b, ¢),..., (j, k), (k, a). Since the
precedence relation is the weak order, a path
must be transitive [Theorem 2.1].
By applying this property interatively to the
cyclic path (a, b), (b, ¢),..., (j, k), (k, a),
a preceeds a. As the tournament is irreflexive,
it contradicts irreflexive condition. Thus,
the tournament derived from the precedence rela-
tion of the chains has no cycle. On the other
hand, suppose that the tournament has no cycle,
then a does not preceed a. Because the tourna-

ment has cycle if a preceeds a. If b < a and
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a & b, a path exists from a to a. It means cycle,
If b 2aand cR a. a path b to a and a path ¢ to a
do not intersect. Because the tournament has

cycle if they intersect. Therefore the tourna-
ment has no cycle, if the precedence relation is

the weak order. Q.E.D.

The utility function is established based on the
complete simple path of the tournament and the

above theorem is used in the following section.

2.3.5 A Utility Function in the Tournament

We can now introduce the four conditions which
a utility function will be asked to satisfy. Let
u(x) be the utility function of the chain x. The
conditions for u are as follows:

Condition 1. wu(x) is always an integer number.
Condition 2. If the chain x has no succeeding
chains, u(x) = 0.

Condition 3. If x 3y, then u(x) < u(y).

Condition 4. If, without otherwise changing
chain order, we add a new chains
to the partial path which succeeds
to the chain x, then the value

u(x) increases,
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By the above conditions, the value of the
utility function u(x) is decreasing in the order of
chains on the optimum schedule, and zero at the
last chains, and positive number,.

Now, we establish the utility function which
satisfies the above conditions.

Theorem 2.5 Let u(x) be a number of chains
succeeding to chain x. u(x) is the utility function
which satisfies Conditions 1 to 4.

Proof. Let us define an indirect precedence as
that the chain x is preceedingly processed before
the chain i, and an direct precedence as that

the chain x is processed just one before the

chain i. And we denote them as ¢ and Y respective-
ly.

Suppose that the chain x cannot be processed
before the chain i (i # x). By applying theorem
2.4, we obtain the followings.

1° i # x because x $+i is not allowed.
2° If x % k, for all the chains k, then
i ¥ k because x & k & i is not allowed.

From 1° and 2°, the number of chains succeed-

ing to the chain i is larger than the number of

chains succeeding to x. Namely u(i) = u(x).
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Now, let us examine the number of chains
succeeding to each of all the chains {1, 2,

., X}, and set them to u(l), u(2),..., u(n)
respectively. Then suppose u(x) is the largest
number among u(l), u(2),..., u(n). Then, it is
proved that the chain x is the first one to
be processed. The proof is as follows. If
there is the chain i which may not succeed to
the chain x, u(i) > u(x) because of 1° and 2°.
This contradicts u(x) is the maximum number.
Therefore, the chain x must be processed first,

Next, we remove the chain x and repeat
the same procedure. In this way, we obtain the
decreasing series of value u(x). The chain
processed at last has no succeeding chains, If
we set this chain to the chain z, u(z) = 0.

If we add a certain chain to a partial
path succeeding to the chain x, the number of
chains succeeding to the chain.x increases by
one. Thus, u(x) increases.

Therefore, the utility function u(x)
satisfies conditions 1 - 4. Q.E.D.

The utility function established in this way
is a measure of vertices in the directed graph.

And it is expressed by
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U(X) = 2 k.o
k

B (2.6)

where k = 1 and nk is the number of vertices

succeeding to x in a level k. Eqg. 2.6 is suggested

by F. Harary.

2.4 Algorithm

If a precedence relation in the flow shop
scheduling is a weak order, a utility function is
figured out in the following four steps and an
optimum schedule is obtained.

o

1> Let q(Ué(i, j), m) be a processing time when
the chain i is preceedingly processed before

the chain j for any of i, j & C. Then, set

tij as
tyy = ay(i, 3), m, i, 3=1,2,...,n
(2.7)
tij = O’ i = j: i: j = 1: 2,-": n (2‘8)

where matrix T = {tij} is called a cost matrix.

2°  Make up a precedence relation matrix W = {w;,}
by
if tlJ > tji’ then w = (0 and Wji = 1
i, J = 1; 2: » 1 i ¢'j’
if tlg = tJi’ then le = WJl =1,
i, j =1, 2, , n 1% 3,
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ij ji, then w,. = 1 and Wji = 0,
i, =1, 2, , 0 1#F3,
n
3° Q. = 2 Wi s, i = i, 2,..., n.
i =1 ij
4° Set u(j) = a., then arrange u(i) from

l!

the largest number of u(i) to the smallest

one. After arrangement, the order of chains

corresponding to the order of u(i) becomes

an optimum schedule.

In the algorithm, the precedence relation is
determined by comparing a processing time of the

chain paired order (i, j) with one of the chain

paired order (j, i). It is discussed in the next
section under what conditions the precedence relation
in the flow shop scheduling is successful. But

even if the precedence relation is broken up, the
algorithm becomes still available by improving the
steps 3 and 4 to the followings.

31°  Calculate .

i and Bi as

4'° Set u'(i) = oy + 8;. Then, execute the

procedure as described in 4°.
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In step 3'°, B, means the number of chains
which indirectly succeed to the chain i. Therefore,
the utility function u'(i) in the step 4'° presents
the measure of vertices as arcs. Furthermore, since
u'(x) is the function by a simply increased trans-
formation of u(x), u'(x) is the utility function
as well that can determine the schedule.

The memory size in a computer for the proposed
algorithm is requested to be n(n+m) words which is
summed by an array nem words for the input data and
an array nesn words for the cost matrix. The cost
matrix may be used as the precedence relation matrix.
So, even if the number of chains n is 100 and the
number of processors m is 10, the memory size
requested becomes about 100(100+10) words. It is
almost 11K words., This size is much less than the
size requested by a branch and bound method and

is small enough to make use of for a mini-computer.

- 60 -



2.5 Validity of Algorithm for Flow Shop Scheduling

Let us discuss a validity of an algorithm
proposed in 2.4 for a flow shop scheduling. It is
executed by examining whether a weak order assump-
tion for a precedence relation is broken up. As to
an irreflexivity, it is obvious that an irreflexive
condition is satisfied. Therefore, we only look
up transitivity.

When the number of processors is two, S.M.
Johnson points out that the transitive condition
is satisfied in the flow shop scheduling problem.
FPurthermore he establishes his rule based on the
transitivity. As seen in Johnson's rule, the
transitivity exactly stood so that the proposed
algorithm gives an optimum scheduling when the
number of the processors is two.

When the number of processors is three,
the transitive condition is not satisfied. Such
an example is shown in Table 2.1. S.M. Johnson
applies his rule to the problem only when the tran-
sitivity is satisfied. 1If not satisfied, his rule

gives an approximate solution. So does the proposed

algorithm.
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When the number of processors is m, there
are few rules to determine the optimum schedule by
a dispatching rule such as Johnson's. The proposed
algorithm reaches the exact optimum schedule only
when the transitivity is satisfied. In general,
it gives near optimum solution. It is considered
that the proposed algorithm is the extension of

Johnson's rule to m processors.

2.6 Numerical Experiments

In order to show a validity of the proposed
method, numerical experiments are executed by a
mini-computer OKITAC 4500-C (40K words).

A program is coded with FORTRAN. Task processing
time to be used in the experiments are generated
by uniform random integer numbers with one digit.
Experiment 1) The proposed method is applied
to the 10-chain 3-processor flow shop scheduling
problem with minimal length, which is represented
by E. Ignal and L. Scharge as the most time con-
suming sample for a .branch and bound method.
The input is shown in Table 2.2. The optimum

schedule length is 66 and the sequence of chains
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is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

The proposed method gives an approximate solution
whose schedule length is 67 and sequence of chains
is (1, 2, 3, 5, 7, 6, 8, 9, 10). It takes 1.15
seconds to get the solution. Though Ignal's
branch and bound method is also coded and applied
to this problem, it is too many branching to solve

the problem by the computer equipped.

Table 2.1 An example of cahins which

does not satisfy the transitive condition

Chain No.
Processor 1 2 3
P1 3 25 45
P2 22 42 56
P3 2 22 40

Table 2.2 E. Ignal and L. Scharge's example

Chain No. 1 2 3 4 5 6 7 8 910
Processor

P 1 5 7 8 3 7 9 8 6 3

Py > 9 6 9 210 7 9 1 1

Pa 9 7 8 9 3 4 7 4 3 1
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Experiment 2) The proposed method is tested
for 4- and 5-chain and 3- and 4-processor problems
with minimum length and their results are compared
with the optimum solution obtained by a complete
enumeration method. The comparison is shown in
Table 2.3. In Table 2.3, the worst solution
means the smallest value of an approximate solution
ratio among the test sample ones. The approximate
solution ratio (A.S.R.) is defined here as

the number of schedules whose length are shorter
A.8.R. = all the number of possible schedules

than the schedule length of the proposed method

Experiment 3) On 4-chain, 5-chain and 10-
to 50-processor flow shop problems, the same experi-
ments as the experiment 2 are made. This test is
intended to understand effects of many processors.
The results are shown in Table 2.4.

Experiment 4) On 10-chain and 3-, 4- and 5-
processor, 20-chain and 3-, 4- and S5-processor, and
30-chain and 3-, 4- and 5-processor of the flow shop
scheduling problems, comparisons between the solution
scheduled by the proposed method and one not scheduled
are printed out on the line printer paper as diagrams.
The reason why A.S.R. is not used is that the enume-

ration method is unavailable for many chains. The

results are shown in Figs. 2.4 - 2.12.
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Table 2.3 Results in experiment 2.

Problem |The Num. of The num. of Worst A.S.R.
tested examples | optimum solu- solution (%)
tions obtained | (%)
4-chain
3-proc. 50 47 72.9 98.2
5-chain
3-proc. 31 20 61,7 94.2
4-chain
4-proc. 37 28 87.5 98.0
5-chain
4-proc. 34 15 51.6 94.0
Table 2.4 Results in experiment 3.
Problem The num. of The num. of Worst A.S.R.
tested examples | optimum solu- solution (%)
tions obtained (%)
4-chain
10-proc. 10 7 66.7 90.9
20-proc. 10 3 33.3 78.4
30-proc. 10 2 45.8 76.8
40-proc. 10 2 54.2 89.3
50-proc. 10 3 47.7 83.1
5-chain
10-proc. 10 8 56.6 96.5
20-proc. 10 3 48.5 85.6
30-proc. 10 1 76.7 93.7
40-proc. 10 1 35.4 89.6
50-proc. 10 2 68.3 89.2
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Through the numerical experiments, the follow-
ings are to be concluded.

In the experiment 1, the proposed method
provides a good enough approximate solution. In the
experiments 2 and 3, the solution is compared with
all the possible schedule made up by the enumeration
method. The results shows A.S.R. is around 90%
and this is practical enough for the approximate
solution. In the experiment 4, the exact solution
is impossible to be reached by a mini-computer.
Therefore, the schedule not to be scheduled is
compared with the schedule to be scheduled by the
proposed method. By these comparisons, the sche-

duled solution makes an effect for flow shop schedul-

ing.
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2.7 Conclusion

Through the discussion and the numerical ex-
periments, we can reach the following conclusion.

(1) A new method of a flow shop scheduling prob-
lem as a one and a half dimensional space
allocation problem is presented.

(2) The proposed method is based on the weak
order of the precedence relation in the flow
shop scheduling. When 2- and 3-processor
are used, the results obtained by the pro-
posed method becomes the same as the one
obtained by Johnson's rule. The proposed
method shows that Johnson's rule is extended
to the case of m-processors.

(3) On the n-chain and m-processor problems,
the numerical experiments are executed. The
experiments prove that the proposed method
gives a practical enough solution.

(4) The memory size required for the proposed
method is around n(n+m) words and this size

is small enough for a mini-computer.
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3. P.B.M Approach to the Space Allocation Problem

-~—-~The Optimum Trimming of Many Rectangular Plates---—-

3.1 Introduction

This chapter deals with a problem that a number
of rectangular plates---materials---are allocated to
make a compact rectangular sheet---a resource---as
small as it can be. As briefly seen in chapter 1,
most of the developed methods apply only to specific
cases. For instance, the two-dimensional problem is
constrained in such a way to reduce it to a one-
dimensional problem and therefore it can hardly be
applied to the general two-dimensional problem.

In order to solve the general two-dimensional
problem, a new method named P.B.M---Pair to Block
Method-~-is proposed. This method is especially
designed for scolving a large number of materials with
different sizes.

The basic strategy of P.B.M may be summed up
as follows.

In the first place, all the rectangles are
paired to produce a half of new rectangles so that
the sum of wastes area included in the new rectangles

will become minimum. Each of the new rectangles
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are named "Block'". If the number of blocks is one,
the allocation is finished. Otherwise, the blocks
are regarded as rectangles, and they are paired
again. This process is repeated until a large

block is formed from the whole of the given initial

data.

Each time a new pair is formed, the well known
"assignment problem'" is introduced, that is, an
assignment matrix must be bound to determine a pair.

This P.B.M is applied to a number of numerical

experiments and the validity of the method is proved.

3.2 A Formula of the Problem

First, let us define some symbols and terminology,
then describe the problem. The symbols are a little
different from those in chapter 1 because the first
letter of a key word representing the problem is used.
The symbols are defined as follows.

Ri Given i-th rectangle having width aj and
length bi' This corresponds to the material
in the general model.

The k-th rectangular blank in all the possible

allocating ways of the given rectangles,
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in some cases predetermined and

restricted, with a width Wk and a length
Ly,

A(Bk) The area of blank Bp.

Wk The waste area summed up by all of waste

areas included in blank Bk'

S : The total area of the given n rectangles,
namely,
n
S =i§1 a; by (3.1)
Si The area of the given i-th rectangles,
namely,
Si= 2, bi (3.2)
Si,j :  The éum area of the given i-th and
j-th rectangles.
Wi,j The waste area included in a rectangle

to be produced by joining the i-th
and j-th rectangles.

The terminology is as follows.

Waste Scrap or trimloss
Pair Combination of two rectangles
Block Combination of two pairs

And the problem is. described as follows.

The problem Minimize the area of blank in

order to include all given rectangles without their
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overlapping.

Then, the problem is formulated as follows.

The formula:

min W, = min A(B,) - 8, (3.3)
B, k
x
. n
subject to ‘C\ Ri(xi):z ¢ (3.4)
i=i
n
and ;jl Ri(xi)CL By (x), (3.5)

Where Ri (xi) is the region of rectangle with

its left under coordinate X4 and Bk (x) is the

region of the blank.

Namely, the problem is to determine an allocation
of all Ri under the Egs. 3.3, 3.4 and 3.5.

Fundamental to P.B.M is the determination of the
algorithm to be used. Several factors influence this
decision. First, the area of blank Bk is unconstrained
in some cases and constrained in other cases. Second,
the physical condition that occurs in trimming process
is taken into consideration. For this purpose, the

giullotine cutting technique is used.
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3.3 Fundamental Approach to Problem

With respect to the two-dimensional problem
mentioned above, it seems possible to obtain a
certain guaranteed solution by adopting an exhaust
enumeration search method. However, if we use this
simple technique for the problems on a large scale,
the solution time will be unrealistacally long.

In making a block B.. with any two given rectangles

1J

Ri and Rj’ and joining another omne to Bij’ and so
on, the combinatorial number becomes (n - 1) ! 4n—1.

Then, it is very difficult to seek a solution for
large n.

There are two other approaches to such problems.
Before describing two approaches, let us define the

given problem PO (n), where n is the number of

rectangles. The one is to devide the problem PO (n)

= P1 (nl)LJ P2 (nZ)LJ “e LJPk (nk), (3.6)
k

where n, < n and X n; = n. The solution will be
i=1

searched consquently through the subproblem or be
combinated by the solution of the subproblem. This
type of algorithm is the Branch and Bound Method or
the Dynamic Programming. But in this two-dimensional
problem, the number of combination of the subproblem

solution grows larger, too.
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The one is to transform the problem to which the
solution is known. By transforming the given problem
to the known problem such as

P« T (P) (3.7)

Such transformation is seen in S.U.M T technique
and simplex technique. If the transformation is
iteratively executed and the dimensions of the

varibles are gradually decreased, it may be described

as
Py (njeq) =Ty (P (ny) )
where Ti implies transformation and N, 4y, Dy are
the number of variables to be solved. In this
transformation, if Wy becomes small enough to solve
the problem transformed, the solution is searched.
As the problem is consqguently transformed as
PO (no) -+ Pl (nl) -+ P2~(n2) T Pk (nk), (3.8)
where D> 0y > ... > nk,
the upper limit of the computing time may be K times
longer than the computing time required to solve the
problem PO (no).
The basic idea of P.B.M. is based on this concept.
In order to transform the primitive problem into
the problem reducing the number of variables solved,
a formulation of the assignment problem is employed in

P.B.M. By solving the assignment problem, the number
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of the variables of the reduced problem will become
half. The formulation of the assignment problem

is iteratively repeated till the problem satisfy
the terminating conditions. The detail of the
algorithm of P.B.M. is illustrated in the next

section.

3.4 The Algorithm of P.B.M.

The procedure of reducing the size of the problem
is acomplished by formulating the problem as an
assignment problem. Solving the assignment problem
n means the given number of rectangles, which will produce a
blank, and generate a half of n rectangles. When
pairing, each two rectangles become a new rectangle
with a waste shown in Fig. 3.1. The pairing is done
in such a way that the sum of the waste areas included
in a half of n new rectangles are minimized. 1In so
doing, the problem is formulated as the assignment
problem. Each new rectangle is named a block. Then,
the blocks are regarded as the rectangles. 1In this way,
the size of the problem is reduced from n rectangles
allocation problem to a half of n rectangles. If the

number of the block is one, reducing procedure is.
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finished.

j/.//////é

f Waste
R YOI I IIIA

Fig. 3.1 A waste

3.4.1 The Basic Procedure

The basic procedure of the algorithm comprises

the following four steps. (Fig. 3.2)

N

Block

\ L/ Pair

Block

Fig. 3.2 Pair to block step
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BY applying the theory of the assignment
problem, determine a set of pairs (n/2
blocks) from the given n rectangles so as

to minimize the waste.

Replace n with n/2 n/2 + n.

Consider a block as a new rectangle.

End the process if only one block is obtain-

ed, otherwise go back to step 1.

Waste Matrix

In order to establish the assignment problem,

a cost matrix is needed. Here as the cost matrix's

elememt, the area of the waste generated when pairs

are made into blocks is used, therefore this matrix

is called a waste matrix.

The waste matrix is constituted in the follow-

ing manner as shown in Fig. 3.3.

Fig.

3.

—t

3 VWaste matrix
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In considering the method of joining any two
rectangles Ri and Rj’ there are always four possible

ways. In each of them, the area of block Bij will

be
Ay = [ max (ai, aj)] ) [bi + bj]
Ay = [max (ay, bj)] . [by + aj]
Ag = [max (bj, bj)] [a; + aj] (3.9)
Ay = Imax (b, aj)] [a; * bj]
and total area Sij of both Ri and Rj is
Sij = aj by + 25 bj (3.10)
Where aj; and bj are two sides of a rectangle Ri'
As an element of the waste matrix, let us set it to
Wij = min (A, Ay, Ag, 4,) - Sy (3.11)
for all i, j =1, 2, 3,..., n, i # j.

Furthermore, in order to determine the pair Ri

and R., the aspects shown in Eq. 3.11 must also be

pes

considered. That is, which sides of Ri and Rj adjoin

in making out a block. The matrix tij denotes the

aspects for the pair Ri and Rj in the form of code.

In table 1, these aspects are given in the code tij
and each of the codes 1 through 4 corresopnds to the

S1 through 84 in the Eqg. 3.9,

Because of the symmetric properties Wij = Wji

and ti. = the waste matrix can be divided into

i~ tai

two parts by a diagonal line, leaving the obtained
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waste in the upper triangular matrix and substituting
the obtained code in the lower one. This operation

saves the memory size to a half.

. . R. R,
t1J 1 J
1 ]i ]j
Table 5.1 Joining code 2 ]i 1.
J
table ]
3 W ] wJ
4 W wj
1, Length of rectangle i
i
Wy Width of rectangle i
1. Length of rectangle J
J
W, Width of rectangle j
J

Ry Rj///////

J R,

J

Fig. 3.4 Four way joining corresponding to the code
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3.4.3 TFormulation as the Assignment Problem

In order to reduce the problem size and solve
the two-dimensional problem, the problem is trans-
formed to an assignment problem. The assignment
problem can be formed as follows.

Determine X = {Xij} which satisfies the problem

3.12 and the Egs. 3.13-15.

n n
Minimize F=2x2 Z w X . (3.12)
i=1 j=1 9 +J
subject to xij = Xij xij i, =1, 2,..., n,
(3.13)
n
A j=1,2,..., n, (3.14)
i=1
n
and Z o x.. =1, i=1, 2,..., n, (3.15)
j=1

where X is called the assignment matrix and Wij is

an element of the waste matrix. The matrix X has the

following properties.
(a) X5 5 ={ 1 R; is assigned to Ry
0 Otherwise
(b) From the Egs. 3.13-14, each column and row
of the matrix X has the elements 2all of which
except one are zero, the exception is one.

The number of matrices which satisfy the Egs.

3.12-15 is n !. If the number of n becomes large,
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the trial number to find out X which satisfies the
problem 3.11 becomes very large. For instance, when
n = 10 is given, n ! becomes almost 3.6 X 106.
Therefore, it becomes hard to determine the matrix X
even if the problem is transformed to the assignment
problem. Then, the basic idea of Flood's Hungarian

Method is adopted to remedy this obstacle.
3.4.4 Solving Method for the Assignment Problem

The Hungarian Method is based on the following
two theorems.

Theorem 1 If it is possible to devide a set of
elements of a given matrix into two kinds by some
property Q, the minimum number of lines which involve
all the elements having property Q, where the Iline
is a column or a row containing (an) elementks) with
property Q is equal to the maximum number of lines
which have property Q if each line has only one element

with property Q.

(a)
i3

if it is possible to create any other matrix D = [diJ],

Theorem 2 For a given cost matrix W,= [w

both solutions for W and D are the same, where

_ (o)
dij = Wi5 — Uy Yy (3.16)

and u; , Vj are arbitarary constants, respectively.
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Theorem 1 is known as the Kénig's one and theorem

2 is applied to its dual problem. In solving the

assignment problem, the follwoing equations are derived

from theorems 1 and 2,

(0) N -

Wi 2 Uyt vy %54 0 (3.17)

wi(J?)-_—_ u; + Vj Xij > 0, (3.18)
where Wij = Wij.

And the following Eg. 3.19 is obtained by

ubstituting the Egq. 3.16.into the Eg. 3.12,

n

nn
F 2 ? ? (g + vy) Xy
n n
=il$31 (uy JE Xij) +j5j‘1(vj z Xij) (3.19)

Then the Egs. 3.14 and 15 are substituted into the

Eq. 3.19,

n 1
F2Y u, +2 v, (3.20)
= J=1 J

is obtained. Here E denotes the right-hand side of the
Eg. 3.20, the primary assignment problem is rewritten

as the dual problem such as

n n
maximize E=2 u; + z vy (3.21)
i=1 j=1
. (e
. . 2
subject to uy + vd < le (3.22)
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The Hungarian Method uses these results. In
other words, the Hungarian Method is to determine
the reduced matrix, which involves the minimum
number of lines, for the aim of theorem 1. The
reduced matrix must satisfy the Eg. 3.22. How to
determine the reduced matrix is explained in the
following eight steps.

Step 1 Determine the minimum value vj in

each column of cost matrix, and subtract

v. from each element of column j.

J

Step 2 Decide the line involving the property
such as W3 j = 0,

Step 3 Stop if the number of lines is n, other-

wise go to step 4.
Step 4 Determine the minimum value uy in
each row of the cost matrix and subtract

u. from each element of row i.

i
Step 5 Decide the line again.
Step 6 Stop if the number of lines is n,

otherwise go to step 7.

Step 7 Let us define a set of lines as SL
(k+2)

and the current reduced matrix as Wij
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Then set

(k+2)
i + h(k+2)’ i, j &€ SL,
(k+3) (k+2)
W 5 _ wij , 1 €SL or j €& SL, (3.23)
(k+2)
Wy s - hgioy, 1, j ¢ sL,
where k =1, 2,..., K (K is the trial number to

make the reduced matrix until the optimum solution
is obtained and note that h(k+2) shows the minimum
number of the elements which do not belong to the line

SL. And wgl) W(z), h(l) and h(2) are given by

ij » "ij
step 1 and step 4, namely,
(1) _ (0) _ ¢ -
iyt TVt T Ry BT, (3.24)
(2) = (0) -~ h =
wij Wij (2), h(2) u; . (3.25)

Step 8

Determine the line and go back to step 6.

- 87~



3.4.5 Determining Lines

As to computing time, the procedure used to
determine the lines becomes important. A clue to
the fast computing is to determine the exact
minimum number of lines, which are drawn on the rows
and columns including all the zero elements of the
reduced assignment matrix. But this procedure is
not known. Therefore the efficient procedure is
presented to determine the lines. The procedure

is described as follows:

Let us consider that there are n, Zero elements
in the t-th reduced assignment matrix. nJC is no
less than n. On the other hands, the maximum
number of lines containing n, zero element drawn on
the matrix is no more than n. In order to find out
the minimum number of lines, two conditions are
desired:

1. The line contains as many zero elements as
possible.

2. The zero elements of the line drawn on some
column (row) is not contained in the lines
drawn on the row (column) lines.

In other words, the line is the column (row),

when it includes as many zero elements as possible
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which are not to be included in the lines drawn on
the row (column). This means that the column (row)
is the line when it saves the maximum number of the
lines drawn on the rows (columns). The number of the
lines saved in the rows (columns) by adopting a
certain column (row) as the line becomes

(the number of zero elements of the column) .

- (the number of rows which have zero elements

other than the zero element crossing in the

column). (3.26)

From the point of view mentioned above, a new
procedure is established.

For the column (row) of the matrix, let us

set symbols p. and )
ym Py (qj) pdi (qdj)
<5 (qj) Number of zero elements in the i-th

column (j-th row).

pd. (qd‘) Number of lines which are needed
lif f%e column i (row j) is adopted as the line,
where the line is the column (row) containing
zero elements,

And let us define o and B as the efficiencies for

the columns 1 and j,

o =max ( p. - P, )/ = P (3.27)
i t di i di

B=max (g, -q,)/ X a 3.28
j S R (3.28)
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The true line is determined in turn of the larger
number of a and B until all the zero elements are
included in the lines.

If the number of lines is not equal to n, a
reducing procedure is excuted and one more line is

increased at least.

3.5 Given Blank Having Restricted Width

In the former section, the discussion on how the
given rectangular plates are allocated on the half
infinite space, and the algorithm of P B.M. is develop-
ed.

When the given blank has any restricted width, the
same algorithm can be applied to this case, too.

The problem in this case is described as follows.

Determine the allocation that satisfies the Egs.

3.29-3.32.
Minimize Wk = min A(Bk) - S (3.29)
k
n
subject to R.(x:) = ¢ (3.30)
. ivei
i=1
n
101 Ri(xi)CBk(X)’ (3.31)
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a (B (x)) = ag, (3.32)
where a (Bk(x)) is the width of the blank Bk and a
is the given restricted width.

To satisfy the Eq. 3.32, the width of the block
paired by two rectangles is always no more than ag-
This is easily realized by adding the following
conditions to the Eq. 3.9; namely:

if b: + b. > a thenbi-i-bj—'.;co’

i J o’
if b, + a. > a_, then b, + a. = =,
i 3 o) i j
i .+ . > .+ . =
if 2y aJ a,, then 2y aJ oo,
if aj + bj > ag, then a; + bj = oo,
3.6 Approach with the Iterative Enumerative Method

The P.B.M. seems to be effective in dealing with
a large number of rectangles, but sometimes it seems
to be ineffective in dealing with a small number.
In view of this situation, a kind of enumeration
method is prepared, and it is named "Jjterative
Enumeration Method (abbreviated as I.E.M. ).

To concrete this procedure, the following

notation is used.
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R Given i-th rectangular plate.
B The t-th block which is made of the
(t - 1)-th block and a rectangular

plate selected in the t-th step.

Wt The area of the waste included in block
Bt'

S(Bt) The areas of block Bt'

S(Ri) The area of rectangular plate Ri'

E A set of suffix with which rectangular

plates have not yet been adopted for
allocation till t-th step.

R.) The area of the block produced by

C<Bt’ i

pairing block Bt and rectangular plate
Rin
The allocation procedure is presented to find

out the solution that

determine min, W, , (3.33)
- kn
k=1
subject to Wt = Wt—l +
ieEt
+ S(Ry)}, (3.34)
where Wkn = Wn when BO = Rk'

Egs. 3.33 and 3.34 imply a sequential jointing

method of Dynamic Programming type.
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This I.E.M. is added to P.B.M. when the number
of blocks is less than eight. It cannot be said
the solution gained by adding I.E.M. to P.B.M. is
better than the one only worked by P.B.M., because

this choice is relative to the given data.

3.7 The Numerical Experiments

In order to prove the validity of the present-
ed method, the numerical experiments were made on
the computer, FACOM 230/60 system of the computing
center of Hokkaido University, and the programs
were coded with FORTRAN.

One of the criteria to judge-the allocation is
the waste ratio. Let us be said waste ratio,

T = 100 (A(By) - 8) / A(By) (D), (3.35)
where the suffix k implies k-th element of all the
possible allocations.

Even if this criteria can be used here and in
other case with the same data, it is invalid if the
data is different. The data used in the experiments
except for the first experiment is taken from the
center routine's RANDOM NUMBER. As shown in the

above figures which are the results of computation,
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N is the number of rectangular plates to be input,
and MP is the number of remaining blocks in the
following of I.E.M. to P.B.M. However, if MP = 1
is found in some figures, it means that only P.B.M.
is used. JP implies the kind of random number use-
ed. For instance, JP = 1 is the normal distribution
and JP = 2 is the uniform random numbers.

Experiment 1 The given data is taken from

Fig. 3.5 and the result is shown in Fig. 3.6.

¢}

Note that, if guillotine cutting is used, it is
impossible to allocate in the same manner as Fig.
3.5. So, when the data taken from the allocation
shown in in Fig. 3.5 is given, the P.B.M. finds a
new result shown in Fig. 3.6(a). The numerical numbers
for the data are listed in Table 3.2. I.E.M. works
and improves this solution when the number of the
blocks becomes five. The result is shown in Fig.
3.6(b).

Experiment 2 Twenty kinds of rectangles are
produced by the uniform random numbers. These are
listed in Table 3.3. The result by the use of P.B.M.
is shown in Fig. 3.7. The waste ratio of this is 17.7%
and the computing time is 8.0 seconds. TI.E.M. follows
up this solution when the number of blocks is five.
The result is shown in Fig. 3.8. The solution is

improved more than by one of P.B.M.
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128 1

r
Table 3.2 Input data made
7 Yl by Fig. 3.5
8 . Material Length Width
No.
. 1 58. 5.
. 2 10. 10.
10 3 48, 73.
3 4 18. 53.
5 42 . 38.
5 6 5. 18.
il 7 81. 83.
' 1 8 g91. 23.
9 9. 33.
10 71. 14,
Fig. 3.5 An example of
hand-made data
— o ,7 p -
— 1] ‘
/ 2
/ 5
E 7
3 10
i /2 6 WL
- CHART HO. DRX—400272
Fig. 3.6 (a) P.B.M. result
!
a1 7 / z 7 A
* 7
@ %77/
®
) ® @
® ® &
o - ®%
] 1 200 217
Fig. 3.6 (b) Followed by I.E.M.
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Experiment 3 Twenty kinds of rectangles are
produced by the normal random numbers listed in
Table 3.4. P.B.M. gives the result as shown in
Fig. 3.8., with the waste ratio 10.9% and the
computing time 5.3 seconds., When I.E.M. works,
the solution is not improved. This result with
the waste 13.3% and computing time 5.1 seconds, is
shown in Fig. 3.9.

Experiment 4 Thirty kinds of rectangles are
produced by the uniform random number listed in
Table 3.5. The result is the waste ratio 39.7%
and the computing time 16.7 seconds. This allocation
is shown in Fig. 3.10. I.E.M. improves this
solution when the number of block becomes five. The
improved solution shows the waste ratio 14.5% and
the computing time 110.4 seconds. (Fig. 3.11)

Experiment 5 In order to estimate the computing
time of the number of given rectangles, forty and
sixty kinds of rectangles are produced by the uniform
random numbers. The result is shown in Table 3.6
and Fig. 3.12.

Experiment 6 When the width of the blank (the
last block) is not free, the experiment is executed.
Fig. 3.13 shows the allocation of sixty rectangles,
where the last width is restricted. The result is
the’waste ratio 32.1% and the computing time

573 seconds.
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Material Length Width
No.
1 88. 46
) 2 2. 14
Table 3.3 Data input 3 69. 47
4 60. 67
produced by the uni- 5 85 . 73
6 96. 82.
form random numbers 7 87. 58 .
8 94 . 8
9 92. /7.
10 99, 56
11 75. 73
12 20. 1
13 77. 51
14 28. 79
15 99, 79,
16 57. 89,
17 8 87.
18 1 93,
19 29. 68
20 21. 15
S —— Az 20, MEe1 L 11T
e ‘
@%@@%@@@@@@'@@@
536)

Fig, 3.7 P.B.M. result

N=20 , MP=4 ,'r=10.3%

o 70000
® | ©
®
®
® ® | ® ®
\\1.(5 \73
8
N ® @ ®
%

Fig. 3.8 Result followed up by I.E.M.
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Table 3.4

Input data produced

by the normal random numbers

Material Length | Width § T e T e
NO- N N ! 1 - St
P18 i5 s ,

1 20. 20. g I

2 24. 37. | |

3 46, 34, | :

4 60. 23. !

5 26. 27. o . )

6 40, 43, | ) 5

7 73. 58. | 2 |le

8 24, 35.

9 67. 64. =iy
10 33. 16 i2 - o | o
11 42, 68. ; : ”.
12 16. 38. | _ IRVAR
13 48, 47. I e Fj _ ]
14 69. 46, r ]
15 59. 36.

16 56. 46 .

17 30. 53. Fig. 3.8 P.B.M. result
18 40, 31..

19 30. 11.

20 48, ax,
- .:,:..ff ﬁf":_-._;/; - f A
| I
=TT T
. I D
2z EI é
I S TN S R S

Fig.

3.9 Result followed by I.E.M.
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Table 3.5

Input data produced

by‘the uniform random numbers”

Material Length Width
No.
1 a0, 17.
2 19. 45,
3 86. 82.
4 g1, 49,
5 30. 13.
6 38. - 78,
7 92, 93,
8 10. 47,
9 51. 70.
10 7.0 34,
11 50, 51,
12 35, 77,
13 g5, 7.
.14 - 98, -80.
15 53. 72.
16 8. 6.
17 54, .42,
18 24, 84,
19 92, 75,
20 72, -2,
21 22, 92,
22 38, ‘13,
23 61, 77.
24 71. 33.
25 90. 75,
26, 82, 37.
27 " 52. 95,
28 46, 66.
29 52. 8.
30 99, 21,




Time

To—+

=y
Corpr

o
o

P-4
~h

um, 0
aterials

m
{ Produced by the
uniform random
Fig. 3.12 Computation time of P.B.M. numbers)
Table 3.6 Computation time
P.B.M. P.B.M. fo]]gwgd byl
I.E.M
n | Waste Time{sec) Waste Time(sec) Random
ratio(%) . ratio(%) number
10 16.3 1.8 8.7 1.6 Mannual
20 17.7 8.0 10.3 8.3 Uniform
20 10.0 5.3 13.3 5.1 Normal
30 39.7 16.7 14.5 110.4 Uniform
30 5.3 16.4 Uniform
49 15.3 218.7 10.2 20z .4 Uniform
60 21.2 594.5 Uniform
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Experiment 7 In order to estimate the

goodness of the solution, numerical experiments
are executed. The data of rectangles are handmade
of a rectangular sheet in length 150 and width 100.
The tests are tried when the number of rectangles
is ten, twenty, and thirty and the number of tested
respectively. The

times are eight, nine and nine,

data are reproduced in each experiment. The result
is shown in Table. 3.7. The waste ratio reached by
these experiments are around 20 % and this value

;s good enough for the practical solution.

Table 3.7 The result of experiment 7
Number of Number of Average of Average of
rectangles experiments viaste area waste ratio
(%)
10 8 4010.8 20.3
20 9 4334.5 21.8
30 9 3330.4 18.9

L Nem el m -
3 A

t
i

x[a

© |

‘ 3 e

Fig.

.13

in experiment 6; the width is restricted.
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3.8 Conclusion

Through the consideration and discussion of
the two-dimensional space allocation problem, the
effective algorithm is developed, and by using
this algorithm, we can reach the following conclu-
sion.

1. The effective solution of the two-dimensional
space allocation problem is obtained by defining it
as an assignment problem.

2, This method is valuable when many different
_.sizes of materials (rectangles) are given,
| 3. Even‘if a restricted width is placed on the
blank, the proposed method 1s available.

4, A new criterion is given for the determination
of the line on the Hungarian method.

However. P.B.M. still seems to have room for
improvement from the theoretical point of view.

From the practical point of view, P.B.M. is
modified for the use of metal sheet cutting planning
by Mitsubishi Electric Company, and it is on execu-

tion. This is described in Appendix A.
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4, A Practical Approach to the Cutting Stock

Problem
4.1 Introduction

In this chapter, a practical solution is
presented in dealing with the problem as one of
the cutting stock problem situation. The object
of the problem is to determine the number of row
blanks stocked in order to produce materials
requiredby the user with minimum economy. The
resources are regarded as the blanks, but the
materials are used in their own terms-in this
problem. As various sizes of the materials and
the blanks with various costs are given to the
problem, not only the number of the blanks is
determined but also the placements of the materials
on the specified blank must be solved. In treating
the problem, therefore, the problem is parted into
two subprograms such as a nesting problem to allocate
the materials onto the specified blank and an assign-
ment problem to determine the number of the blanks
relating to various nesting ways. For the first
subproblem, a heuristic method based on a recursive

approximation is presented and a tree structure model
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of the data structure is prepared to store the
information on the location of the materials
being nested to the specified blank. For the
second, the problem formulation is simply turned
to the algorithm to determine the number of the

row blanks.

The problem occurs in the small and midium
sized metal sheet cutting companies, so that the
method is desired for the use of a mini-computer.
The presented method is available for the mini-
computer and it gives the numerical experiment
result of a waste ratio around 7%. This result
is practical enough to compare with manual planning

results and with the result in chapter 3.
4.2 Formula of the problem
The problem dealt with in this chapter is

as follows:

Problem: Given bj plates of the blanks B. (j = 1,

J
2,..., m) with its price Cb T assign Ty plates of
materials R (i=1, 2,..., n) to the blanks with

the minimum price.



To formulate the problem, constraints express-
ed below are considered. A shape of the materials
and the blanks is restricted to a rectangle. Con-
sidering that the materials are assigned to the
blank Bj, there are a number of material assign-
ment (nesting) patterns. In the k-th pattern of
the assignment to the blank Bj as the number of
the material Ri’ let us set Ri(xs) and Bj(xv) as
the regions of Ri(xs) and Bj(xv) with left under
corner coordinate xsand X respectively.

The condition under which the materials are
located within the blank Bj is given by

a..k
. { ;1 Ri(xi)}C.Bj(x ), (4.1)

«

n

i=
where aijk is the number of the material

Ri in the k-th nesting pattern., And the condition

under which the materials are located without

their overlapping each other is given by

ijk
s Ri(xs) =¢ (i=1, 2,..., n) (4.2)
and
n a..k
[t Ri(xs)} = ¢ (4.3)
i=1 s=1
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Then, let us set all assignment patterns
as uj. As the number of blank Bj of the k-th
pattern, Xjk to be used for producing the mate-
rials is less than the given number of the blanks,

the inequality constraint

.
-

u
I x. S0 (4.4)

[\

; Tk T

k
should be satisfied, where bj is the number of the
blank B. stocked. Also, the number of materials
produced from the blanks must be requested to no

less than r; (i =1, 2,..., n), the ineqguality

constraint,

u.
m J
DI aijk X jz_rl (i=1, 2,..., n)
j=1 k=1 JE =
(4.5)
should be satisfied, where r; 1s the number of the

The geal of the problem is to determine X
; J
which satisfiy the constraints 4.1-4.5

with minimum costs, that is,

m
minimize T c.. X (4.6)
P T Jl'\ J1.
i k
suhiesct to Eaos, 4.1-4.5,
where c. = W c - W c In the problem
€ jk 1 bj 2 Tws ne P
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description 4.6, the cost C'k is set as a sum
J

of the blank price ¢. . and the waste cost c |
bJ W j
in the k-th nesting way of the blank Bj with

suitable weights Wy and Yo, respectively.

4.3 Nesting and Assignment Algorithm

It is difficult to find out a solution
which satisfies the constraints 4.1 through'4.5,
for the problem belongs to the combinatorial one.
Even if "An Integer Linear Programming" is employ-
ed, variables solved become so many that the solu-
tion is hardly found out, and it costs so expensive
for the use of a computer. Therefore, an heuris-
tic method is effective if it gives a good approxi-
mation. In solving the problem, it is considered
that the problem consists of two subproblems: the
one is to determine the location of the materials
to the specified blank and the other is to determine
the number of the row blanks selected for cutting
out the materials. A heuristic method based on a
recursive approximation is developed for the
first problem and a simple method is adopted for the

latter.
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4.3.1 Recursive Procedure for Nesting

]
iy
-
bt
O
0
v}
ot
j-4
O
3
0O
+h

A nesting problem for th
the materials to the specified blank is des-
cribed as follows:

Subproblem 1: Allocate the materials Rj

(i =1, 2,..., n) to the specified blank Bj with a
minimum waste, that is,
n
minimize C . = A(B.) - Z a,, A(R;
a wJ i’ i=1 1k (R3)
ijk

subject to the inequations 4.1-4.5,
where A(Bj) and A(Ri) are the areas of the blank
Bj and the material Ri’ respectively.

The algorithm presented here is composed
based on the recursive approximation.

Let us set Wt to t-th waste area as the
remainder of the blank area by memovin

o th
g o

materia

&
fomd

areas to be selected until (t - 1)-th procedure,.

In order to select the material that resultis in

the minimum waste in the t-th step, the following
A

equation is satisfied:

minimize W, = min.(Wt_l - St) (4.8)
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where St is the material area, selected to satisfy
the above equation, and Wt—l is the waste produced
in the preceeding step. By repeating this pro-
cedure until it becomes impossible to allocate

the material within the remaining waste area Wt'
the selection of the materials for the specified
blank is accomplished. To begin the procedure,
let us set WO equal to A(Bj).

From the equation 4.8, the algorithm becomes

minimize Wt = mém (Wt—l - St)
i
= Wt—l - max St (4.9)
R.
i
subject to Wt—l - St Z2 0, W_ = A(Bj) (4.10)
and t = 1, 2,..., e,

where suffix e implies the last selection of the
material This shows a simple rule that selects
the maximum area's material to be allocated in

the current waste.

4.3.9 Nesting Procedure

In order to execute the rule obtained in the

previous section, the calculating operation is

to select the maxmum area of the material to be
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allocated in the waste. This is simply done
by following the steps below:

1° Renumber the suffices of the materials

in the order of their areas from large to

small,

2° Set suffix t equal to 1.

3° Allocate the material Rt within the areas

of the waste Wt—l if possible and continue

allocating. If impossible, then go to step

4° .

4° Set t+1 to t. If t is equal to the last

suffix number plus one, stop the procedure.

If not, return to step 3°.

In the previous procedure, how to place the
material on the blank under the inequations 4.1-
4.3 is still unknown. To concrete this procedure,
the following conditions are considered.

Condition 1) The alogorithm should be iterative
so that the new waste shape must be kept
rectangle after the placement of the materi-
al.

Condition 2) Make out the waste area as large
as it can be, leaving greater possibility

of locating unused materials.
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There are some cases in which the material

is placed on the waste as shown in Fig. 4.1.

/e

Fig. 4.1 Possible allocating ways

%

As shown in this figure, the shape of the
waste does not become a rectangle. In order to
apply the iterative procedure, the shape of the
waste must keep a rectangular shape. This turns
the division of the waste into some rectangular
wastes. Furthermore, the condition 2 must be
satisfied. Consequently, the material is allo-

cated at the corner of the preceeding waste with
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which the material edges meet as shown in

Fig. 4.2,

Waste 1 Was- Waste 1

7 p &

Fig. 4.2 Two ways of dividing the waste

There are two ways of dividing the waste
because the new waste becomes L-shaped. The
choice depends on the problem situation, that is,
if there are a lot of long strip rectangular
materials, a long rectangular waste had better
be produced, and if not, the rectangular waste
with a large area had better be produced. In
either way, the old waste is divided into three
parts: +the material area selected and two new
wastes. Therefore, this procedure 1s named
"Divide-into-three" procedure.

To begin the procedure, we suppose that

R. (i =1, 2,..., n) is ordered from large area
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to small one, or from long strip to small strip
by the criteria of area or length,.

In this way, the nesting procedure is re-
written as follows, where Wtk is the waste to be
produced in the t-th step, and the k-th waste
through all of the wastes, and Wte is the waste
to be produced as the last one.

1° Set o to t, k and e, where W 545 = A(Bj).

2° Reset t+1 to t and k+1 to K.

3° If all of the wastes that have not been
allocated by the materials become smaller
than the rest of the material areas, stop
the procedure. If not, go to step 4°.

4° Allocate the unused material Ri whose

suffix is the smallest to waste Wtk

such as-
» . q
maximize T A(R.(x.)) (4.11)
h=1 th
. aq
subject to gil Ri(xh)C: Wi (4.12)
and g é.ri (4.13)

Where Ri(xh) is the region of the material
with its left under corner coordinates Xy
A(Ri(xh)) is the area of Ri(xh), and W,

means the waste area and its region. Then
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set g to d.

-0 .. .
5 Divide the new waste into two rectangular

wastes and set them to Wt+1,e+1 and Wt+1, et+2,

respectively. In this step, the relation,
Wt+1 o+l + Wt+1 et+9 = Wtk - d A(Ri)
(4.14)

is held.

6° Set e + 2 to e.

7° Set k+1 to k and go back to 3° if the
materials with suffix t remain. Otherwise,

go back to 3°
4.3.3 The Data Structure for Nesting

The information on how the materials are
allocated must be given to the computer, therefore
the data and the data structure on the information
are prepared. Each datum keeps the waste infor-
mation or the material information with its geometry
and position.

In the previous procedure, the specified
waste is always divided into three parts: the
material area and two wastes, Put the waste is
smaller than any material area unused for nesting.

Therefore, it becomes necessary for the datum to
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be indicated which waste corresponds to this datum .
and which wastes and materials are produced from
this datum when it represents the waste. In this
way, the datum dk is the function as shown in the
following equation,

a = (8(x), t, &, W, Dy, by), (4.15)
where g(xk) shows the geometry information of
this datum, Xy determines the relative position
of the geometry, t is the step number, k is the
number given for the datum generation, w is the
parameter which shows whether this datum is the
waste or the material, Py is the pointer directing
the preceeding datum, and Py is the indicator of the

waste not nested. As the geometry of the material

and the waste are rectangles, the datum dk is

d = (w, 1, %, vy, t, Kk, Wy Py Ps), (4.16)
1 material

Y =4 -1 material being transposed
0 waste

where w is the width of the rectangle, 1 is the
length of the rectangle, x and y are the coordinates
of the left-under corner point.

The data structure becomes a tree directed

by the pointers as shown in Fig. 4.3.
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Wy= The area of the
specified blank

51 W11 | Wy o

[:] ; A waste possib]e to allocate materials.
; A waste impossible to allocate materials.

(:) ; A material to be selected.

Fig. 4.3 A tree data structure for the material and

waste allocation
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Now, the capacity of the data to store the
information on the location becomes important because
it restricts the availability of the procedure.
Assuming that all the wastes having been produced
become impossible to be allocated by the materials
at the same time in the t-th step. The first
waste (the specified blank) produces three data
corresponding to two wastes and the material
selected. Then, two wastes produce six data
corresponding to four wastes and two materials
selected. By repeating this iterative procedure,
the t-th step produces (2t + t) data. Therefore
the sum of the data S produced becomes

2t + 1)
0

2ty 4 3£321~ll (4.17)

105]
It
et

i

When t is equal to ten, the sum of the data S
becomes around two thousands. This means, when ten
words are used for the datum, forty kilo words in a
computer are used for nesting data. Also Eq. 17

implies (ZJC - 1) + % t(t - 1) materials are used
for nesting. When t is equal to ten, it means almost
ten thousands materials are used for nesting. The

number is small enough for the object of this

problem.
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4.3.4 Determination of the Number of Row Blanks

The second subproblem is on how the number
of row blanks producing the materials are deter-
mined. This is described as follows:
Subproblem 2 Determine the number of the row
blanks, in which some materials has already been nested
in order to produce the number of the material
required by the user. Although the problem for-
mulations 4.4 - 4.5 are applied by an integer
linear programming directly, it is hardly possible
for all of the blanks to enumerate all of the
nesting patterns. A better way is to select a
nesting pattern with a minimum waste for each
blank and to solve the problem described by Egs.
4,4 - 4.6, If the problem is solved in this way,
the number of nesting pattern for each blank Uy
becomes one and Egs. 4.4 - 4.5 are rewritten as

follows: the restrictions are

x. < b., (4.18)

X.2r, (i=1,2,..., n), (4.19)

m
minimize Z ¢ X. (4.20)
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This formulation may allow the use of
an integer linear programming method in less
small size than before. But a unique nesting
pattern for each blank may have a possibility
of not using some material, namely, for
some Jj*, aij* for any i becomes zero.

Also, it is possible to use 2.C. Gomory
and R.E. Gilmore's approach. But their approach
includes the inverse matrix calculation in their
simplex method. And as the nesting pattern for
each blank is unique, the solution does not allow
to vary activity nor to introduce to the same
blank more than two new activities.

Considering above mentioned items, a heuris-
tic method for the assignment procedure is develop-
ed. The feature of the procedure is that the pro-
blems 4.18 - 4.20 are generated iteratively by

figuring out the activities 243 and that the control

variables are bj and ;-
The procedure is as follows.
1° Determine the allocation of materials to
each B. (j =1, 2,..., m) minimizing wastes,
and set cost c5 as the sum of the waste ratio

and its blank price such as

Cj - W1 € wj T Wy €cj
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where ¢ . 1s the waste ratio and ¢ . is
W CcJ

the Jj-th blank price.

o]

2 Find j* as j* = min. ¢

j H
J
3° Set x4 as
n
Xj = m;n (min [ri/aij*]’ bj*)’

where aij* is the number of material Mi

included in the j-th blank nesting activity,
Ty is the currently required number of

material Mi and bj* is the number of current
blank Bj* stocked and [ ] is gaussian notation.

4° Reset r.

i~ aij* Xj* to r;. If all of

r; become zero, stop the procedure.

5° Reset by, - X., to Dig. If all of by

J* J* J
become zero, stop the procedure. If not,

go back to 1°.

4.4 Numerical Experiments

To prove that the method proposed for the
cutting stock problem is efficient and practical,
numerical experiments are executed by mini-computer
PDP11/20 and OKITAC 4500-C. The program is coded

with FORTRAN. As one of the criteria, a waste
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ratio is used to estimate the goodness of the
solution. A term "waste ratio'" used below means
(a total area of waste) / (an area of a blank)
100 (%) (4.21)
The results of numerical experiments are as
follows.
Experiment 1) When the number of blanks is one,
the efficiency of the proposed method is computed
with comparison to Gilmore's Dynamic Programming
Method. Because of the memory size, the blank
size tested is 50 in length and 50 in width, and
the material sizes tested are one-digit unifrom
random numbers to be generated by the computer
function, and the number of material kinds is 5.
The results obtained by OKITAC 4500-C are
shown in Table 4.1. Fig. 4.4 1is one of +the
graphic output of the solution. This table shows
that the proposed method reaches a good approxi-
mate solution and takes less than half of the

computing time shown in Gilmore's Dynamic Program-

ming results.
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Fig. 4.4 One of graphic outputs in experiment 1 solved by the proposed
method

Table 4.1 Comparison with Gilmore's D.P. result

Experiment |Presented Gilmore's
No. method D.P.
Excution [Waste Excution |MWaste
time(sec)|ratio(%)|time(sec)| ratio(%)
1 1.39 0.00 3.10 0.00
2 1.17 0.40 3.04 0.00
3 1.28 0.16 3.10 0.00
4 1.45 0.00 3.12 0.00
5 1.34 0.16 3.08 0.16
6 1.42 0.20 3.07 0.00
7 1.23 0.00 3.11 0.00
8 1.22 0.36 3.08 0.00
9 1.22 0.04 3.10 0.00
10 1.20 0.00 3.12 0.00
Average 1.48 0.22 3.15 0.016
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Experiment 2) 1In most of the cases, the exact
optimum solution is unknown of the space allocation
problem, so that it is difficult to estimate the
goodness of the solution. In this experiment, the
sizes of materials are produced by the given blank,
and each size of ten materials are requested as
user's product. Numerical experiments are execut-
ed to test the validity of the method. If ten
blanks are required for the solution, the alloca-
tion obtained by the use of the proposed method
is optimum. These experiments are made in PDP
11/20, and the program used is the same as the
one used in the experiment 1. Tables. 4.2 -~ 4.4
list up the data of the material sizes and Figs.
4.5 - 4.7 are their original allocations correspond-
ing to Tables 4.2 - 4.7 and the blank size is
1000 in length and 500 in width. The results
are shown in Tables 4.5 - 4.7.

The solutions are practical enough because
the waste ratio, when man allocates materials

onto the blank, is more than 20 %.
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Table 4.2 Ten kinds of materials input

data in experiment 2

No. 1 No. 2

No. Length Width Length Width
1 440 180 220 160
2 420 180 220 2290
3 220 140 240 120
4 280 140 420 120
5 320 200 380 160
6 320 50 200 260
7 320 140 180 140
8 320 160 180 140
9 240 180 360 200
10 240 140 300 340 |

Table 4.3 Twenty kinds of materials input

data in experiment 2

No. 1 No. 2
No. Length Width Length Width
1 180 100 400 60
2 220 180 180 120
3 180 40 180 60
4 260 180 200 180
5 160 180 320 140
6 160 120 320 80
7 120 120 120 160
8 280 160 120 120
9 280 40 180 120
10 240 100 200 180
11 240 100 180 180
12 180 100 220 160
13 220 180 160 60
14 180 100 280 100
15 200 180 260 140
16 220 140 140 180
17 140 140 140 80
18 180 60 200 160
19 300 120 260 60
20 300 60 160 60
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Table 4.4 Thirty kinds of materials

input data in experiment 2.

Width
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Table 4.5

Table 4.6 Result of experiment of 2 (twenty kinds of materials)

Result of experiment 2 (ten kinds of materials)

NO.) i NO.2

resivery | Tl | memer | bt | homir?
1 6.88 3 7.44 3
2 23.36 1 7.60 1
3 11.92 1 7.84 1
4 24.40 1 18.72 1
5 8.32 1 20.72 1
6 14.24 1 4.00 1
7 5.12 1 12.96 1
8 20.80 1 18.88 1
9 14.32 1 12.16 1
10 56.88 1 74.8 1
Avelage Total Avelage Total
16.67 12 16.67 12

NO.1 NO.2
aetivety | TSRy | Rommert | raiiets) | mombert
1 0.48 1 0.78 1
2 1.36. 1 0.47 1
3 2.56 1 5.06 1
4 3.04 1 1.23 1
5 5.84 ] 0.72 1
6 0.48 1 0.62 1
7 4.32 1 2.85 1
8 6.72 1 2.08 1
9 2.08 1 2.15 1
10 4.8 1 2.03 1
11 68.32 1 83.2 1
Avelage Total Avelage Total
9.01 11 9.01 11
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Table 4.7 Result of experiment 2 (twenty kinds of materials)

NO.1 i NO.2 i

retivery | Tt | meenirt | it | memnr
1 7.84 1 5.36 1
2 1.28 1 2.00 1
3 5.12 1 2.24 1
4 1.60 1 3.04 1
5 6.40 1 1.36 1
6 1.12 1 7.92 1
7 4.00 1 7.36 1
8 6.88 1 9.76 1
] 3.36 1 8.32 1
10 6.40 1 14.08 1
11 56.00 1 38.56 1
Avelage Total Avelage Total
9.01 11 9.01 11

130 -



Experiment 3) By generating uniform random
numbers as ten kinds of blank sizes and material
sizes as well, numerical experiments are exe-
cuted in OKITAC-4500C. The range of length,
width and the stock number of blanks generated
by random numbers are 1000 to 1400, 500 to
1200, and 0 to 100 respectively. The range of
length, width and the required number of materials
tested are 10 to 90, 10 to 70, and O to 100
respectively. The result is shown in Table 4.8,
The result shows that an average of waste ratio
to be computed for the experiments is around 7.0%.
Experiment 4) By generating normal random
number, numerical experiments are executed here
as in the experiment 3. The random numbers
generated for lengths, widths and stocked numbers
of blanks are values of an average of 455, 355 and
50 respectively and of a standard deviation
151, 118 and 16 respectively. The result is shown
in Table 4.9. The result shows that an average
of the waste ratio is around 7.2%, a little bit
more than one of the experiment:3.

Examples of graphic outputs in experiments

3.and 4 are shown in Fig. 4.8.
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Table 4.8 Result by uniform random numbers
Experiment | The number Execution Yaste txecution
No. of blanks | time ratio time per
to be de- | (min:sec) | (%) an assign-
termined ment pat-
tern(sec)
1 55 19:43 9.52. 21.18
2 40 20:55 6.84 30.84
3 37 17:38 2.87 28.20
4 43 22:47 6.18 31.38
5 75 20:48 11.01 16.38
6 61 21:08 65.79 20.76
7 40 20:02 6.23 30.06
8 4 21:02 3.74- 31.56
9 53 22:56 7.49 25.56
10 42 29:01 8.11 41.46
Average 48.8 21:04 £.99 26.40
Table 4.9 Result by normal random numbers

Experiment | The number Execution | Waste Execution

No. of blanks | time Ratio time per

to be de- | (min:sec) | (%) an assign-

termined ment pat-

tern{sec)
1 54 22:12 6.62 24.67
2 55 21:25 5.10 23.36
3 60 21:16 8.95 21.27
4 87 23:25 7.57 16.15
5 60 24:29 9.16 24.48
6 54 23:55 6.36 26.57
7 49 24:10 5.01 29.54
8 60 21:15 9.09 21.25
9 71 16:07 8.46 13.60
10 60 19:59 5.98 19.98
Average 61.0 21:49 7.23 22.09
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Experiment 5) In order to examine the character
of the proposed method, three kinds of distribu-
tion area of the materials are tested by PDP
11/20 when three kinds of the blanks are given.
We set ten to the material kinds and to the
number of materials as well. The number of the
given blanks are assumed to be unlimited. The
area of the materials is distributed in large size
in the experiment A, in small size in the experi-
ment B and in all sizes in the experiment C.
These data are produced by computer random func-
tion. The data and their results are shown in
Tables 4.10-4.11. The distribution of the
material area is shown by the ratio of the

number of material:-to all the mumber of materials
generated.

In this experiment, when the material areas
to the blank ones are relatively large, the waste
becomes large, when small, the waste becomes small,
and when uniformed, the waste becomes small. The
waste ratio is less than twenty percent in any

case except for only one in the experiment A.
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Table 4.10 Result of experiment 6

TEST NO. A 8 c
D.M.A.

M<5.x102 20 0 10
5.x10%EM<1.x10" 40 20 0
1.x10%EM<1.5x%10" 20 30 10

1.5x10"EM<2.0x10" 10 20 10
2.0X10%2H 10 30 70
BLANK
3"x 6' 40 20 10
4 x g 30 40 70
5'x 10 30 40 20
TOTAL 100 100 100
AVELAGE WASTE(%) | 4.00 6.42 | 16.66

Table 4.11 Result of experiment 6

- TEST NO. A 8 c

M<5.x1032 70 20 5

5.x10%EM<1.x10" 20" 5 0

1.x10"EM<1.5%x10"% 5 10 0

1.5x10"SM<2.0x10" 5 10 10

2.0x10"EH 0 55 85

BLANK

3'x 6! 30 20 20

. 4' x 8! 10 50 40

5' x 10 60 30 40

TOTAL 100 100 100

AVELAGE WASTE(%)]| 2.73 7.20 | 13.18
D.M.A.,: Distribution of material areas
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Experiment 6) As to many numbers of the mate-
rials, the experiments are executed in PDP

11/20. A thousand materials are produced out of
ten kinds of materials by the computer random
number. The material kinds are three and the
number of materials required by users are un-
limited. The distribution of the material area
and the results are shown in Table 4.12. By this
experiment it may be said that the larger the

number of materials is, the smaller the waste

ratio becomes.
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Table 4.12 (a) Result of experiment 6
o na TEST NO. ] 2 3 4 5
¥<2.5x10° 70 30 30 40 50
2.5%x10%5M<5,%x10°% 10 30 40 30 20
5.x10%8M<7.5x10° 0 20 40 20 30
7.5x10%M<10¢ 10 1D 0 10 0
10%H 10 10 0 0 0
BLANK TOTAL
3" x 6' 25 20 4 8 3 60
4' x 8' 0 4 8 0 6 18
5' x 10° 0 2 4 5 3 14
TOTAL 25 26 16 13 12 92
AVELAGE WASTE(%)| 13.24 [ 12.57 | 19.68 | 13.27 |15.58 | 14.87
M Area of material
(b)
D.M.A TEST NO. 1 2 3 4 5
M<2.5x10°% 30 50 40 60 20
2.5x1058M<5.x10° 30 20 30 20 40
5.x10%8M<7.5x10° 30 20 10 0 10
7.5x10°EM<10°8 0 0 10 10 20
10%<M 10 10 10 10 10
BLANK TOTAL
3V X 6 0 g 8 12 0 29
4t x 8* 6 7 3 2 15 33
5' % 10" 8 2 8 3 4 25
TOTAL 14 18 19 17 19 87
AVELAGE WASTE(%) | 15.41 | 10.94 | 18.02 6.40 |16.10 | 13.37

- 137




(c)

o TEST NO. 1 ) 3 4 5
M<2.5x10°% 0 20 0 0 0
2.5x10"EM<5.x10° 10 30 40 30 50
5.x10 8 M<7.5x10° 50 10 30 50 40
7.5x10'S M<10°® 20 40 20 0 0
10°5M 20 0 10 20 10

BLANK TOTAL

3'x 6° 5 1 3 5 7 21

4t x 8 ] 16 8 11 8 49

5* x 10" 15 5 12 10 11 53

TOTAL 26 22 23 26 26 123

AVELAGE WASTE(%) | 19.24 | 15.87 | 21.05 | 19.59 |21.19 | 19.389
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Experiment 7) The recursive approximation
procedure gives us the rule that the materials
are allocated according to the area sizes—--
the larger, the faster. When there are some
long strip materials, it may be said that the
materials are allocated according to their
length--~the longer, the faster. To assert this
fact, the experiment is executed in PDP 11/2.
Figs 4.9 and 4.10 are the results of this ex-
periment. In this experiment, the results

are satisfactory, but in general, much more

experiments are expected to be made.
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4,5 Conclusion

The practical method for the cutting
stock problem is proposed, and the efficiency
and validity are discussed by the execution of
the numerical experiments. Through the dis-
cussion, the followings are concluded.

1. The allocation procedure of the materials
to the blank is proposed by formulating the
problem.as a recursive approximation.

2. A simple and practical procedure to
determine the number of the blanks allocated
by the materials are proposed.

3. The numerical experiments show the
waste ratio is less than twenty percent.
This means the proposed method is good
enough to be used practically.

4. The memory size required for this proposed
method is about 22 KW. A mini-computer is
available for this method.

This method is now adopted for sheet metal
shear process planning at Murata Machinary
Company, and a great deal of planning time
has been saved in sheet metal manufacturing.

The system using the proposed method is
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named "OPTI-CUT" and applied to produce an NC
shearing tape. An example of NC tape producing
is shown in Fig. 4.11., In this system, edge
trimming and repositioning problems are
also considered. A system manual is given in
Appendix 2 and we can see how to treat edge
trimming and repositioning in Appendix 1. ~ And
that, because of the small-sized memory, a micro-
processor is available for this program currently.
Furthermore, this method is adopted for

the integrated sheet metal manufacturing system.

This is described in chapter 8.
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5 An Approach to the Package Problem

-~-Optimum Packing and Loading---

5.1 Introduction

A complex problem may arise when a number of
products are made in a wide variety of sizes. Each
of the products is packed in an individual card-
board box, and then they are packed in an individual
carton box. The number of carton boxes is usually
twelve or twenty-four. Some carton boxes are loaded
on a pallet. The pallet size is usually decided
according to the size of a truck cargo space, or a
container box. The packaging engineer must design a
size of the cardboard and the carton box and a method
of loading the given number of carton boxes of certain
sizes. This decision making is clearly needed as
one of three-dimensional space allocation problems
in a situation of optimum packing, for example, where
carton boxes are loaded on the pallet so as to minimize
empty spaces.,

This chapter deals with the above mentioned
problem and develops a simplified formulation with

a new method to solve the problem.
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To begin with, the problem in an actual situ-
ation is analyzed and formulated. Then a theoreti-
cal method is applied to the solution of the problem.
The applied method is a kind of enumerative one,
and by using it, an optimum carton size can be deter-

mined, then the ways of packing and loading are

presented.

5.2 Problem Description

The problem can be summarized as follows. (Fig.

5.1)

Product Boxes Packing A carton

items

000 ~ 7
Pr;)c.iuct —_— AAA — @ _—
DDD — @ l Loading

Fig. 5.1 A flow of product items on the shop
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L L L
pd

Fig. 5.2 Regular mesh-like packing into a carton

L, W and H are the length, width and height

of a product box and the op€Tation // is
used as L//x , which means the length of the

product box is located in parallel with X axis

ope. 1
Ll // X

/7 Y
H | // /A

4 6
Y VA
Z Y
X X

2 3 5
X Y Z
Z X X
Y Z Y

Fig. 5.2 Six packing ways
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a.

A company has about 200 product lines which
collectively represent 600 to 700 hundred
product items.

All product items are usually packed with
every twenty-four products per a carton.

The company has a standard size pallet

for loading carton boxes. The dimensions

of the pallet are 48 in length, 40 in width
and 42 in height.

All distributors must order standard pallet
loads of a product item; they are not allowed
to order more than a full pallet loads and
they cannot have more than one product item
on the same pallet.

The company wants to prepare several standard-
sized carton boxes which will result in a

higher utilization of the pallet.

The object of the problem is to find out the

optimum sizes of the carton boxes for a highest

utilization of the pallet when the sizes of the

product boxes are given, and to find out the stan-

dard sizes of the carton boxes for the highest

utilization of the pallet when widely distributed

sizes of the boxes are given.
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5.3 Formula of the Problem

5.3.1 Notations and Assumptions

Let us define some notations and assumptions:

The dimensions of a product item box.

ay, ag, ag

by, b2, bg The limitations of the dimensions of
a carton box.

Cqys Cos Cg The dimensions of the pallet volume.

X1, X9, Xg The number of product item boxes mak-
ing a carton according to the length,
width and the height direction of
the carton box.

Y1, Y9, V3 The number of carton boxes, which are
locaded on the pallet, according to the
length, width and the height direction
of the pallet.

S Waste or trim loss.

Assumptions:
a - 1 Each product item should be packed into. a

cubic box of x, y and z dimensions,

a - 2 Only regular mesh-like allocation is

acceptable for boxes to make a carton

and for cartons being loaded on the pallet.
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All the variables used here are positive numbers,
and X5 and vi (i = 1,2,3) are integer numbers.

If other shapes of boxes, for example a
cylindrial can, are used, there is still the unsolved
packing problem. Hence, there is no solution method
with respect to this case, but we can achieve an
approximate solution by substituting the cylindrical
can for the box type container.

With respect to a - 2, there is no solution
method for the packing and loading problem no matter
whether auto-packing and auto-loading, or hand-
packing and hand-loading are adopted. The most
acceptable approach will be to make 1t easy for a
worker to understand what he should do. Since the
regular mesh-like allocation does this, this assump-

tion is acceptable.
5.3.2 Constraints and Object Function

The problem is formulated as follows, where
a;, 23 and cy (i =1, 2, 3) are given and X509 V3
and bi is unknown.

Let us define n as the number of boxes per a

carton

3
I x, =n (5.1)
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and

a; X3 S 2Z4 (i =1, 2, 3) (5.2)
The size of a carton is limited within by (i =1, 2,
Then,

z; £by (1 =1, 2, 3) (5.3)
Or

ai Xisbl (l= 1, 2, 3). (5.3')

If a, (i =1, 2, 3) is unknown, the packing problem

i
is to determine aj and X5 (i =1, 2, 3) such as
3 3

min. I z. - I a, X. (5.4)

ai.%;3 A7 =

subj. to Egs. 5.1, 5.2 and 5.3.

Eg. 5.4 implies that a total waste volume of a
carton box is minimized by the product boxes packing.
It ay (i =1, 2, 3) is given, Eq. 5.4 becomes
constant because of Eq. 5.1. Hence the packing

problem is transformed into the problem in which X5

(i =1, 2, 3) should be found.
In the next step, as many carton boxes must be

loaded as possible. As the carton must be loaded

within the size of a pallet cy (i =1, 2, 3), the

following constraint must be satisfied,

Ci -—>- Zi yl (1 = 1: 2: 3)' (5-5)
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Then the loading problem becomes
3 3
min. I c, - I 2z, V. (5.6)

subj. to Eg. 5.5.
Eq. 5.6 implies that the total waste volume of a
pallet is minimized by the carton box loading.
Therefore, both of the problems are reduced
to such a problem as
3
min. ; igl c. - ig z; ¥
Xi,¥1:%24

subj. to Egs. 5.1, 5.2, 5.3 and 5.5.

5.3.3 Qualifying the Formulas

The problem is qualified by changing the
problem 5.6. Supposing that the packing method
has already been determined, the problem 5.6 is

rewritten as

(5.7)

subj. to Eg. 5.5.

Eq. 5.7 implies that minimizing the total waste
volume is equal to maximizing the total carton volumes

on the pallet.
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The solutions of Vi in the problem 5.7
subject to Eg. 5.5 become
v; = [ci/xi], (5.8)

where, [ ] is a gaussian notation. Therefore, the

problem is reduced to

max.

. i
21

subj. to Eg. 5.2,

z; {Ci/zi], (5.9)

= w
o]

In considering that the standard size of a
carton box is just fitted to the size of packed
product item boxes per a carton,

a; X3 = 24 (i =1, 2, 3) (5.10)

is obtained from Eq. 5.2. By substituting Eq. 5.10

to Eq. 5.9, we may simplify the problem 5.9 as

3
max, .E a- X5 [ci/ai xi], (5.11)

subj. to Eg. 5.2.

From Eq. 5.1, we can reduce the problem to

max.
X, i

= w

[ci/a; x4

1 ) (5.12)

subj. to Eq. 5.2.

e

Il

=
= w

because @I a. ai is constant.
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5.4 Enumeration Method

If feasible solutions can be enumerated, we can
find the optimum solution in the problem 5.12 by
testing all the solutions. In order to enumerate
the feasible solutions, let us define FS as a set of

feasible solutions:
3
FS = {(xl, o, X3) [ E Xy X, Xq =,

X is integer number} (5.13)
FS can be constructed from an order set OS by combin-

ing each element of OS.

0S = {el e=1["/31}, =1, 2, ..., n (5.14)
where [ 1 is a gaussian notation. We rewrite OS
by giving elements e suffices such as ey, e2,...,eq,

from smaller number to larger one where g 1s the
number of elements e
os = {e;} 1=1, 2,..., q. (5.15)
Let us define p; = [bi/ai], (i =1, 2, 3) and

= min (pi, e ). Then, let us define a set of X5

q
(i =1, 2, 3) as Xi:

X, = {xi l1:£x.g‘rij Xy & 0SS}, i =1, 2, 3
(5.16)

We rewrite Xi as

X; = (x50, X495 X4p )
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where x.. (jJ =1, 2,..., t.) is all the elements x,
ij i i

of Xi’ and the suffix ti shows the number of all the

elements Xy

Then, we can obtain FS by enumerating

- !
FS = {(Xiu’ oy X3yl 3w /%14 X2v},
u=1, 2,..., ti, v=1, 2,..., tz.
We rewrite FS as
FS = {le, X935 X3j}, i=1, 2,..., t,

where t is the number of all the feasible solutions,

Thus, the problem 5. 12 is transformed to

t 3
max I [ec./a..x..].
j=1  i=1 -

(5.17)
When product item boxes make up a carton, there
are six packing ways of box allocation. Therefore,

the problem 5.17 must be calculated six times corres-

ponding to the box allocations. Related to six packing
k

ways, we add the suffix k to Xij as Xij’ Then the
problem 5.17 becomes
6 t 3 :
K (5.18)

max max I [c./a. X..] .
k=1  j=1 i=1 + 1t +d

Once the solution of how product item boxes are

packed into a carton is obtained, the loading method is

easily figured out by the use of Eg. 5.8.
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5.5 Determination of Standard Carton Box

In the previous method proposed,  there is
assumption that the size of packed product item
boxes per a carton becomes the size of a standard
carton box. However, one of our objects is to design
the size of the standard carton boxes. To develop
such a design method, we use the enumeration method
proposed as the simulater., If the size of the
product item boxes belongs to a certain distributing
function, the size of carton boxes will be expected
to have distribution. By using the proposed method
as the simulater, we can obtain this distributing
character.. After recognizing this distributing
character, we may determine the standard carton
boxes which covers the calculated carton size by
modifying the size to a larger one with a little
fraction. If a little modification for the product
item boxes is allowed, we can feed back the results
of the standard box size to modify the product item
boxes., Thus, we can alsco design the product item

boxes. This process is shown in Fig. 5.4.
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_/\‘ —>  |[SIMULATOR|| —> _/\_

Box sjze distribu- Carton size distri-
tion bution

, /S DecisioN_s
processor| (U, > degisio

Feedback

D.I. ; Data input.
DSB ; Box size
distribution.

Fig. 5.4 A feedback system for determination of standard

carton sizes and box sizes
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5.6 Numerical Experiments

In order to show the validity of the developed
theories and algorithms, and an example of how to
calculate each available equation, several results
will be presented with detailed processing calcula-
tions. Experiments are executed by OKITAC 4500~C
and the program is coded with FORTRAN. Table 1
presents the precalculated data for determining
the feasible solution. It shows that the pallet
dimensions as input data are (48, 40, 42), (length
x width x height), and each product item should be
packed 24 boxes to a carton. An ordering set OS
is shown here, too. The values of j in Table 5.1

shows the method of packing product item boxes to

a carton.

Table 5.1 Feasible solutions FS
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Efficiency is defined to estimate the

solution as

Efficiency = Total product item box volume . 100(%).
Pallet volume
Experiment 1 The input as the product item box
dimensicns are (1, 1, 1). 1In this case we can get

ten cases which give an optimum solution (Table 5.2).
Optimum solutions are marked by * in Table 5.2.
Experiment 2 he input as the product item box
dimensions are (2, 2, 2). In this case, we can have
seven optimum solutions. The results are shown in
Table 5.3 (a)-(c). Optimum solutions are marked by

* in Table 5.3.

Experiment 3 The input as the product item box
dimensions are (4.5, 6.5, 9.5). In this case, we can
get nine optimum solutions. However, the efficiency
is 82.7% in optimum solution. The results are shown
in Table 5.4 (a)-(f). Optimum solutions are marked
by * as well. With respect to this experiment, the
optimum solution efficiency is 82.7%. If the dimen-
sions of the productbitem boxes are unchangable,
there is no room to improve the efficiency. However,
if they are changed as (4.5 >~ 4.0, 6.5 = 6.9, 9.5

10.0), the total volume of the boxes is almost the
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191

Table 5.3 (a)

Result of experiment 2

Table 5.2

Result of experiment 1

k J Y1 Y2 Y Iy | Total Volume | Efficiency (%)
1 1] 24 20 = - — =
1 2 10 1 240 69120 85.71
1 3l 6 1 144 41472 51.14
1 A 2 5 2 240 69120 85.71
1 51 24 3 3 216 62208 77.14
1 6| 24 2 4 192 55296 68.57
1 71 24 — — — —
1 8| 24 — — — —
1 9| 12 20 7 240 69120 | 85.71
1 10 12 10 2 240 69120 | 85.71

1 1 12 6 3 216 62208 77.14
1 12 12 .5 4 240 69120 | 85.71
1 13 12 3 7 252 72576 90.0

1 14 12 1 14 168 48384 £0.0

1 15 8 20 2 160 46080 57.14
1 16 8 10 4 240 69120 85.71
1 17 8 5 7 280 86040 |- 100.0
1 18 8 2 14 224 64512 80.0

1 19 6 20 2 240 69120 85.71
1 20 6 10 4 240 69120 85.71
1 21 6 3 "7 126 36288 45.0

1 22 6 2 14 168 48384 60.0

1 23 4 20 3 240 69120 85.71
1 2 4 10 7 210 60480 75.0

1 25 4 5 14 210 60480 75.0

1 26 3 20 4 240 © 69120 85.71
1 27 3 5 14 252 72576 | 900
1 28 2 20 7 280 80640 | 100.0
1 29 2 10 14 280 80640 100.0°
1 30 1 20 14 280 80640 100.0

J Yi Y2 Y3 Iy [ Total Volume | Efficiency (2)

1 48 40 1 1920 46080 57.14

2| 48 20 3 2880 69120 85.71

3] 48 13 5 3120 74880 93.03

w4 48 10 7 3360 80640 100.0
5| 48 6 10 3024 72576 - | 90.0

» | 6] 48 5 14 3360 80640 100.0
7] 48 3 21 3024 72576 0.0

8| 48 1 42 2016 18384 60.0

9] 24 40 3 2880 69120 85.71

10 24 20 7 .| 3360 80640 100.0

11 24 13 10 3120 74880 93.03
12 24 ‘10 12 2880 | 69120 85.71
13 24 6 21 3024 72576 90.0
14 24 3 42 3024 ‘72576 .| 90.0
15 16 40 5 3200 76800 | 95.23

: 16 16 20 10 3200 76800 95.23
* |17 16 10 21 3360 80640 100.0
« |18 16 5 42 3360 80640 100.0
«[19] 12 40 7 3360 80640 100.0
20 12 20 13 3120 74880 93.03
21 12 13 21 3276 78624 97.5
22 12 § 42 3024 72576 0.0
23 8 40 10 3200 76800 95.23

% |24 8 20 21 3360 80640 100.0
« |25 8 10 42 3360 | -B0640 .100.0
26 6 40 13 3120 74880 93.03
27 6 13 42 3276 78624 97.5

« 128 4 40 21 3360 80640 100.0
« |29 4. 20 42 3360 80640 100.0
« 130 2 40 42 3360 80640 100.0

* 1 Optimum Packing and Loading Methods, — : Violencing the Constraint
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Table 5.3 (c)

Table 5.3 (b)

3 Y1 Y2 V3 1y, | Total Volume | Efficiency (%)

3 =11 16 20 — — — p
3 2 16 10 1 160 46080 57.14

3 3 16 6 2 192 55296 68.57

3 4 16 5 3 240 69120 85.71

3 5 16 3 5 240 69120 85.71

3 6 16 2 7 224 64511 80.0

3 7 16 1 10 160 46080 57.14

3 j—138 16 — —_ — R
3 g 8 20 1 160 46080 57.14

3 10 8 10 3 240 69120 85.71
.3 11 8 6 5 240 69120 85.71

3 % {12 8 5 7 280 86040 100.0
3 13 8 3 10 240 69120 85.71

3 14 8 1 21 168 48384 60.0

3 115 5 20 2 200 57600 71.42

3 16 5 10 5 250 72000 89.28

3 17 5 5 10 250 72000 89.28

3 18 5 2 21 210 | " 60480 | . 75.0

3 19 4 20 3 250 69120 85.71

3 | |20 4 10 7 280 86040 16,0
3 21 4 6 10 240 69120 | 85.71

3 22 4 3 -21 251 72238 89.64

3 23 2 20 5 200 57600 71.42

3 24 2 10 10 200 57600 71.42

3 25 2 5 21 210 60480 75.0

3 % |2 2 20 7 280 86040 100.0
3 27 2 6 21 251 72288 89.64

3 28 1 20 10 200 57600 71.42

3 29 1 10 21 210 60430 75.0

3 |—130 — — — -

k J Y Y2 Y3 Ty | Total Volume | Efficiency (%)
2 1 13 — = = -
2 2| 6 1 144 41472 | 5114
2 3] 4 2 192 55296 | 68.57
2 4l 24 3 3 216 62208 | 77.14
2 51 24 2 3 240 69120 | 80.64
2 61 24 1 7 168 48384 | 60.0
2 7] 24 1 10 240° 69120 | 85.71
2 8| 4 — — — —
2 91 12 13 1 156 44928 | 55.71
2 0] 12 6 3 216 62208 | 71.14
2 | 12 4 5 240 69120 | 85.71
2 12| 12 3 7 252 72576 | 90.0
2 13| 12 2 10 240 69120 | 85.71
2 Wl 12 1 21 252 72576 | .90.0
2 15 8 13 2 208 59904 | 74.28
2 16 8 6 5 250 .| 69120 | 85.71
2 17 8 3 10 240 69120 | 85.71
2 18 8 1 21 168 48384 | 60.0
2 19 6 13 3 234 67392 | 83.57
2 20 6 6 7 252 72576 | 90.0
2 21 6 4 10 240 69120 | 85.71
2 22 6 2 21 | 252 72576 | 0.0
2 23 4 13 5 260 74880 | 92.85
2 24 4 6 10 240 69120 | 85.71
2 25 4 3 21 252 72576 | 90.0
2 2 3 13 7 273 78624 | 97.5
2 27 3 4 21 252 72576 | 90.0
2 28 2 13 10 260 74880 | 92.85
2 29 2 6 21 252 72576 | 90.0
2 30 1 13 21 273 78624 | 97.5
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Table 5.4 (b)

K Yy y Yq 1y, | Total Volume | Efficiency (%)
2 1 10 4 — — —_ . —_—
2 2 10 2 —_ —_ —_ —
2 3 10 1 — — — -
2 4 10 — - — —_
2 5 10 — — — —
2 6 10 — — — —
2 7 10 - — —_ —
2 8 10 — — — —
2 9 5 4 — — — —
2 10 5 -2 1 10 66690.0 82.70

2 11 5 1 1 5 33345.0 41.35

2 12 5 1 2 10 66690.0 82.70

2 13 5 —_ - — —
2 14 5 — — — —
2 15 3 4 —_ — - —
2 16 "3 2 1 6 40014.0 49.62

2 17 3 1 3 9 60021.0 74.43

2 18 3 — — — —
2 19 2 4 1 8 53352.0 66.16

2 20 2 2 2 8 53352.0 66.16

2 21 2 1 4 8 53352.0 66.16

2 22 2 — — —_ —
2 23 1 4 1 4 26676.0 33.08

2 24 1 2 4 8 §3352.0 66.16

2 25 1 1 6 6 53352.0 66.16

2 26 1 4 2 8 63352.0 66.16

2 27 1 1 6 6 40014.0 49.62

2 28 — — — -
2 29 — — — —
2 30 — —

Table 5.4 (a)

Result of experiment 3

byl

Total Volume

Lo
<

I

j Y Y2 Y3 Ve Efficiency (%)
1 1 10 6 — - — —
1 2 10 3 — — — —
1 3 10 2 — — —_ —
1 4 10 1 —_ - — —
1 5 10 1 1 10 66690.0 82.70
1 6 10 — —_ - —
1 7 10 — _ — —
1 8 10 — _ - —
1 9 5 6 — - — —
1 10 5 "3 - — — —
1 11 5 2 1 5 66690.0 82.70
1 12 5 1 1 .5 33345.0 41.35
1 13 5 1 2 10 66690.0 82.70
1 14 5 — — —_ —
1 15 3 .6 — — —_ —
1 16 3 3 1 9 60021.0 74.43
1 17 3 1 2 6 40014.0 49.62
1 18 3 _— — — -
1 19 2 6 — — - —
1 20 2 3 1 6 40014.0 49.62
1 21 2 2 2 8 $3352.0 66.16
1 22 2 1 4 8 53352.0 66.16
1 23 1 6 1 6 40014.0 49.62
1 24 1 3 2 6 40014.0 49.62
1 25 1 1 4 4 26676.0 33.08
1 26 1 6 1 6 40014.0 49.62
1 27 1 2 4 8 53352.0 | - 66.15
1 28 — — — -
1 29 — — — -
1
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Table 5.4 (d)

Table 5.4 (c)

k i v, y Y4 Il .| Total Volume | Efficiency (%)
4 1 5 6 — - — -

4 2 5 2 — — — —_

4 3 "5 2 1 10 66690.0 82.70

4 4 5 1 1 5 33385.0 41.35

4 5 5 1 2 10 66690.0 82.70

4 6 5 — —_ — —

4 7 5 —_ — — —

4 8 5 — —_ o —

4 91 2 6 - - — -

4 10 2 2 1 4 26676.0 33.08

4 11 2 2 2 8 53352.0 66.16

4 12 2 1 2 4 26676.0 33.08

4 13 2 1 4 8 53352.0 66.16

4 14 2 —_ — - -

4 15 1 6 1 6 '40014.0 49.62

4 16 . 1 2 2 4 26676.0 33.08

4 17 1 1 4 4 |, 26676.0 33.08

4 18 1 — — - —

4 19 1 6 1 6 40014.0 49.62

4 20 1 2 2 4 26676.0 33.08

4 21 1 2 4 8 53352.0 66.16

4 22 -1 1 9 9 60021.0 74.43

4 23 — — — —
4 24 — -— —_ —_
4 25 — -~ — —
4 26 — - - —_
4 27 — -~ — —
4 28 —_ —_— — —_
1 29 — - — —_
4 30 —— - - —

L
<

k i V1 Vo va Ly Total Volume | Efficiency (%)
3 1 5 9 — — — —
3 2 5 4 — — — —
3 3 5 2 — —_ - —
3 4 5 2 1 70 66690.0 82.70

3 5 5 1 1 5 33345.0 41.35

3 6 5 1 2 ‘10 66690.0 82.70

3 7 5 - —_— — —_—
3 8 5 _ — _— —
3 9 2 9 — —_ —_ —
3 10 2 4 1 8 .| 533520 66.16

3 1] 2 2 1 4 26676.0 33.08

3 12 2 2 2 8 53352.0 66.16

3 13 2 1 '3 6 40014.0 49.62

3 14 2 — — _ —
3 15 1 9 — —_ — —
3 16 1 4 1 4 26676.0 33.08

3 17 1 2 3 6 40014.0 49.62

3 18 1 1 6 6 40014.0 49.62

3 19 1 9 1 9 | 60021.0 74.43

3 20 1 4 2 8 53352.0 66.16

3 21 1 2 3 6 40014.0 49.62

3 22 1 1 6 6 40014.0 49.62

3 23 — — — -
3 24 —_ — — —_
3 25 - — — —
3 26 — — — _
3 27 _ — — —
3 28 — — — -
3 29 - — _ -
3
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Table 5.4 (I)

Tabie 5.4 (e)

k j Yi y Vi Iy | Total Volume | Elficiency (%)

6 1 7 4 — — — -

6 2 7 2 _ — — —

6 3] 7 1 1 7 46683.0 59.89

6 4 7 1 1 7 46683.0 59.89

6 5| "7 - —-— —

6 6 7 — -— —_

6 7 7 — — — —_

6 8 7 — — — —_

] 9 3 e — — — -

6 10 3 2 1 6 40014.0 49.62

6 11 3 1 2 - 6 40014.0 49.62

6 12 3 1 3 9 60021.0 82.70

6 |— |13 3 - ‘ - - -

6 14 3 — —_ — —
16 15 2 4 1 8 53352.0 66.16

6 ‘116 2 2 2 8 533520 | 66.16

6 17 2 "1 4 8| .53352.0 66.16

6 18 2 — — — R

6 19 1 4 1 4 26676.0 . 33.08

6 20 1 2 3 6 40014.0 49,62 -

6 21 1 1 4 4 26676.0 33.08

6 22 1 — — - —

] 23 1 4 2 8 53352.0 66.16

6 |24 1 2 4 8 53352.0 ..66.16

6 25 1 1 g 9 60021.0 82.70

6 26 - — — —

6 27 — — —_ —

6 28 — — — —_

6 29 — — — —

6 30 —_ —_

L
L]

k 3 Y1 y Y1 | Ty, | Tolal Volume | Efficiency {%)
5 1 7 g = = - =
5 21 7 4 — — —_ -
5 3 7 2 — — — -
5 4 7 2 — — - _
5 5 7 1 1 7 | 46683.0 57.89

5 6 7 1 1 1 46683.0 | 57.89

5 7 7 — 1 - —
5 8 7 - - - -
5 9 3 9 — — — —
5 10 .3 4 — — - | —
5 11 3 2 1. 6 | 40014.0 49.62

5 12 3, 2 1. 6 | 40014.0 | - 49.62

5 13 3 1 2 6 | 40014.0 49.62

5 | 3 — ' — — -
5 15 2 9 - — - -
5 16| . 2 4 1 .8 | 533520 £6.16

5 17 2 2 2 | "8 | 533520 66.16

5 18 2 1 4 | "8 | 533520 66.16

5 19 1 9 - = ST I -
5 2] 1 4 11 4| 266760 33.08

5 21 1 o2 g 4} 26676.0 33.08

5 22 1 1 4 4 | 266760 | 33.08

5 23 1 9 .1 9 | 600210 8270

5 2| 1 4 2 | 8 | 533520 66.16
5. 25 1 2 4 8 | 5331520 | °66.16

5 26 - - - -
5 21 — - - -
5 28 - —_ — -
5 29 — —

5




same, but the efficiency is improved from 82.7%

to 99.3%.

Experiment 4 We set the pallet dimensions as

(96, 80, 84) and the product item box dimensions

as random numbers whose average and standard devi-
ations are 5.5 and 1.43, respectively. The number

of boxes to be generated by random numbers are three
hundreds. Thus, the carton size distribution is
examined by using the proposed method as a simulater.
The fraction of the carton size to be distributed is
five. The results are shown in Fig. 5.5 (a)-(c).

To design standard carton sizes, for instance, we
can combinate the four numbers largest in length,

width and height destributed.in the graph.

Let us define Zi’ 22, and Z3 as sets of the
largest four numbers in length, width and height,
respectively. From the experimental result, Zl’

Z2 and Z3 become

Z, = {20, 25, 15, 10},

zo = {15, 5, 10, 25 },
and

Zs = {5, 10, 15, 25}.

The standard sizes of a carton box (Zl’ Zg,

23) are determined as such combination as

(zl, Zg, 23) € Z1 X 22 X ZS'
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In this way, the standard sizes of a carton
box are determined, for instance, their wvalues are

(20, 15, 5), (20, 5, 10), (25, 15, 15)

and so on.

5.7 Additipnal Criteria

In observing the results, it often happens that
several feasible solutions of FS are found out as the
optimum solutions. Although there is no analysis
in the discussions, we can still solve the problem
by using additional objective functions. TFor instance,
we can set a subjective function from the economical
viewpoint, to minimize the total surface area of a
carton box. The total surface area of a carton box
SA is 2(21.22 + Zg.24 + 23.21). Hence, the additional
criteria is written by

min zi.zz + Zg.Zq + Zg.2q (5.19)
With respect to the previous experiments,

Egq. 5. 18 produce the following results:

17: (Y1’ yz) YB) = (487 10; 7)

i

Experiment 1) t
(Xl’ XZ: XB) = (3: 4: 2): (Zl, 22: 23): (1,
8, 3)

Efficiency = 100%

- 168 -



Experiment 2) k =1, t = 17, (yl, Yo Y3)
2(8, 5, 7), (Xl, X2; XS) = (3; 4: 2);
(Zl’ 22: ZS) = (6, 8, 6)

Efficiency = 100%

k = 3; t = 12: (YI) Y23 YB) = (8; 5) 7)2
(Xl, X2; XS) = (2’ 4) 3): (Zl) ZZ’ ZB)
= (6, 8, 6)

Efficiency = 100%

Experiment 3) k =6, t =6, (y;, vy, vg) = (1,
1, 9), (le XZ; XS) = (6: 4: 1): (Zly 22)
ZB) = (39, 38, 4.5)

Efficiency = 82.7%

- 169 -



5.8

(@1}

Conclusion

In summary, the following steps are executed:

System equations were developed.
Qualifications of the problem were analyzed.
Problem-oriented algorithms were developed.

In order to prove the validity of the develop-
ed theory and algorithms, numerical experi-
ments are carried out with acceptable results.
A design method for the standard carton box
is suggested by using the proposed algorithm

as a simulater.
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6. Minimum Partition of a Compound Rectangular Cell

6.1 Introduction

In a minimum partition criteria, the space
allocation problem often occurs. Such a problem
is described as "divide the given resource into some
materials so as to minimize the number of materials
to a possible extent". A typical problem is seen in
a computer-aided development in an LSI art work design.
The pattern generater is equipped for the development
in an LSTI mask manufacturing process and it develops
a number of rectangular shapes on a mask film till
rectangular shapes are completely burred in the LSI
mask Shape. It takes a lot of time for the develop-
ment in proportion to the number of rectangular shapes
composing the mask. Therefore, minimum partition is
desired to reduce the development time.

Some theorem and a new algorithm are reached
for solving the minimum partition problem in this
chapter. And to develop the theory, a graph theory
is employed here. A shape for the resource and

material is described as a graph when the problem is
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analized and the new method is developed.
The presented method is experimented with a

mini~computer and a validity of the presented

method is assured.

6.2 Problem Description

As shown in 1.3.4, any shape P in a plane

may be described as

m(i)

p= U [ M Pl (6.1)
i=1 j=1
m(i)
Setting P, = M P,., Eg. 6.1 is rewriiten as
i 5=1 ij
P =y P;. (6.2)
i=1

Eq. 6.2 implies that there are a number of
description ways of the shape P even if we only note

an union operater for P's composition. This aspects

is shown in Fig. 6.1.

\§ y
y

Fig. 6.1 A shape composition by the union

operator.

- 173 -



Let us define a term "partition'" as the way

in which P is also described by

m
P =y R, (6.3)

[N
i
et

with a constraint

m

M Ri:= ¢ (6.4)

i=1

A minimum partition problem dealt with in this
chapter is

min. m (6.5)
subj. to Eg. 6.3 and 6.4.

Then, we restrict the shape of P and the shape of

Ri that

1. Edges of P are parallel to a horizontal line
(X-axis) or a vertical line (Y-axis).
2. The shape of Ri is rectangular and its edges

are parallel to a horizontal line or a vertacal

line as well.

We name such a P and a Ri a componund rectangular
cell, and a uni-rectangular cell, respectively and
simply call them a poli-cell and a uni-cell respectively.

Then we rewrite the problem to

m
min. U Ry (6.6)
m i=1
n
subj. to P =y P., (6.7)
i=1
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(6.8)

(6.9)

Thus, the problem is expressed as follows.

For the given poli-cell divide it into the minimum

number of uni-cells which are completely buried on

the poli-cell without uni-cell's protruding and over-

lapping.

Fig. 6.2 A poli-cell and uni-cells.
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6.3 Analysis of Minimum Partition

Though a problem is described by the use of a
set theory, it is convenient to a minimum partition
analysis to apply a result of a graph theory. When
the graph theory is made a use of, a poli-cell P is
presented by a set of vertices V and a set of arcs
A, 1In the succeeding discussion, the poli-cell, P
is represented by the relation among the vertices
in two of which the arc exists or not. As the vertices
are figured out by a result of section 7.6, the
description method of P by the set theory can be trans-

formed to the one by the graph theory.
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6.3.1 Base Vertices for Partition and Their Number

There are vertices from which a poli-cell is
parted, if a partition is possible. Let us define
these vertices.

Definition: Let a base vertix be defined as
a vertix at which corner of P an interior
angle is three right angles. A line
drawn from the base vertix for a partition
of P is named a partition line and a point
intersected by the partition line and edges
of P are named partition vertices.

Assume that the number of vertices in P is No,
the number of the base vertices are obtained by the
following theorem.

Theorem 6.1: Set J as the number of the base

vertices. Then, the number of the base
vertices is given by
g=No~-1 (6.10)
Proof: Let us set L as the number of vertices
except for the base vertices, then.
J + L = No (6.11)

The sum of all the interior angles of Nofangle
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shape is 2(No - 2). £ R, and the interior
angle at the base vertix is 3.4 R, and the
interior angle at the partition vertix is
< R, where £ R is 90° Then we obtain
3 . 4R+ L .£LR = 2(No - 2) .<R. (6.12)

From Egs. 6.11 and 6.12,

J = No - 4 - No + 4
2 - 2 (6.13)

w—

R.E.D.
When P has empty spaces as shown in Fig. 6.2,
we define the base vertix as a vertix whose external
angle is three right angles. In this case, the number

of the base vertices of Ni—angle shape becomes

Ni +
J = _ig__é (6.14)

because this case becomes just an inverce of the above
one.
In this way, when P has f-empty spaces within
itself, the number of the base vertices is obtained
in the following theorem.
Theorem 6.2 When P is presented by No circumscribe
vertices and f empty spaces whose number of

vertices are N., the number of base vertices J

i
becomes
i — f AR )
J = 595"'é ¢y N+ 4 (6.15)
i=1 2
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If we denote N as all the number of vertices

for the presentation of P,

J=N-4 4 of (6.16)

2
Proof: By the results of the theorem 1, the number
of base vertices in the circumscribe vertices
is (No - 4)/2, and the number of base vertices
in each empty space is (Ni + 4)/2., Therefore,

we obtailn

T .

2 i=1
Then, since N = No +
i

Ni’ this is
1

Il ™Mbkh .

substituted into Eq. 6.15 and we obtain

g =022+ 21,
Q.E.D.

6.3.2 Theorem for Minimum Pértition

The number of uni-cells which are buried into the
given poli-cell P is equal to a cycle rank of the graph.
The cycle rank is given by Euler Polyhedron Formula.
Therefore, by substituting the number of partition
lines, the number of vertices of P, and the relation
between edges and the vertices of P, into Euler Poly-
hedron Formula, we prove basic theorems in order to

design a minimum partition algorithm.
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Theorem 6.3 Let us define m as the number of uni-

cells. Then, there exists a partition such

as

m5;m§9 -1, (6.17)

when P has no empty space, and

£

No + Z N. - 2
o< j=1 1 v or = X =24 2¢ (6.18)

2

when P has f empty spaces.

Proof: The number of base vertices J is

Ni+ 4

No - 4 , ~
1

2 i

J =

s

As shown in Fig. 6.3, one partition line parallel
to v axis may be drawn from each base vertices.
We set H as the number of partition vertices.
Since the partition vertices sometimes overlap,
H< J. (6.19)
If H partition vertices are generated by H
partition lines, 2H edges are increased to the
poli-cell P. - After partition, the number of
uni-cell, m is equal to the cycle rank in Euler
Polyhedron Equation. As we denote k and e as the

number of edges and the number of vertices in
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Fig. 6.3 Patitioning along y-axis.

o
CF—~———
o——d
[ a—
Fig. 6.4 TWO base Vertices on Fig. 6.5 TWO base Vertices on

the straight partition line. the straight patition line.

(Case 1) (Case 2)
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poli-cell P after partition respectively
m=kK - e + 1, (6.20)

By partition, k and e becomes

f
k=DNo+ I N, + 20 (6.21)
i=1
f
e = No + 2 N; + H. (6.22)
i=1

By substituting Egs. 6.21 and 6.22 into Eq. 6.20,
we obtain

m=H+ 1. (6.23)
From Egqs 6.19 and 6.23, we obtain Eqg. 6.18,
If empty spaces are not included in P, we obtain
Eq. 6.17 by setting f = 0. Q.E.D.

Theorem 6.4 Suppose that any two base vertices of the

poli-cell P do not exist on the same straight patition

line. Then, for any partition, the number of

uni-cell m satisfies

f
No + Z Ni - 2 N - 9
m = i=1 + 2f = . T 2 4+ 2F
5 2
(6.24)
when empty spaces are included in P, and
No - 2
m 2 = (2.25)

when empty spaces are not included in P,
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Proof: The partition lines must be drawn from the
base vertices, and their maximum number from a
specified vertix is two and the minimum number is
one. Therefore the number of partition vertices H is

H=> J (6.26)

As 2H edges are increased by the partition, we

obtain the same result as Egq. 6. 21 and 6.22

for the partition. From Eular Polyhedron Equation

and Egs. 6.21 and 6.22, we obtain

m=H+ 1. (6.27)

Then, by substituting Eq. 6.26 to 6.27, we obtain

Egs. 6. 24, If empty spaces are not included in

P, we obtain Eg. 6.25 by setting £ = 0.

RQ.E.D.

Theorem 6.3 implies that the number of uni-cells
which are buried into the poli-cell-P becomes (N - 2)/2
+ 2f only when any of two base vertices do not exist
on the same straight line. And theorem 6.4 implies that
the minimum number of the uni-cells is (N - 2)/2 + 2f
only when any of two base vertices do not exist on the
same straight line.

By the use of theorem 6.3 and 6.4, we obtain the
result that only a unique partition line must be drawn
from all the vertices in the minimum partition if any

of two base vertices do not exist on the same straight
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line. This fact leads to the following theorem for
the minimum partition.

Theorem 6.5 When a given poli-cell P is partition-

ed into the minimum number of uni-cells, in which
any of two base vertces do not exist on the same
straight patition line, a degree of the base

vertices is three.

Proof: Before a partition, a base vertix has two
edges. After the partition, a partition line

must be drawn from the base vertix. Hence,

three edges are met with on the base vertix.
Theorem 6.5 gives the munimum partition algorithm
a basic hint. Namely, when any of two base vertices

do not exist on the same straight lines, the minimum

partition is executed by drawing only one partition

line from all the base vertices.

Now, we consider the case when two base vertices
exist on the same straight line. There are two

cases as shown in Fig. 6.4 and 6.5.
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At first we treat the case as shown in Fig.
6.4. Suppose that there are Q/2 pairs of Q base
vertices such as shown in Fig. 6.4, and that par-
tition lines are drawn between pairs of base vertices.
After any partition except for the above case, the
number of partition vertices are satisfied by

H2>2J - Q. (6.28)
Since 2H edges is increased by the partition in using
H partition vertices, the number of all the vertices e,

and the number of all the edges after the partition are

£
e = No + X N; + H, (6.29)
i=1
£
k=No+2N.+§.+2H. (6.30)
i=1 *

Hence, the number of uni-cells m obtained by
substituting Eqgs. 6. 29 and 6. 30 into Eular Polyhedron
Equation is

m =k -

H +

+ 1, (6.31)

MO N o

By the use of 0 €£Q £ J,



f
z (Ni + 4)
= No --4 -+ i=1 + 1
4 £ 4
No + .2 Ni
4
N
= = +
AR (6.32)

If there is no interior space empty, Eg. 4. 32

becomes

No
4

(6.33)
From Eg. 6.31, when Q/2 partition lines are drawn
between Q/2 pairs of base vertices, the minimum number
of uni-cells are buried into the poli-cell P.
Therefore, theorem 6.5 is applied to this case.
In the second, we deal with the case as shown
in Fig. 6.5. Suppose there are Q base vertices as shown
in Fig. 6.5, where Q is a multiple of three. Since
the number of partition lines at such base vertices

are 2Q/3, the number of vertices e and the number k of

edges after such a partition are

f

e = No + 2 N, + H, (6.34)
i=1
L 2

k=DNo+ ZN. + = Q + H. (6.35)
i=1 + 3
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From Eular Polyhedron Equation, the number of uni-cells

is

v

~~

ey
|

% Q) + 1 (6.36)
By the use of 0 =

2
> = +
m 3 J 1

- N-1 % £ (6.37)

If there is no interior empty space, Egq. 6. 37
becomes

No + 1
Z =3 . (6. 38)

From Egq. 6 35, when % Q partition lines are drawn
at the corner of base vertices, the minimum number of
uni-cells are buried into the poli-cell P, 1In this
way, theorem 6.5 is also applied to this case.

It is possible to change the partition way shown
in Fig. 6.5 into the one in Fig. 6.4. 1In such a

case, the number of uni-cells altered is the same as

before. This is proved by the following theorem.
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Theorem 6.6 Suppose that there are Q base vertices
shown in Fig. 6.5. Then, the number of uni-

cells partitioned by the way shown in Fig. 6.5

is the same as the number of uni-cells . partitioned
by the way in which a partition line is drawn
between a pair of base vertices and another
partition line is drawn from the rest of the base
vertex to a corresponding partition vertex.

Proof: When the partition lines are drawn as shown
in Fig. 6.5, the number of uni-cells m after par-

tition is obtained by applying theorem 6.4.

~

. 2
ml~H+§Q+1.
On the other hand, when the latter partition lines
are drawn, the number of edges k and the number e

of vertices after the partition are respectively

£

1 1 2
k = No + 2 .+ 2.2.Q + = =.Q + .
o) i Nl 2 3 Q 5 3 Q 2H, (6.39)
f 1
e =No+2Z N, +=.Q+H (6.40)
i=1 * 3

e

Hence, the number of uni-cells Mo after the parti-

tion becomes

2
My = H + 3 Q + 1. (6.41)

Thus we gain m1 = . Q.E.D.
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Theorem 6.6 implies that the case shown in
Fig. 6.5 can be processed in the same way as the
case shown in Fig. 6.4. This causes the minimum
partition algorithm to make the degree of the base

vertex three.

6.4 Minimum Partition Algorithm

A minimum partition is realized by such a way
in which partition lines are drawn in order to make
the degree of base vertices three. Here, the

algorithm for the minimum partition is presented.

6.4.1 A Graph Representation of Poli-cell P

A matrix representation based on a graph
theory works to represent a given poli-cell and the
partitioned poli-cell. Let us define a incidence
matrix A to represent the poli-cell P.
Definition Let us define A as an incidence matrix
as
A= {a..} a.. = (1 when there is an edge
between vertices i and j,

0 otherwise.
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The incidence matrix represents a relation among

the vertices and it shows the graph of the poli-

cell P.

Poli-cell representation must be established
in a computer. We call a poli-cell P before the
partition of a primitive poli-cell. The input data
for the primitive poli-cell are stored into the
computer by the aid of a digitizer. Vertices as the
data are input in the counter-clockwise turn of
assignments of their number. We denote x(i), y(i)
as the coordinates of the vertex i. This first
representation has only an information about the
circumference vertices relation. We call it a
primitive incidence matrix of the poli-cell P, and

denote A o= {aij}f
6.4.2 Judgement of Base Vertices

A partition line is always drawn from base
vertices. For the partition, the base vertices must
be looked for, first. On the base vertex, it occurs
a special displacement of the coordinates in a series
of vertices. Therefore, the base vertex is searched

for as soon as the data of the vertices are input.

Judgement conditions of the coordinate displacement
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as the base vertices I are as follows:

X(I) - X(I - 1) <0 and Y(I.+ 1) - Y(I) >0, (6.42)
X(I) - X(I = 1) >0 and Y(I + 1) - Y(I) <0, (6.43)
Y(I) - Y(I - 1) > 0 and X(I + 1) - X(I) >0, (6.44)
Y(I) - Y(I - 1) <0 and X(I + 1) - X(I) <0. (6.45)

Judgement conditions of 6.42 - 6.45 correspond

to the case of Fig. 6.7 (a) - (b), respectively.

6.4.3 Determination of Partition Vertices

After the base vertices are searched for, two
partition lines parallel to X and Y axis are drawn
from the base vertices. Partition vertices are
determined as the intersection points of the drawn
partition lines and the edges in the primitive poli-
cell P. The edges are easily found out in the follow-
ing way.

Let us treat the case when the partition line
parallel to x axis is drawn from the base vertex J.
The edge on which the partition vertex exist is obtain-

ed by finding the edge such as

min. IX(J) - X(1)] I =1, 2,..., n (6.46)
subj. to (X(J) - Y(I)) (Y(I + 1) - X(J)) 20

(6.47)

X(I) - X(I +1) =0 (6.48)
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Fig. 6.6 Graph representation and the incidence matrix

(a) (b) (c)

Fig. 6.7 TFour types of base vertices
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Where n is the number of all the vertices.

The same procedure can be applied when a
partition line is drawn parallel to Y axis by
changing X to Y, and Y to X. Thus, the partition
vertices are registered to the computer.

If a partition point coinsides with other base
point, only a partition. line is registered.

Since all of the partition lines are drawn,
we renumber the vertices including partition vertices
counter~clockwise and define a new incidence matrix
of the poli-cell P. This new matrix has the edges
and vertices relation added to the primitive incidence
matrix by partition lines and vertices. We call this

matrix an basic incidence matrix B, which is

i

B {bi-}, b =1 when there is an edge

J ij
between vertices I and J,
bij = 0 otherwise.
The basic incidence matrix B has more uni-cells

than the ones with minimum partition.
6.4.4 Minimum Partition Algorithm

In order to partition the given poli-cell to
the minimum number of uni-cells, a degree of all the

base vertices becomes three as shown in theorem 6.5.

- 193 -



If the case shown in Fig. 6.5 occurs, the base
vertex is inhibited to have the partition line
connected to the partition vertex. From these points

of views, a minimum partition algorithm is established

as follows:

[+]

1 Set bii =j

1 bij (i =1, 2,..., n) in B.

B

(A diagonal elements of the matrix B has the

degree of verteéx I.)

2° Find out the vertex I such as b,, = 4.
3° Find out the vertex J such as b.. = b.. = 1
ij ji
and b.. = 3 subject to I + 3 < Jor I - 32> J.

Ji
(In this step, one of two partition vertices

corresponding to the base vertex I is found.)
4° Set b,; = 3, bjj = 2, and byy = bji =0
(In this step, one partition line is removed
and the degree of the base vertex I becomes
three.)
5° Repeat the step 2° - 4°. 1If the vertex I
and J which satisfy the condition in step
3° and 4° is not found any longer, go to step
5°
6° If there is no vertex such as b;; = 4, the
minimum partition is reached in the matrix B.

If there are vertices such as bii = 4, go

to step 7°.
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7° Find out the vertex I such as By, = 4,

b = 4 and b, = b.. = 1 subject to I + 3

JJ J Ji
£ JorlI-32>4J.
If such a vertex is not found, stop the
procedure.

8 Set bii = 3, bjj = 3, and bij = bji = 0,
then go back to 7
We call this final matrix B a partition
matrix.

A simple example of the algorithm is shown in

Fig. 6.8.

6.5 Extraction Algorithm of Uni-Cells

A partition matrix B transformed from a base
partition matrix gives a graph an incidence relation.
By using this matrix B, the procedure is requested
to extract and output each uni-cell being partitioned.
For the sake of this algorithm, the following algorithm

X

is composed.

1° Set by in B to by, = 0, by 5.9 =0
(1i=1,2,..., n), by, = 0 and bij = - bij
(i >3, i, =1, 2,..., n).

2° Find that bij =1{i,j =1, 2,..., n). 1If
bij = 1 is not found in B, stop the procedure.
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( \
21000001
13101000
01210000
01014101
00001210
00000121
10001013
\ /
The basic incidenc
matrix. \1}\\\\\\Qt
( 3\
21000001
12100000
01210000
00121000
00013101
00001210
00000121
10001013
\ /
/ \
01000000
00100000
00010000
00001000
00000101
00000010
00000001
C]OOO]OOQ)

The partition matrix.

Fig. 6.8 An example of the proposed algorithm applied to

the shape shown in Fig. 6.6
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3° Find that bjk =1(k=1, 2,..., n).

4°  Find that by # 0 (3 =1, 2,..., n). If
not found, replace j = k and go back to step
3°., If bjk:¢ 0 is found, go on to step 5°.

5° A uni-cell can be extracted as a series of
the traced vertex number from the step 2°
to step 3°. Then, set that bij = 0, where
suffices 1 and j are the vertex number used
in the extracted vertex number, and go baék
to step 3°.

In this way a series of the vertices corres-
ponding to the uni-cells partitioned from the poli-
cell P is obtained. When this algorithm is applied
to the -matrix shown in Fig. 6.8, the serieses
of the vertices become

(1, 2, 3, 4, 5, 8, 1) and (5, 6, 7, 8, 5).

6.6 Experiments

Some of poli-cells are experimented to show a
validity of the proposed method for a minimum
partition. The computer used is OKITAC-4500C and

the program is coded with FORTRAN. Instead of CRT

display, an X-Y plotter is equipped for output.

- 197 -



1 -+ +

B I e e T [ Tt T W
(3.2.2.0 £3.2.2.00 (2.4,2.0)

NG. 1 NG. ¢

SCAL= 0.5 DATA

Fig..6.9 Experiment result 1

i
)
]

~ A

SUAL=U-D LA

Ly
A

Fig. 1.10 Experiment result 2

NG. 1T NG. 2

SLAL= 0.2

Fig. 6.11 Experiment result 3

- 198 -

GV

~

INL



/
<3
[
9
3
N
~
3
{J
‘D
3
s
-
[}
cJ

NO . 1 NGO . 2 NG
I [ ; VAT AN

Fig. 6.12 Experiment result 4

/\

)

)

2

CJ

<
| I

~

€

)

)

5

<

-~

3

)
r)_l__

3

~s
——

I

N ] NOG. 2

SCAL=0.5  DATA

Fig. 6.13 Experiment result 5

B ]
1 L . 1.
b . = |
T LT +
0L2:0.0) (C.3,0.08) G.0:;2.1 (2.2.2.3)

=
-
f—>
o
"o
=
[N
D]

Fig. 6.14 Experiment result 6

- 199 -



Ty 5,0

(.2:3,0) .

[gh
ca_|

[}

NG. 1 NG .2
SCAL= .5 UATA

Fig. 15 Experiment result 7

NO. 1T NO. 2 NG.

Ei[Lf\LJTZ [J»aES E]f%_Tf\

Fig. 6.16 Experiment result 8

[

i
(G000 (3.2.0.0 (2.0.0.0) .
- 4 ™ -
NO. 1 NG. 2

SLAL= 0.5 OATA

Fig. 6.17 Experiment result 9
- 200 -



]

1
L]
C3.0.0.0)
5CAL=0.5 DATA
- +
0.0.0.0 .0.0.0
NO . 2.0 NO .

Fig. 18 (a)

(0.0.2.0)
NO. 0.0
L&Cf?::] CHART NO. DRX—400272
o
i
(0.0.0.0
3.0 ND. 4

Experiment result 10

- 201 -

(0.0.0.0),

NO. 1.0

(0.0:0.00

-0 NO .

o7



1
[j h
+ + + +
(0.0.0.0) (0.0.0.00 (0.0.0.00 (0.0.0.Y
NG . 6.0 NG . 770 NC - 8.0 NO. S.0
] —
1
+ + + +
<0.0.C.00 (0.0.0.0 (0.0.0.0) (0.0.C.0
NO._ 10.0 NO. 11.0 NO . 1.0 NC . 13.0.

(52 CHART NO. DRX--400272

Fig. 18 (b) Experiment result 10

- 202 -



6.7 Conclusion

An space allocation problem is treated in the
situation of a minimum partition. Through a dis-
cussion and experiments, we reach the following
conclusion,

1. Some theorem for a minimum partition is
proved.,

2. Conditions for the minimum partition are pPro-
posed by the results of the above-mentioned
theorems.

3. An algorithm based on the above mentioned
1 and 2 is proposed and an extraction algorithm
for uni-cells partitioned from a poli-~cell is
proposed as well.

4, Experiments to verify the algorithms pro-
posed are done and the validity of the algorithms
is proved.

A minimum partition algorithm may be applied
not only to LSI art work design but aiso to other
areas. Because this kind of problems are frequently
seen in many fields where a graphic processing is
required. Such problems are a poligon package problem,
an automated process planning, an automated descrip-
tion for 2-D geometries and so on.

Therefore, there are quite a few applications of

the minimum partition method.
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7. Graphic Processing in the Space Allocation

Problem

7.1 Introduction

The space allocation problem has two phases;
the one is to treat the problem as mathematical
programming, and the other is to process the
problem as graphic processing. Whenever we treat
the space, the space geometry can not be separated
from the problem, because the geometry of any
spaces is essential for the space allocation.

In dealing with the space geometry by a
computer, the first problem is to remedy the
difficulty of how the geometry is taught to the
computer and how the data structure of the
geometry is constructed in the computer. The
second problem is to process the problem that
occurs by the space allocation, for example,
the collision problem in the allocation of the
space without overlapping and the graphic output
to verify the allocation of the space.

As to the first problem, "Formulated Pattern
Method (F.P.M)" is developed for the geometric

modeling by Prof. N. Okino. Here, we discuss
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the space description method in general, and
show the relation between the description method
and the data structure of the space geometry in
computer. As to the second problem, one of the
general methods for processing the geometry is
established. Namely, the geometry processing
method is developed by introducing a boundary
evaluator.,

In general, the geometric space treatment
belongs to the geometric modeling problem,
and the results obtained here are one of the
applications to the geometric modeling. So the
discussion is based on the theory of the geometric
modeling.

As the geometries having been treated so
far are rectangles or blocks, the results obtain-
ed in this chapter is not applicable to the
previous problem. However, the theory developed
here will be important in processing a free form
geometry in future. One of the applications is
proposed to solve the collision problem between
the shearing blade and the material in metal sheet
cutting. This is applied to determine the

sequence of shearing out the materials from the

nested balnk.
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7.2 Geometric Definition and Data Base

The first problem in processing the
space geometry is on how the geometric definition
is modeled. Here, we introduce the following way
of construction to modeling the given space
space geometry.

A given geometric space model P may be
presented by the construction of some basic
shapes. Each basic shape is named a primitive
and expressed by P;. Pi is shown 1n three-
dimensional Cartesian coordinate system,

P, = {x | fi;(x) = 0} (7.1)
Egq. 7.1 shows a half space.

Supposing that P is subsequently built up
using some constructive operators .Opi. and
primitives Pi (i=1, 2,..., n),

Pl))...)
(7.2)

P=P (p,._ (...(P
n.op . “n-l.op ;. 2.0pq.

Let us introduce the set operator as the
constructive one. This operation is as follows.
When two primitives are operated by a union and a
product respectively,

Pc - PaLJ Pb

{x1 f (x)2 oyU {x 1 f (x) 20}, (7.3)
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and

P, =P_1) Pb

{x1 f (x)z0{x 1 fy(x)= 0}, (7.4)
Also, the difference operation is defined by
using the set operator as follows:

PC = Pa - Pb

—
Pa(W Pb

= {x| f (x) 20N {x!-fy(x)= 0} (7.5)
The operations explained in Egs. 7.3 - 7.5 are

shown in Fig. 7?1.

Fig. 7.1 Set operation
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Now, let us substitute the set operator in
Eg. 7.2, then arrange it as focllows:
P = (PkFW P1F\ .o M Pm)lJ (Prl~1Pq{1 ... N PS)

.U P N L NP,
(7.6)

Suffices in Eq. 7.6 can be exchanged as follows:

P = mn P, (7.7)

m(i)
=1 13"

[N
-

13
Egq. 7.7 is offered and named the "Formulated
Pattern" by Prof. N. Okino of Hokkaido University.
In the process of arranging from Eq.7.2 to Eq.
7.7, there are various formulations for the given
model P. That is, there are a number of possi-
bilities to describe or construct the given geomet-
ric space. Therefore, a geometric medeling
usually adopts some formulation between Eq. 7.2
and 7.7.
The modeling formulation has an effect on
the data base to be structured in the computer
corresponding to the geometry. For instance,
the modeling method by the use of Eq. 7.2 needs
the binary tree as the data base structure, and
the modeling method by the use of Eq. 7.7 needs
only an indicator, which specifies the primitives

having the same suffix i, in the data base.
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In general, as the data base has the
tree structure corresponding to the geometric
modeling method to keep the constructive sequence,
it becomes complex to treat it. If we wish a
simple data structure for modeling, "Formulated
Pattern Method (F.P.M.)" is suitable because its
data structure needs no tree. Therefore, F.P.M.
is used for the space geometric modeling through-
out the discussion without the lack of the

generality of modeling.

7.3 Recognition of Space Allocating Feasibility

Once the space geometry is modeled in the
computer, the second problem is on how to recog-
nize and extract relations between a given point
and the space or two spaces from the geometric
model. For this purpose, the boundary evaluation
technique is established in the field of geometric
modeling. There is room for improvement of the

boundary evaluation technique proposed so far,

however.

This section first discusses on the boundary

evaluation, and a new boundary evaluation technique
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is proposed. Then, the recognition method for
a space allocating feasibility---the method for
solving the collision problem---is taken into

consideration.

7.3.1 Boundary Evaluator

Most of outputs of graphic processing can
be considered as the mapping of the boundary of
space models presented mathematically in the
two- or three-dimensional space to some spaces.
This mapping procedure is also important for
the recognition of the relations between a point
and the modeled space, because the recognition
of the location of the space 1is attempted by
knowing where the boundary of the space exists,
Therefore, the boundary evaluation technique
is required and the boundary evaluator serves
as the mapping procedure.

The two boundary evaluators are presented
so far in geometric modeling: PADL b-function
and TIPS-1 penalty function.

They are described as follows.

a) PADL b-function

The b-function adopted by PADL is expressed
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as follows:

B (P,. P;, Py 1, bP;

op,-Fi-1) = B<'opi; ir Fi- i?

i
bP. 1), (7.8)

where bPi and bPy 1 is the boundary of primitive
Pi and Pih1 respectively, B is the boolian
function whose value is one on the boundary and
zero in other areas. When the constructive
operator is union one, B operates as

B (P; U P, 1) = (bPy 1Py 1) U (bP; 1] 7.,
Wherefgg is negative set of Pi' When the
operator is intersection one, B operates as

B (P;MP; )= (bpifw Pi—l)LJ (bP; 1M Pi).

This operation is performed in the order
of the suffix in Eq. 7.2 when modeling the space,
so that the data to store the space geometry
needs binary tree in order to hold the operation
sequence. By the use of PADL boundary evaluator,
the graphic processings such as three view
drawings, sectional drawing and perspective view
drawing become possible because these processings
are only mapping of the boundary of the space
into two dimensional drawing space. But this
evaluator does not give the information on how

far there exists the point from the space except

that only the point exists on the boundary.
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b) TIPS-1 penalty function
TIPS-1 penalty function presented by Dr.

Y. Kakazu, Dr. N. Okino and Dr. K. Hoshi is

given by
5 n m(i)
= E ]
o (%) igl 5 c 1] | min (o, fij (x ) (7.9)
and
n m(i)
: =X a:
5i(x) = 2 % Imax (o, f , GOl (7.10)

where clJ is a positive number. These eguations
are based on Eq. 7.7. Eg. 7.9 is used to evaluate
the outside of the model and Eq. 7.10 is used to
evaluate the inside of the model. TFor the evalua-
tion, the values of Egs. 7.9 and 7.10 are figured
out. Namely, the value of Egq. 7.9 is zero within
the space model and on the boundary, and a positive
number which increases toward the outside from the
boundary. The value of Eq. 7.10 is the opposite

to the above.

The penalty function not only gives the bound-
ary information but it has the outside information
of the given model as the potential function. The
aspect of this potentiality looks like a declining
wall surrounding the given model, and this wall

is called a penalty surface. By setting Egs. 7.9
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and 7.10 to
S =8 -8 (7.11)

{O when S 4 O
B(S) =

1 when S = 0O, (7.12)

and

the same result as b-function is derived for
graphic processing. In addition to this result,
the penalty function gives the relation between
the specified point and the space model. This
information is inducted by measuring the poten-
tial value of the penalty function at the speci-
fied point. If the value is the function of the
distance from the boundary of the space model,

it is easy to recognize where the point is. This
feature is useful to imply feasible space allo-
cating area. Namely, it becomes possible to know
how far the point is from the space model and how
distance the point may be moved toward the space
model. These are important clues for solving

the space location feasibility and collision
problem between two spaces.

However, the potential feature is often
unclear because Il operation sometimes makes the
value of penalty function so large that it becomes
impossible to measure the potentiality. To remove

this defects, the new evaluater is proposed.
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7.3.2 New Evaluator

Defects of Eq. 7.9 against the boundary
evaluator are as follows:

[}

1 The multiple operation I corresponding
to the union operator makes the value of
Eg. 7.9, So(x), so large.

]

2 When the boundary evaluation is needed
within the given space, Egq. 7.9 becomes
useless. In this case, Eq. 7.10 must be
prepared.

3° Even if the nearest boundary to the given

point is known, all of the function fij (x)

must be operated to figure out Eq. 7.9.

As to 1°, the II operation produces a steep
wall'arouﬂd the model. Especially when some
functions have high order terms corresponding
to their primitives, the wall becomes extremely
steep. In the case of 3°, this sometimes happens
and becomes an obstacle to reduce computing time,
for the composite basic primitive nearest to the
given point is often known or listed up.

Based on Eq. 7.7, a new boundary evaluator

is designed by

n m(i)
F(x) = - max min Cij fo(x), (7.13)
i i3
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whose value is negative within the space model,
positive outside and zero on the boundary, where
cij is the positive number. The new evaluator
overcomes the defects of 1, 2 and 3. As the
operations of Eq 7.13 are max and min, the unique
function is selected and determines the value

of Eq. 7.13. It shows that the displacement of
Eq. 7.13 is not so steep as Egs. 7.9 and 7.10.
Furthermore, the composite basic function selected
by Eq. 7.13 is usually the nearest primitive

to the given point. Therefore, if the nearest
primitive is known, the computation of Eq. 7.13
deals only with the nearest basic function. In
this way, defects 1 and 3 are overcome by using
Eq. 7.13.

The aspects of the boundary evaluators dis-

cussed here are shown in Figs. 7.1 - 7.4.
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Fig. 7.2 DPADL b-function Fig. 7.3 Penalty function

for outside

F S

Xy

Fig., 7.4 Penalty function Fig. 7.5 A new evaluator

for inside
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7.3.3 The Recognition Method for Space

Allocating Feasibility

By the use of the new boundary evaluator,
the recognition as to whether the given point
is outside the given space is easily performed.
Let us set x* to the given point and P1 to the

given space model. Also, the new evaluator

n m(i)
corresponding to P; is F;(x)=-max min 53 fij (x).
i=1  j=1

Then, we obtain that

Fl(x*) > 0: x* is outside the model,

Fl(x*) = O; x* is on the boundary,

Fl(x*) < 0: x* is inside the boundary.

This relation shows that the feasible area
for allocating another space is restricted by the
region which satisfies

FA = {x ] Fl(x) > 0}, (7.14)
where FA implies the region of the feasible area
for allocating another space. If we allocate
another space P2, P2 is prohibited from overlapping
Pl'

A point which is inside P2 such as Y & PZ’

therefore, satisfies y’¢ FA. Thus, P, is allocated

without overlapping P1 by testing the value of
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FI(X)’ so that

F(x) S 0: impossible to allocate P,
Fl(X) > 0: possible to allocate P2.
And the value of Fl(x) becomes the function of

the distance from the boundary of Pl‘

7.3.4 Collision Prohibition

In the previous section, the relation bet-
ween the two given space locations is considered.
Now, we treat n given spaces.

The location constraints on the given n

spaces are written by

n
U PiC: B, (7.15)
i=1
n
i=]1

where Pi (i =1, 2,..., n) are the given n spaces

and B is the resource space in which Pi (i = 1,
2,..., n) are allocated.

Let us set Pi as

2 m(j) i
P, =U M {x1 ] (x) Z 0}, (7.17)
j=1 k=1 Jk
i=1, 2, , n,
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and B as

)

m(
{x ijk_(x),Z 0}. (7.18)

J
M
k=1

By applying the boundary evaluator technique
to Egs. 7.15 and 7.16, we gain the following

procedure instead,

n
x € {x !(max (F;(x)) £ 0) A

i=1
h  m(j)
(-max min (bjk(x)):i 0} (7.19)
=1 k=1
and
n
'x ¢ {x | (min F;(x)) > 0} (7.20)
i=1
here F - nin’ 1 ]
where i(x) = - ?ii [ﬁiﬁ Cjk fjk (x)].

In these procedures of testing x, the

collision among n spaces is prohibited.

7.3.5 Surface Equations of the Space

It frequently becomes necessary to process
the surface of the given space for graphic process-
ing output. By applying the boundary evaluator,
the surface equations are simply described. The

surface equations include such as plane segments,
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line elements and intersection points which are

important factors of graphic outputs.

By setting the given space P as

n
p=U r {x 1 fij (x) = 0},

the plane segment equations of the space boundary

are expressed by

fij (x) =0, i=1, 2,..., n, Jj=1, 2,

and
n o m(i) (7.21)
- max [min fi‘ (x)] = 0.
i=1 j=1 M

The line segments of the space boundary becomes

the intersection of two planes of the space

boundary, so that they are expressed by

f (x) =0
ij
fyg (2D =0
it k, j+2 i, k=1,2,...,n
and j, & = 1, 2, , m(i)
and
22
n m(i) (7.22)
- max [min fij (x)] =0
i J
In the same manner as the above the inter-

section points of the space boundary are expressed
by

f (x) =0

i3
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frpg () =0

fe(x) =0
iz k#Fu, JjFLFV
l:k:u = 1: 2: , I
and j,&,v =1, 2,..., m(i)
and
n m(i)
- max {min fi.(x)] = 0.
i 3 J

These equations are the basis of general

principle for processing graphic putputs.

7.4 Application of the Collision Prohibition

Technique to Material Shear Scheduling

After the materials Ri (i =1, 2,..., n)
are allocated on the blank (resource) B, they
are sheared out with a shear blade. But the
determination of the shearing orders for the

materials is requested because of the shear

(7.23)

blade geometry. In other words, the shear blade

must shear out and collide only with the desired

material meeting its edges.
It must be avoided to collide with other

undesired materials. Thus, the shear order
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scheduling is necessary. In the following sections,
the shear scheduling method is proposed when the
material geometry is restricted to a rectangle

and the shear blade geometry an L-shape.

7.4.1 Recognition of Shearing Feasibility

In order to shear out the material, 1t is
necessary for the shear blade to satisfy the
conditions that the shear blade shears out and
produces the material only desired by the blank
and it does not shear the rest of the materials
in the blank.

Let us define a region sheared by the blade
as CR(x) and the material region desired to be

sheared out as Ri*(x). Then, the above conditions

are expressed by

CR(x) D Ry4(x), (7.24)
and
CR(x) M Ry(x), i# i*, 1=1,2,...,n
(7.25)

Since the blade shape is an L, the blade
shearing region with corner coordinates (Xc’ yc)

is written by
CR(x) = {(x, ¥) | (x, ~x20)N(y, -v 2 0}.
(7.26)
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And the region of the material whose shape
is a rectangle with its left under corner co-
ordinate (xi, yi) is written by

Ri(x) = {(x, v) | (x -x;,20)0 (v -y4

20)N (xi + li -x 2 0)N (yi
t W, -y z 0)}, (7.27)
where li, W, are the length and width of the
material respectively.

By introducing the boundary evaluator to
check a given point if it exists inside the
shearing region, the following function is
established,

Fp(x) = - min (XC - X, ¥, - V). (7.28)
If Fp(x*) < 0, then x* is within the region of
CR(x).

In the same manner, the following function
is established for Ri(x),

Si(x) = — min (x - X ¥V - Vi, Xy + 2 - x,

y; towy - V). (7.29)

If Si(x*)fi 0, then x* is inside the
rectangular region of R;(x).

Supposing that the shear blade shears the
material Ri’ there exists a point x* which
satisfies

Fb(x*) <0 and Si(x*):i 0.

- 224 -



From the conditions 7.24, this is rewritten by
* *
max (F(x*), 85 (x*))
= ~min (x, - X*, y, ~¥¥, X* - X;, ¥*¥ - ¥y,
X0t 4y - X¥, y. + w, - y¥)< 0. (7.30)

Egq. 7.30 is reduced to

-~ min (x, - X¥, y_ - y*, x¥ - %3, ¥ - ¥;)

The 1imit that (x*, y*) exists within the region
of CR(x) is given by (x*, y*) < (Xi, yi).
By substituting (Xi, yi) to (x*, y*) of Eq. 31,
we obtain the following relation Egq. 7.32.
- min (X, - X5, Yo — Vi) <0 (7.32)
When the material Rj is sheared out, the
corner point of the blade is met with the upper

right corner of the material Rj, Eq. 7. 33 is

maintained,

- mi o+ 1, - X, L F W, - Vi) S 7.
min (XJ 1J X, Y WJ yl) 0, (7.33)

where 1. and wj is the length and the width of

the material Rj’ and Xjand yj are left under

corner coordinates of material Rj'

Let us set J(Rj, Ri) as
J(Rj, Ri) = - min (Xj - 1j - Xy,
v + Wy - Vi) (3.34)

By the above discussion, we can easily test the

blade collision by calculating the value of

- 225 -



J(Rj, Ri) to see whether the blade collides
with the material Ri when the material Rj is
sheared out. If so, J(Rj, Ri)fé 0, and if not,

J(Rj, Ri) > 0.
7.4.2 Shear Scheduling

"hen the material Rj is sheared out, the
relation that the shear blade for shearing out
the material Rj collides with the mgterial Ri
or not is generated easily by calculating the
value of Eg. 7.34.; By testing this relation
between all the two materials, we can obtain
the binary rela{ion on shearing feasibi1ity
between two materials. The binary relation is
described by introducing a matrix P = IPij]
which means:

Pij = 1: Possible to shear out material Rj
without the blade collision with the
material Rj'

Pij = 0: Impossible to shear out the material
Ri because of the blade collision with
the material Rj'

By applying Eq. 7.34 so as to determine the

value of Pij’ the matrix P becomes
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Pij =1 if J(Rj, Ri) > 0,
Pij = 0 if J(Rj, Ri)fé 0.

The relation presented.by P gives an in-
formation on the relation between two materials
as to whether or not shearing out is possible.
But it does not give the information on which of

the two, Ri and R should be sheared out first

Kk’
when Ri is not sheared out due to the blade
collision with Rj’ whereas Ri is not sheared out
due to the blade collision with Rk’ but Ri is
not sheared out without the blade collision with
Ry . This aspect is shown in Fig. 7.5. 1In this
case, a shear sequence becomes the order of

Rk, R. and Ri' To make such a relation, the

J
binary relation matrix P satisfies a transitive
relation of shear order as mentioned above.
The following calculation produces the transitive
relation,

T =P+ P+ ...+ DY, (7.36)
where T = [ti,j] and the operation is boolian
one. The relation derived from T belongs to
a weak order so that it becomes possible to

determine the shear sequence by the use of the

result obtained in chapter 2.
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The procedure for determining shear

scheduling is as follows:

n
1° Calculat =3 t. . =
ate sJ - tlJ. (i 1, 2, , n)
J
. n
2 Calculate v, = 3% t.. s. t s..
J i 1] 1 J
(i =1, 2,..., n).
3° Make an order of vj from the small value
of v. to the larger value of v, in turn.

J

The sequence of suffices vj arranged above

becomes a shear scheduling.

Fig. 7.5 A necessity of a transitive

relation
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7.5 Conclusion

The discussion has reached the following
conclusion.
1. A general constructive method for three-
dimensional space is presented, and its relation-
ship to the data base of the space geometry is
described.
2. A new boundary evaluator is proposed, which
remedies the defects of two other evaluators.
3. The surface of the given space is simply
expressed by the use of the new evaluator.
4, The collision prohibition technique
among n spaces 1is proposed.
5. The shear scheduling method is proposed
by applying the collision prohibition technique
to the shear scheduling problem.

The appendix C shows the experiment results
to compare the aspects of boundary evaluators

with others.
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8. The Development of CAM Software System for

Punching-press and Shearing

8.1 Introduction

The realization of shearing process as
computer-aided manufacturing has been difficult
since an NC shearing machine appeared. It comes
from the difficulty of making an automated plan
for nesting, where nesting means the allocation
of materials to the given blank. If this problem
is broken up, it becomes possible to develop an
integrated software system for punching-press and
shearing.

In this chapter, the software system is present-
ed for computer-aided punching-press and shearing
by applying the method proposed in chapter 4 to
shear process planning and by developing the deter-
mination of punching-press tool path. The developed
system is named CAMPS (Computer-Aided Manufacturing

for Punching-press and Shearing).
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8.2 System Design

The highest mountain against the automations
of punching-press and shearing is to automate shear
process planning. If mountain is climbed, it becomes
possible to develop an integrated punching-press and
shearing of the software system. It means that the
allocation of the materials to the stocked blanks,
the determination of absolute coordinate points on
the blanks for punching-press, the determination of
the punching tool path, and shear scheduling for
the materials are automatically executed. CAMPS
system is designed and developed to process all of
these. The followings are the specifications of
CAMPS for the system design and the functions of the

processors constructing CAMPS.

8.2.1 System Specification

The software system developed here is based on
the use of the following hardware equipments:
NC turret punching-press machine for punching-press
NC shearing machine with a L-shape blade for shear-
ing

The use of an NC shearing machine releases the
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restriction of the allocation method, which usually
occurs by shearing in such a way as guillotine cut.
We give the system two conditions before the
design, assuming to utilize above hardware equip-
ments.
Condition 1 the system available for mini-
computer
Condition 2 realization of high automation
Condition 1 is founded to utilize mini-
computers which have been implemented at a lot of
manufacturing factories. Condition 2 is founded
to reduce the processing time. If the system
adopts the interactive type, a lot of time is
taken for human judgement and response. This relays
the processing time. Therefore, the system does
not adopt the interactive type in order to satisfy
condition 2.
The system specifications under two conditions
are set up. They are as follows:
1. Information on the materials, blanks, and
punching-press tool is input in a simple language.
2. The input language is translated to a canonical
data format and is stored into files.

3. An optimum allocation of the materials onto the

blanks is automatically calculated.
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4, After the optimum allocation, tasks punch-
pressed by the same tools for the allocated

blanks are sorted. Then, a toel path is figured
out.

5. The shearing segqguence of the materials allocat-
ed onto the blank is scheduled and positioning of

a shear blade is determined in accordance with the
shearing sequence,.

8. The output of the allocation and the tool

path are verified by the use of a CRT display.

In answering to the specifications, the input
language is designed and five processors are developed
for CAMPS system. Five processors are the input trans-
lating processor SCANER, the allocating processor
OPTNST, the task sorting processor TSKCLS, the punch-
press tool path generating processor OPTPTH, and the
shear scheduling processor SHEARS. The CAMPS system
structure is shown in Fig. 8.1. For the sake of
specification of 6, graphic output is displayed to
the CRT graphic display equipment. The output is the
drawings of the allocation results and the trace of
punching-press tool path. The repositioning problem
is taken into consideration in the system, but it is

not mentioned here. Such a problem may be done with

post~processing.
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Process Processor Hork File Input & Output
Data Input Input
Preproces- SCANER
sor
T-File
Optimum OPTNST N-File
iy /
Nesting
Classfi- TSKCLS W-File
cation
. . 3 CL-
Optimum T Postprocessor
Punch-Press OPTPTH Data
Path B
CL-
Shear SHEARS Data Postprocessor

Scheduling

Fig. 8.1 CAMPS system éfructure
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8.2.2 Input Information and Language

Input information to the system consists of the
following three: the materials, the blanks and the
punching-press tasks. The information is fed into
the system in the order as shown in Fig. 8.2. Each
information block is discriminated by setting the
the discrimination statements to the end of each
one. FEach information has the following contents.

Blank information : the size and the number
of stocked blank

Material information: the size, the punching-
press geometry (APT-like
language) and the number
of the material requested
by the user

Task information the punching-press tool
assignment to the geometry
and the tool priority

The designed language is shown in Fig. 8.3.
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8.2.3 Input Translating Processor SCANER and

Canonical Data File

The input translating processor SCANER reads
the input language and translates it to the canoni-
cal data which is manufactured by the following
processors. The canonical data is classified to three
kinds relating to the materials, the blanks and the
tasks. The classfied data is stored into three
files: B-file, M-file and T-file. Each data file is
shown in Fig. 8.4. M-file consists of two arrays,
the one having the size of materials and the other
having the punching-press-geometry. The pointers are
used to connect the geometries to the materials. This
is shown in Fig. 8.4 (b). The array for the geometry
is one-dimensional and each geometry data is stored
in the form shown in Fig. 8.5 into this array.

F-file has two arrays, the one for tool infor-
mation, and the other for punching-press geometry
assigned to the tool. The pointers are used to connect
the tool and the geometry punch-pressed by the specified

tools. This is shown in Fig. 8.4 (c).
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*BLANK
B1=B/100,250,
B2=B/200,120,

*BFINI

*MATERIAL
M1=M/50,75,
MOVE/10,10
L1=PTN/LIR,INCR,5,

Punching-press Geon]
. Statements
FMEND . ) X . L
M2=M/40,60,

Punching-press Geon
Statements

*MEND
*MFINI

*TASK -
T1=PUNC/1,5/L1,
T2=CNC/2,AUTO,

ATFINI

Blank
Infomation

Material
Information

etry

etry

Task
Infomation

Fig. 8.2 Input information sequence
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Blank data start statement
*BLANK

Blank data statement
symbol=B/1,w,n,t,c

1;Length of a given blank
wi;Width of a given blank
n;A number of blank stocked
t;Thickness of a given blank
c;A cost of a given blank

Blank data end statement
*BFINI

Material data start statement
*MATERIAL

Geometri data start statement
symbol=M/1,w,n

1;Length of a given material
wi;Width of a given material
n;A number of a given material required

by user
Geometry data end statement
*MEND
Material data end statement
*MFINI
Task data start statement
*TASK
Task assignment data statement
symbol=CNC/priority,AUTO,r
symbol=CNR/priority,AUTO,tT,tw
symbol=PUNC/priority,r/symbl,symb2,...,
symn,material symbol/..., .../..
Task data end statement
*TFINI

Fig. 8.3 (a) Input language
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03744

Geometry statement Continuous hit

Singl hit 1 )
MOVE/ x,y
MOVE/x,y =
dx symbo 1 =CAA/1,0,dr | ,dr, /,/’//,
! ‘ symbol=HOL/r,dr,,dr
MOVE/x,y L e r v @ Y 12072 )
symbolsPTN/LIR,INCR,dx,n -
MOVE/x,y d
symbol=PTN/LIR,ANGL, S2 o B— MOVE/ x,y
0,INCR,dx,n :
MOVE/ x .y - symbo1=TGL/ h,tw
symbe 12RAD/ 1, §,d
MOVE/x,y
symbol=PTN/CIR,r,8,n
f) r
pas e
MOVE/ x,y 1 j
symbo) =REC/1, 8., tw, " MOVE/ x,y ‘
woll 2, tw, symbol =RRC/ 1,4t ,,tw,,
MOVE/ X,y : 4o Y W.tlz.tw:.r ! * 5
symbol=PTN/ARC,r,0,INC 0 T :
WNLAT ,dD 1
tw Geometry end statement
R MOVE/ x,y — : THEND
MOVE/ X,y . : t symbo 1=REC/ 1, 8, tw D
symbolﬂPTN/GRD,patern]:f + .~_~,r__,_4
patern o A t
’ | |

Fig. 8.3 (b) Input language for punching-press geometry



Symbal | Width of | Length A number Thickness | Cost
blank of blank] of blank of blank
L
.\‘___/

Fig. 8.4 (a) B-file standard data format

Sym- |Width of Length of |A number -|Pointer

bol|material material of materiallto MCANQ
[svmbol [ num] code ¥V x | v T a1 Taz T a3 |
I Ad I # !svmbo]lnum] X r v 1 Al ] A2 )

Fig. 8.4 (b) M-file standard data format

//' task 1| n, code prio.[ Al | A2 | A%)

task k| n code |'prio. |pointen M, pointer| M,

TLIST(500)

/ * -my o sym. Tisym. 2 )} sym.m * -1, )

YWORK(500)

Fig. 8.4 (¢) T-file standard data format
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POINT 1 X y *
PTN/LIR 21 0 dx n *
PTN/CIR 22 r 0 dx n *
PTN/ARC 23 r 9 n .de n *
PTN/GRD 24 8 dx n
] dx n *
HOL 6 r t p *
RAD / r kt 8 do D "
REC 8 t -J:wf t, P, Py *
CAA 9 l 0 t D *
TGL 10 c. h t *
RRC 11 t7 Lw t1 Py t2 Py
FPig. 8.5 Canonical data format for ppnching—press geometry




8.2.4 The Allocation Processor OPTNST

The processor OPTNST is the routine that solves
the following problem.

Problem Given the number and the size of the
materials as the product, and the number, the
size and the cost of the stocked blanks, assign
and allocate the materials to the blanks so that
the minimum costs and wastes are resulted, and
determine the number of blanks to bé consumed.
The problem is mathematically modeled. Now.

let us set bj(j =1, 2,..., m) and Ty (i =1, 2,

il
)
[\W)

2

n) to the number of the blanks Bj(j
., m) and the number of the materials Mi (i =1,
2,..., n), respectively. Also, let us set a.
to the number of material My which is allocated onto
the blank Bj in the k-th allocation manner among

all of 1 possible allocating manners. Then, aijk

is determined to satisfy

(8.1)

max.

[l v R =]
N =

i3k Fijk

a SiS.A(Bj) (8.2)

subj. to ijk

(j =1, 2,..., m

where Si is the area of the material Mi’ A(Bk) is

the area of the blank B‘j and Xijk is the number of
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materials Mi allocated onto the blank Bj in the
k—-th manner.
Under Egs. 8.1 and 8.2, find aijk and Xijk

that satisfy

min. a, . X. . 8.3
i3k ijk ijk ( )
3 )
subj. to ? E 25k Xijk z T, (8.4)
(i =1, 2,..., n)
Z X x.. b.
sz X35k < b4 (8.5)
(i =1, 2,..., m).

The new method for solving this problem is pro-
posed in chapter 3. CAMPS adopts this new method.
The processor input is bj’ rj, and the size of materi-

als and the blanks are extracted from B-file and M-

file. The results are stored into Nest file (N-file),

8.2.5 Task Sorting Processor TSKCLS

Punching-press processing is executed against the
blank on which the material allocation is already
determined by the preceeding processor. As the positions
of the punch-pressed geometry are defined on the
material, they are translated into the position on the

blank onto which the materials are allocated. The tasks
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of punching-press by the use of the same tool
and the same priority are sorted as a group in
order to reduce the manufacturing time.

The algorithm is developed for this sorting.

Let us define symbols under below:

Mi the i-th material (i = 1, 2,..., m)
tik the k-th task worked on Mi (k = 1, 2,
., 1)

T(til, tiz""’ tin) a set of tasks worked on Mi'
€ikh the h-th geometry assigned to the task tik.
le (Mp, Mq,..., Mr) a set'of materials allocated

onto the blank in the 1-th manner.
T (le) a set of tasks worked on le.

From the allocation result, we obtain a set of

materials as

Nyp = Nyp (M), Moo, M. (8.6)

j1
Let us set T (Mi) to a set of tasks worked on Mi’

T (M) =T (t;q, tygoees t5p) (8.7)

T-file gives the task information in the form of Eq.

8.7.

The material set is given by Eq. 8.6, the task
set working on le is

T (le) = T (Mp)LJ T (Mq)LJ...UT (Mr).

= (g, tpgs- o tpad U (Eg1s tagsevohtgp)

...LJ(trl, tr2”"’ tra)} (8.8)
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By giving the same suffix to the same task,
Eq. 8.8 1is changed into

T (le) = {tjl, tjz,..., tjs}. (8.9)
Egq. 8.9 gives le all tasks that are to work.

Then we search for the material set in turn of

tju (u=1, 2,..., s) such as
W (tju/le) = {M, Mo, M}
subject to tji =T (MX)LJ T (My)LL..
UT (M),

Then, we list up the geometries corresponding
to task tju and determines the absolute position of

geometries in le. In this way, geometry positions

are figured out.

8.2.6 Punching-press Tool Path Determination

Processor OPTPTH

Tasks which have a common priority and are
assigned to use common tools are sorted to the same
group by the previous processor TSKCLS. Now, a
punching-press tool path, which is positioned on all
the geometries defined by the tasks sorted to the
same group, must be calculated.

Let us set (aj, bi) (i =1, 2,..., n) to a certain

positioning point. The positioning point stands for

- 246 -



the geometry punch-pressed in the sorted group.

We regard a continuous punch-pressed geometry as a
point. Then, the determination problem in which

the tool travels and presses out all the points with-
in the least time is to solve the following mathe-

matical programming model:

n n
min. ZXC,. x..,
i3 13713
n -
subj. to z Xij =1(j=1, 2,..., n)
n
T x,,=1(i=1,2,...,n),
j=1
x..2 =x%.. (i, j=1,2,..., n)
ij lJ b M > 2 2

where Cij is the distance between two points (ai,
bi) and (aj, bj). .The tool path is presented by
the solution in Xij = 1. If a velocity of the tool
moving with x axis is the same as the one with y axis,
the distance becomes,

Cij = max (| a; - aj[, (bi - bj!)'
CAMPS system adopts this distance.

The above model is so called "Traveling Salsman
Problem!". Though the branch and bound method is
usually employed in solving the problem efficiently,

a huge memory and consuming time is needed by this

adoption. In accordance with system design condition 1,
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CAMPS system adopts a method that brings an approxi-
mate solution practical enough within small memory
and time. The method employed as this processor
QOPTPTH is the nearest path method.

The procedure of the nearest path method is as

follows.

Let us define t(n) as a set of all the n point
suffices and define t(k) as a set of k point suffix
whose point is already punch-pressed. Then procedure

of solving the problem is

Fre1 =T * min Cr;
j € (t(n) N t(k))
J,=0, (k=0,1,2,..., n-1),

where QZK) is a negative set of t(k). The tool path
is seeked in the order of suffix j determined in

k step.
8.2.7 Shear Scheduling Processor SHEARS

We assume an NC shearing has a L-shape blade.
When the L-shape blade is applied to shear out the
materials, a shearing order must be scheduled. Unless
it is scheduled, the blade often shear out the un-

desired material. A case of undesired shearing is

shown in Fig. 8. §.
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Waste

\
7577
//

DI

™

An L-shape blade

Fig. 8.6 Undesirable shearing with an L-shape blade

In other words, the L-shape blade shears out
the material only desired according to the shearing
order of the materials and it should not shear out
others. The determination of the shearing order
becomes such a problem as below:

Make such a schedule that the shear order of

the materials satisfies the transitive relation.
The transitive relation means the relation that the
material Ri is first sheared out among the materials
R, Rj and Rk when the material Ri is sheared out
before the material Rj’ and the material Rj is
sheared out before Rk' The method is proposed for
solving the problem in chapter 7.4.2. The processor

SHEARS is the routine loaded by this proposed method.
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8.3 Examples

Examples resulted from running CAMPS system
are illustrated here. The mini-computer institute
for the system is OKITAC 4500~€C. . A load module
memory size is around 26K words.

Fig. 8.7 shows the material geometriés input
into the system.

Fig. 8.8 shows the example of input language
describing above material geometries, the blank
information and the task information. Input is
done in turn of the blank data block, the material
data block and the task data block.

Fig. 8.9 is line-printed output of the canoni-
cal data format that is translated from the input
language by SCANER.

Fig. 8.10 is the material allocation drawings
as the results of auto-allocation by OPTNST. In
Fig. 8.11, * implies a waste area.

Fig. 8.11 is the table listed up by TSKCLS.

Fig. 8.12 is the tool path simulation results

which is output by OPTPTH.
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o O O O O o

M1 M2 M3 M4
Fig. 8.7 Simple example of material input geometry

FELAHE
Bl=E-200, 300,32, 5. 10
FEFIHI
FMATERIAL
U =5 2
Li=FTH-LIRE, THCR. 2. 108
MOWE-Z25. 220
Le=FTH-LIR, THCK.
FEHD
Ma=Mo2ie, 2T
PIOLIE - 25, 2
L3=FTHALIRE, [MHCR. 2. 75
MOUE~ 25,224 ]
Fig. 8.8 An example i;EE%H'LIR’;“LR”“"'“
MI=M- 200, 200, 4

—
1
¥
_n
W]
X3
o
-

1o

[t

of input language

PR L PGS AL N

Hi=HOL~-SE, 12, 13

MOUE- 1A3, 208
NI=PTHNspRC. 85, 0 ITHCR 2.06T.
FPEHD

Mad=M-208, 360, 4
Pl=PHT- S0, L0
Pa=PMT- 120, [0

FHEHD

FEITHI

XTASK )
Ti=FUMC~1.S-LL.LZ ML -LE Lt e
T2=PUNC-2. 20 MEAF L FE
T3=FUINC-20 La-HLL S

*TFINI

L0
M

b
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Fig. 8.12 Punching-press tool path
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8.4 Conclusion

CAMPS (Computer-Aided Manufacturing for
Punching-press and Shearing) system is designed
and developed, based on the studies of space
allocation problem. Through the system design
and development, the followings are concluded.

1. The CAM system for punching-press and shear-
ing is designed and developed in the consider-
ation of easy input and implementation.

2. Simple language is designed as the input

of system.

3. To automate planning of each processor in
punching-press and shearing, the processors are
developed and coded by modeling each process by
the mathematical description.

4, The system validity is demonstrated by show-
ing the output examples of CAMPS system.

5. CAMPS system will contribute transfering

DCN gsystem to sheet metal manufacturing.

6. It is expected that saving the resources and

reducing the process planning time are acomplished

by the use of CAMPS system.
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9. Conclusion

There are many different situations and fields
in which space allocation problems arise. Such problems,
when encountered, must be analyzed along with their
occurrence situations from the viewpoint of the common
recognition of the space allocation problems. Then they
should mathematically described and modeled.

In modeling, it must be confirmed that the problems
to be modeled are already turned into the subproblems of
the real problems and the obtained optimum solutions of
the problems modeled are not the optimum solutions of
the real problems. This means the subproblems of the
real problems are solved and the suboptimum solution
is obtained instead of the optimum solution.

The space allocation problems to be mathematically
modeled are combinatorial in most cases. Hence the
proof of the optimum solution is guaranteed by searching
all the feasible solutions. However, it is impossible
to execute such searching procedure because of an
enormous combinatorial number of solutions. This directs
the problem-solution method towards suboptimum-optimum

solutions.
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The basic strategy for developing such a method
in this paper is to "divide the problems into some
solvable subproblems and obtain the optimum-suboptimum
solution". From experience, the optimization of
subproblems approaches to the optimization of the whole
problem although it does not compose the optimization
of the whole problems. The methods developed in Chapters

2, 3 and 4 stand on this strategy.

Meanwhile, there is a question as to whether a
large scale computer is really needed to solve the problems
when most of the problems occur daily or in every hour.
And the problems belong to "NP-Complete Problem'.
Economically the use of a large scale computer is not
a good choice because of high costs 1f the practical
solution is reached by the use of a mini-computer. Thus
the algorithms are established for a midium-small sized
computer.

A recursive procedure is designed so as to realize
the algorithms for such a computer. If the algorithm
does not consist of the recursive procedure, many
procedures must be prepared corresponding to many cases
of the subproblems. This implies that the method which
has the above-mentioned function is rather said to be
a kind of "artificial intelligence'". It will be needed

in the near future perhaps, but it costs too much at

present,
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The space geometries treated in this paper have
almost regular shapes. Although the graphic processing
techniques for the space allocation problems are
developed so as to deal with irregular shapes in
Chapter 7, these are not applied sufficiently to the
problems. However, as the graphic processing is
essential for the treatment of the space allocation
problems, especially when irregular shapes of the spaces
are represented, the graphic processing techniques
discussed will be of great use,

In closing the paper, it must be emphasized that
the optimization of the problems means the optimization
of the subproblems as the result of modeling the real
problems. Therefore, even if the complete optimization
of the problem is accomplished, it is the partial opti-
mization of the real problem. Thus, we have already
accepted that the partial optimization will approach
to the optimization of the real problem. In order to
accomplish the complete optimisation, we must know the
whole system of the problem. A couple of hundred years
ago, economist Adam Smith said, "Aninvisible hand will
lead the partial optimization to the optimization of the
whole system'". We may say that one of the final goals
of the optimization is to establish the '"invisiblehand

of the system".
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Appendix A Mitsubishi Metal Sheet Production

System

A.1 Introduction

A development of an automated metal sheet
production line system was intended for the sake of
rationalization of a factory when a construction of
a new factory had been planned by Mitsubishi Electric
Company. In this new system for the metal sheet
production, N/C shearing machines and N/C turret
punching-press machines are equipped and they are
directly controlled by a host computer. A feature
of the new system is that decision making of the
metal sheet products allocation in large metal
sheets is executed automatically and it dominates
the system. P.B.M. (Pair to Block Method) proposed
in chapter three was adopted for this allocation
decision making. This appendix introduce

of P.B.M. adoption for the metal sheet production

in the factory.
A.2 Hardware System

A product flow diagram of the designed metal

sheet production system is shown in Fig. A.1.
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Corresponding to each production process, hard-
ware equipments are assigned in the production
line. Hardware equipments assigned and their
functions are as follows;
(Note: a is for Process, b is for Equipment and
¢ is for Function.)
1. a., Initial shearing b. Shearing machine 1
c. Shearing coiled metal sheet with desired
length
2. a. Levelling h. Leveller machine
c. Making a metal sheet flat
3. a. Edge trimming b. Shearing machine 2
c. Trimming edges of metal sheet
4, a. Transportation 1 b. Turn table
c. Selecting a shear machine to be used
5. a. Transprotation 2 b. Convayer
c. Transporting a metal sheet and setting it
to a turret punching-press machine
6. a. Punching-press 1 b. Turret punching-press
machine 1
¢. Punching out holes
7. a. Punching-press 2 b. Turret punching-press

machine 2

c¢. Punching out holes
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8. a. Shearing b. Shearing machine 1

c. Guillotine shearing

9, a. Shearing b. Shearing machine 2
c. Right angle shearing
The production line of the system becomes as

shown in Fig. A.2.

Products

(Process 6) (Process 8)

e - ( O oo
(Process 1) (Process 3) Qoo Qoo ’éf

Af\L

] =

Q>[ oog"%' %O (Process 5)
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O
0
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I .
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=

IA Flow of Products;>

(Process 7) (Process 9)

Products

Fig. A.1 Products flow line
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SRT 3 Shearing machine 1

LV 5 Leveller machine
SRZ ; Shearing machine 2
TT 5 Turn table

; Convayer’

PP1 3 Punching-press machine 1
PP2 3 Punching-press machine 2
SR3 ; Shearing machine 3
SR4 ; Shearing machine 4

(e
<
G W W Ve U VY U B

Fig. A.2 Hardware system



A.3 Software System

The software system developed consists of
three procedures: input data processing, processing
for auto-allocation of metal sheet products, and
punching-press processing. We only describe the
procedure concerning to P.B.M., processing for auto-
allocation.
In processing auto-allocation, three algorithms
are prepared for the metal sheet product allocation.
Algorithm A: P.B.M. This is prepared for the
allocation of many different-sized
products. ~Both types of shearing
machines (Guillotine type and
Right angle type) are available.

Algorithm B: Pyramid building method. This is
adopted for complements of P.B.M.
Some cases occur on P.B.M. in which
a block built up by more than two
products brings a better solution
than a block built up by pyramid
products. In such cases, this
algorithm works.

Algorithm C: If a number of the same products
are required, this algorithm works.

This algorithm allocates products
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to the shape of mesh.

By using three algorithms, the auto-allocation

procedure is composed. Allocation procedure is

described by the following 8 steps.

Step 1:

Step 4:

Step 5:

Step 6:

Product data are input. If there is no
datumn as input, the procedure is termi-
nated.

Input data are sorted in accordance with
metal materials, priorities and so on.
Algorithm C is employed to allocate

the same kinds of products. In this
procedure, if a waste ratio resulted
from the allocation is bigger than the
pre-set one, go on to the next step.

If not, go to step 8.

An algorithm employed is selected bet-
ween A and B by the adoption of shear-
ing method. If a right angle shearing,
go to step 7. If not, go to the next
step.

Algorithm B is employed.

If a waste ratio resulted from the
allocation is bigger than the pre-sét
one, go to the next step. If not, go

to step 8.
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Step 7: Algorithm A is employed.

Step 8: The allocation results such as punch-
pressed hole coordinate determination
and an arrangement of the nested
products are edited.

A process flow diagram is shown in Fig. A.3.

Fig. A.4 is some results of the allocation employed

by the developed procedure.

nput Data?
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[Edit~resu1tﬁ
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Fig. A.3 A flow diagram

~ 269 -



s% L-ZHEAR (KART we

e e # e e e,

TOYIELO~RATES 7IL0-T  INESTING-AREAZ
)

oRcER-u0, -9 3%s80
KIME-KU . 2023 : . e m .. 3TRAPIIMIDTYHY ewe (Y =(0O.0
RATIKJAL~LODE  SPH{~P €T = 3.27, x = 17840 , v = 1190.0 ) SEIT {LENGTH)ewe ( X =04.0 )
2¢ . 21 1 15 12 A ] 5 3 (*1002SEQ ITEN
Yecerveroresatonconcuans watd o m Py radee Py ————-; E I
[ 2
- lz 1 01 -a30
N . €7 03 + 02 -a30
. 1 . 1 . e [ I 03 -a30
. ! 1 ; 1 I 0% -a3Q
. [ - ! —— e . . I I 05 =-a3p
9e T . o T { 1 06 -43D
- 1 1 i 1 67 =230
N ! cs 04 + 02 ~a30
- 1 ! { 1 By ~a3n
N 1 1 . 1 1 10 -a30
- | ST | —— e — - ! I
. f 1 t )
. I ! i {
I ; 33 0s
- 1 I - e m : - {
- H ]
. N N ! i, L .
- 1 i i !
- U | 1 1
. i 1 08 +
- | I | R N T | . - - R I
34 . 1 i - : N
- { | S [ | e .o e
. LTy T i - TR
. | ~ . -
. } ., : .
hd - - - o~
A. 1 — l N -
- 1 — . ——— . L. | S _
[+ LR S [RPp— 2

. 027

78.2~1)

FIGURE

serar
RENNANTS
E43L439~HO3
£434439-H01
£342822~K04
£342622~104
£3426727-10%
E382622~%0%
E342822~H04
E342627-H0K
£342022~404
E342622~H04

R-LINE *e L-SHEAR (HART se F. 026
cRoER-NO, £-93980 T T T - T UYTELD-RATE: 79.8-X T (NESTING-AREAz &3.3-1) T °
VORK~NO, 2022 - SCRAPI(WIDTHY wwee "¢ ¥ =X g )

KATLRIAL~COCE  SeH(-P €7 = 3.2, X= 17%4.0 ,' Y = 1190.0 ) SLIT :(LENGTH)wes { X =05.0 )

24 21 18 15 R Tt e - 3 3 C2100)SEQ.ITER  FIcuse

R T LT A R P UPNNOSE ) e - - S -, Stmap -

- N I 09 [ 0t 03 01 . 1 7 77 Remmanas -

- [ U T | oo [ I 01 -A30  £3:6929-r01

. 11 X 1 1 ot 1 i I 02 -a30 E3:4929-H01

- [ ! | SR t 1 I 03 -A30 E2397tn-n0S

- 11 { { { i { ! Q4 =430 E239740-HOS

- | I . ! l} n_ 1 1 . e . 105 81 £¢47069-HDT

9 o] R B B | R St T 106 ~A6T  MRDOZ&A-wg2 T T

- | I C R | { I { 1 1 07 =81 NeNO?P44-402

- [ i ' i 1 iz 02 ~AMD  E43RQ97-H02.

- [ o 1 [ i { ] . R [ 09 -A30 EX32097-np2

- t ot { { | S S { 10 -A30 £:32092-002

- et K et | S LV I Vo e o S o U V1 k30 ER3XQ97-wO2

- 1 1 |32 [ 112 ~A30 E433U97-8u2 -

- 1 1 [ . 113 -a30 €43anv7-ngz

&e 1 1 T N 1 3% =239 £432097-u02

- 1 1 IS 115 -A30 E432097-002

. 1 { 16 =281 E459721~HOE

- e e, 2D ) __—_'1_ et e e et s i +e e et} 37 =A30 EL32097-kDT

. At 1 i {12 -A30 E&32097enwgr T
- A i . el 1 19 ~A30 £433092-n01
- | i bl . 1 20 -A30 EX32097-u01
- . . O R | ] .\ !
3 1 I oG8
- IR . ~~ss U e e I
- A} 17 T o I-
. ORI S —— s o — - a7; M
- - T ; I : 3
- e e b e : | .
- { H H
- A — . . - L
[ LR PO T
A-LINE ** L-SHEAR CHART ee F. 023
ORO (k=g £-23¢64 ) I T YIELD-RAYE: E3_4-X (NESTING~apgas T 37.0-%37 TTTT
WOUE-AQ, 2021 - . . .. SCRAP:IVIDTH) eea ( T =00.0 3
BATERIAL=CODE sPii~P €7 = 3.2, = 17340 ,.7 » 3990.0 3777 SUIT sCLENGTN}ewe € X *05.0 )
24 2 LH] 13 3 (+100YsEQ.ITER Flouxe 777
‘-~-c-~-----~'-.-.---..-.."-,-:___-_-::{- S _.._ Stmar .
- g It RERNANTS -
. ! - . : . 1 D1 ~A30 E346930-302
- 1 f ! | 02 ~A3D E&38i39-ugy
. [ . ' . 1 D3 ~A63 E&BhaLb-uDY
. t ' ' 1 04 ~A81 EX&36886-u01
- L e o 105 281 Ecresis-wnt
i i ' ! 1 06 =261 Fizsasis-nol
. i . ! I 07 ~A61 gi26648-KOY
- o9 + 0B ~ASD E344931-802
" ! O, R | DY ~42Dp E326931-M02
. ! : N 1 10 -a30 gis2intesnz
LI [ RO | * 11 -A3D E434439-mOT
- ! . i - b
- 1
be : i - ! -
- oL ! ! H
- [ ' I p— -
- [ :
- 1 ) o o T T )
: o i
: ; H . . o e s
. e L —— . . R
]O l e Sy - " I.A"~_.'_— T e e
s — i H
- 1 - -
. o ! - . - - ! N
- 11 - - -
: o :
- . ] |- ~
. .
De N s — | . P
- .
Fig. A.4 Examples of product allocation



A.4 Effects of System Development

After the introduction of the developed system,
the productivity is widely improved. This effect
is shown in Table A.1l. Before the development of
the system, metal sheet products are sorted to large

area products and small ones. It becomes unnecessary

®

to sort them in this system.

o~ = — -~ Py -

Table A.1 as workers, 9.1 wor

To 2 WOTKEeTrsS Dper year aiter the develcpment coif
J ¥

the system

Table 4.1 Effect of svstem development

Dre-svstam develooment | Post-system development
Ne. of products | br. /3T hr./yr.

lzrgs area of procuct 14728 3535

. 3782
- Fod 3 : -y T T AT
Srzll area of procucts 41052 11432
Total 55780 14847 3782
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Appendix B OPTI-CUT System Mannual

A method proposed in chapter four is applied
to metal sheet cutting at Murata Machinary Company.

A Program coded is modified to meet a practical
problem that occurs by the implemented NC shearing
machines and products tolerance. Such problems
are repositioning and edge trimming.

When the area of machine tables available for
shearing is smaller than the area of blanks (raw
metal sheets), the blanks must be set and fixed at
least twice. This operation is called "repositioning”.
As frequent repositioning makes undesirable effects
on the product tolerance, repositioning is usually
operated only one time if necessary. A modified
nesting algorithm conquers this problem. Edge trim-
ming means that four edges of the product is cut
down. When three products are allocated in the blank
as shown in Fig. B.1, a kind of "Burr" is generated.
This prevent the products from keeping tolerance.
This problem is also overcome by the addition of the
offsets to the product.

The modified processor is named "OPTI-CUT". A
manual for OPTI-CUT will explain how these problems are
remedied and the proposed method works.

The manual of OPTI-CUT is described as follows,
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OPTI-CUT mannual

Coneral Descriptions

The OFTI-CUT enable you te easily and rapidly produce tbz HC taue for 2~2. *JOBT File
shearing Hachine, which has L--shape brade, with inpot sizes, QuaInIitins . . R o . v
and :adZs of the'sheu metal ta be sheared. The OPTI-CUT pravides yue *jJuR® file is cosisted of ITAR»«HS :nd TnT;uIAL;, it must be entered

praductivity, prafitability aad edny inventery. paRAds First s shown {a Fig J. JOB® filn will nnaraally be gunera T

every OPTI-CUT runs.
everal different codes of naterial at randon

- ie i : N : 5 : A : t s
The OFTI-CUT system is inplimented an Ceneral Electric Time Shareing It is allowable to inpv y .
i £ ic i i " Fil - v hear and narncess them in arder
5 1 ¥ II. GE pravides tuwo types of Conputer Jervices which arae in ane *JNE® File. 0°TI cuT will arranae 1 n "
B e 8 . s Marinum quantity of materials is S0 kinds for each code and 450 kinds

Furearound and Backaround. The OFTI-CUT sysien is snly accesced in

Foreqround servics at this Time. in 1otal.

Fig ¢ bellow shoues you OPTI-CUT systen diagranm.
" ln this manual, BUANK means source sheet metal to be shearsd, and
MATERIAL means requested shect metal to be sheared.

Kegistrasisn Fornat is following.
(HY, (X, (YD), (L), (V)

Where .-

: H Haterial number.
X Length of material alang X
by the DPTI-CUT.

Any number can be vsed in integer up to 3 diait.
—axis in am. It may be grained to Y-axis

GLES | : .
! al alonf Y-sxis in na. It mey be grained te X~axis

FRX D Y tength of nateri
2K Q
gﬁﬁﬁtﬂd- by the OPTI-CUT.
€ Csde. Refer to chapter 2-i.
v, Quantity. Hximwn quantity is limitted 9977,

MATEXLALS .

Lenct

Fie §  BLick DiRamaM

e '
Fuiiouwing three variables GR, YO and XR are related with PARAH 10
describe later, Only shen PARAA 10 is set to 2., thesa vwarisblos
are referenced by OPTI-CUT. That is, inputing these variablies will
nat be necessary unless PARAM 10 is ser to 2.,

GR: Width of stirip reserved for gripping blank.
2. Generating a File Y01 Salvage allawance in X-dirwctien af blank.
. - XRs Salvage allowanue in Y-direction of Blank at shear end.

Tue files named °HLANX® and ®JOB® are regquired for access the OPTI-CUT
34 shoun in Fig &. fhose twa files could he gracrated by vse of HAHK
13i1 system routine, R

2-4. *BLANK® File !
. 1
5L ANK® s a inventory file which contents uwill be equal 7o the blanks |
currentry e1ist in your factory. . B . Yo N
The OPTI=CUT finds the appropriate blanks frem the "WLANK file, and FRoAMIZ, ! =g
Guantity of hlinks wsed in the cemputatiun is automatinally subtructed ° ARG
from the *HLANK® file. To print "BLANK® file by LIS connmand showes you ’
currant guantities of blank in your factory. ) ! .
It is vser’s obligatien te adjust the contents of "W ANK® file unless - -
esar menufacture the hlanks resali=d by OPTI-RUT. :
Loa

Revaistration format is follouing .
. Az,

UYL 60, €YY, (€, (V) {BR), (YO, (4R )

FEZ  Sawvsae Ausssacgd

wWhere
Ha Sheet{Blank) numher, Any nunber can be vsed in integer up ts 3
digit. .
X Length of blank aleng X~axis in mm.
1f these verisbles are nat set in both "HLANK® and PARAN,

\ Length of blank aleng Y-axis in in.

T Code. Any number can be used in followinf formar Gk (FARAH 1i) = 40, nAn

YO (PARNAM $2) = 0. ne
XKk (PARAN §3) = 0. nn

XXX.X t X290~ 3
are defouvlted.

Creating the code as follow is reconended.

3The 1aft mast 2 digits are corresponded te shent netal coade. Cavsions
IThe right mest 3 digits with floating pouint are corresponded

te thickness of the blank. 2The delinitter couvid be comma or spdces, Jomna is wsed in this

manual.

Fer exanple,
2Althouah uwp to 10 blanks in each cade are referenced by OPTI-TUT

Steel = 0%
Stainless stecl = 0% sune of blanks will be ignerud if registerad nore thun 10 Blanks.
Alminum - 40
21 ile could be generated by both tape or key-bosard input.
then

0¢3.2 mesns the blank of steel with 3.2 thickness.
851.2 neans the blank of stainless ste-l with 1.2 thicknesu.
102.%5 Aeens the blank of alainum with 2.5 thickness.

linited 9979,

@

[ 43 Quantity. Haximum guantity &
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3. Parameter (PARANM)

Paranmere
net assign Shan if

e is prepared neking a functien of DPTI-CUT flexible,
dufsnlted paranetar i3 vi~d.

yuu will Classificarion

Pre-set Descriptians

25

Registratian fornat is followina.

(PARRMY , (€3, (V)

0. .+ Praduce repositianning avtomatically. -

2
{.+ Repositionning is nut considered.

¢ Mot used at this time )

Vhere
C. sassification, Detail is described bellow.
Y Variabla. The numbor nust include a decinal peint.
(?ﬂ)
ifigati re-sat Descriptions
Classi atisn Pre P o
4 6. 8.1 Report reoquires the listing oFf blanks which
are referenced by OPTI-CUT.
.1 Hot reguire. .
2. 0.1 Renort requires the 1isting of matecials
which are processed by orTI-CUT.
{.s Not roguire.
3 1] B.: Priority is set by the sgquare ¢f materials
when OPTI-CUT sinvlates layout,
.+ Priority is set by the length.
)

{-Hot used at this tine

4. ¥idth of dumy cut alonf X-axis in nn.

Width of dumy cut along Y-azis in mn.

e T GuASY
i ]
L I EALLED
. i
Blaok.
EE Truuy, ALEd

( PARAM 30 434 not available yet )

Hame of the oviput file for NC data (refer to Fiag 1)
F:l? nane is acceptable from TAPEL to TAPEFFY?.
Decinmsl point is not pecessary anly for this parameter.

ot Sequence punber is not required in HC data.
o Sequence pumber required. °

o

i0 8. Refer to chapter 2-i
0.¢ Bath *BLANK® (UR,YD,XR) and PARAN 14-12
are not refersncad by orTI-CUT.
i1t neans following values are required.
PARAM 14 (LR) = 40, »n 50 THPED
PagaH 12 (YU) = 0. nn
PARAH 13 {1 = 0. an
1. PARAN §1-13 are referenced. Unless otheruise
PARNH (4 -43 are reguired in the g™ file,
defaults will avtomatically set. 54 9.
nR,YQ and XR are not effoct if required.
2.+ UR,YO and XR are referenced. Unless atheruise
CR,YD and XR arz requirad in the *DLONKS
file, errer nessige W 1 be appuared in
tiie ropart,  PARAA $1~13 are not nitect iF
required.
Classification Pre-set Descriprions - 4. GE's System Conmands
14 40. Width of strip reserved for grippiny bliak.
Refer 10 Fig 2.
i2 8. Salvage allowance in X~direztien of blank. .
Refer to Fig 2. This chapier
i3 0. Salvaue allowance in Y-direcfien of blank.

{ Hot wsed at this tinme

$7Q.

{ Hot wsed at this tine

20 880.
24 680,
22 4830,
23 1400,

2

Refer to fiy

Hazimum length en half-shear,

)

Haxinum cut of blade X-azis in mn.

Maxirmum cut of blade Y-axis in nn.

Harinum distance ef table travel X-azis in nan.

Mazinen distance of table travel Y-axis in an.



- - - xx::x:xxxxxxxxxxzxxxxxxxxxx:xx:xxxxxxxxxxxxxx:x:txx:xx‘x:xxxxxxx"xx-x::x .
- Txxz Txxzz
S. Access the OPTI-CUT ‘

which is ene of service Fullouwing procedure can be tfaken if yov need the optimized result uraently

The 0PTI-CUT can be accessed by indgpendent run,
{n Fereqround, ts docrwasa the running cost.

haes three kind of prioritvies such as
Express

Vithin 3 hours

Queraight

Independent run
t. PRID(EXP)
2. PRID(DEF)
3. PRID(OVED

RUN QPTICUT

This is repart.

PROCIAM STRP AT XXXX
ULED XXXX UNITS

g=-{. Sign-on
. READY

After your terninal is csnnected te the CL’s system, the system beains

a formal sign=-on seguence.

Defferences betueen this type of run and independent run is 1o print

L. Input user number. The report {maediately and autenatically:after end of run instesd of

2. Input pass werds,

3. Input ID.
4, lnput the languace ta be vsed.
F77 must be royuired for OPTI-CHT.

generating the report file.

NC data file is generated when OFTI-CUT is terninated as well as ind-

“apendent run.

§-2. Cenerating the file

Files named "HELANK® and *JOE” are prepared by user. Fornat far each
film is provivusly daaaribed, refer to chapter 2 if necessary.

4. Cenerating the file from key~bosrd

MEW 1R OLD-
HEW JOR
READY

2. Cenarating thae file from paper tape ~

NEW OR QLD-

NEW IO
WHEW JeR

READY

DEHY

READY FDR INPUT

( _tyrn_tape roader an )

( s3rikn bruaak ¥es 3
READY

Say_( er REP )

READY

L. Exanrss
BTN X Sy

1 Al 1
[P,
uiteu
StLTin~ F727
nUY uiz gLD-
LIS BLANK

* =3, Accewss the DFTI-CUT

After prepared twe files such as “BLANK® and *JOL", OPTI-CUT could be
dccwssud tu loput fulluuing format,

IND-4D0 OPTICUT,,RPRT,,PRID(DEF)

[$9] (94 (&2}
LLAr W2IAUAST G4/16G/00
Hhere

{1): Maximum CRU units. FL1OAC29. 704, 11,2 100 4J. 20. 10,

{2)r Hame of the report filw {refer to Fig {) up to B characters. et Y14. 12.1 100 20. 135, 20,

{3): Sariing prisrity, Vit F14. 13.1 100 0. 0. 5.
141 13147 21,1 169 év. 0. 15.
151 1829, 13, 21.1 1G9 20, 20. 10.
lal 2s39. 1219, 22,1 100 33. 0. O,

Tu set the priority sthwr than EXPL systen will normally be sign—off

Uetting optimized resnlts

OPTI-CUT praoduces twe output files as 2
Gi’s systen tomnand wneble yau to print
Hi: tapes.

result which are naned by user
and punch eut listinas and/er

For MUt

XS TR

i. Listing the report

READY

LIS

2. Durput HC tape and listing

QL TrPED

{ turn punch off 3

READY

Refllf
s

Reas
Although plural of tapes are sviput simvitanesusly, avprozimavely 40 Lil=%0 QFTITUL r e RFRT s FRIULDEF)

inches of null codes is put on Front and tail of 2a3ch NU Jdata.

Kish?
: LN .
HC tapes yuu generate with above procedure are ISD code. If yoo need Volu.L .20 kY 00T0.04 ICH . QUGU. ., [XH
ta create EIN code uf tipws, usw ane of HI‘4 liberary roeutine “NUTAP:H® -
UFl Rl 09157031 047107807



ik

THFED 10:24JST - 04/10/80

:H.}: Y‘g;RgLD $5 KESULT NO = b3
JLELEARALEAR A
HGO1GOOX1I211N0Y437I0H0T
KRFERT 1051387 U4/10/80 NOG:.T‘H[

HOO3X61830

RGQAn42

HGGZXIB3I000YSTICO
[ pEwily 1Gi124S8T 04/10/80 HoG411310Q

NOGZ7'(6000
NG 38Nl
HUO¥XFI000YP1700
o34l i
N(:1 1X83000Q
KG12n22
HUL13IXYIOCOTE1900
NGL3r2D

A3ds SHEAK OP1InJZATION FROCRAN 424X
AUTHORIZED Y MUKATA nACHINERY CO

HU1Z4B3000
— E:ELUTION FOR COGE 21.1 — Holsn2a2
! NG L74vSC00YIL900
HL18A2Y
HG15483000
21.1 BLANAS TOU HAVE ROU AKE HO20X123000Y11900
- HO21TE000
] 344 NUnBER NHO22XB30COY990Q
ND.131 2438.00 & 1219.C0 100 NO237460Q0
NO.131 1529.00 & 914.00 100 NO23A294I0Y43930M03
NO2ZMA4L
s52 RATERLAL KEGISTED NG24A8E950
HO2T7M4

ROTEHZ2Z

P.NO SIZZ MUNUER

KU LU0 1600.60 3  300.00 4 HL2TXTIICCTILIPOQ

HU.101 400.00 ¥ 200.00 2 HOIGH

NO. 102 100.0v & 350.00 8. KOS1432350

NU.103 300.00 & 550.00 2 NOIIXI0OYFITOQ

NU. 104 400.00 3 206.00 8 MOJINL12I00Y34T00

HU. 105 570.00 & 330,00 & NO3AXB2I00

NO. 106 400.00 3 270.00 2 HOXZ 40779900
NOJEXEI300Y15700
HG37XG (71900

it
# yLann NU.131 LONGER THAN THROAT DEFTH. ‘:g;g:issgg:ggggo )

HOS4UT2T700
HG411a200
NO42A3UOYELT00
NOA3771900
HO34T561900
NO4% (51900
NO38741900
HO47YI1900

43¢ WCTInIZED RESULT 1

. ebLAUK USED NG.141
JHUithER OF FLANK - 18
LUASTE FERCENTAGE . 9.688 %
. L . HOABYZ1900
-»lithel PRRTS FER OAE KO.141 BLANK HOATY11900
- 050x0Y37500
Py S1ZE “NUREER o ete11700
KU.100  1500.00 & 308.00 4 HOS2Y5300
HO.191  100.00 & 150.09 8 NOZ3X180000Y-1000
G, 103 30v.0 3 330,00 2 HOS$X50C00Y4000R03
ND.104 3 s 200.00 2 MoSEnal
L HO. 103 479.00 & 330.00 2 NOZ42170000
HO.106 - 4L0.UG T 220,00 2 NoS7HI2
* - HOTEX181500Y-1000
HOSIX-1000n03
NO&GHTS
0Y140000102
$v3 GUTIRIZED RESULT 2 HOS1X183000Y3
LGoaNK USLD w0151
SRUMBLR OF  sLANR . 18
VEASTE PERLEATAGE . S.24 X
VIRIMED PAKTS FER OHE lu.131 BLANK
PuND ¥4 © NUnBER
- NB.101 433.00 & 200.00 2
NO.104 409.00 § 200.00 6
5 4

HU. Lo 470,00 3 330.00

«es TUTAL USALE OF DLANK FAE ..
HJ.141 2333.00 & 12319.00 1
hULISD 1829.00 2 F14.00 1.

st [UTAL FRULWJCT OF hnaTERIALS ARE .

1. 100 3 3G0.09 4
. 101 4 2UU.0U 2
NUL 16T ¥ 35¢.00 | °
H3.103 3 g+ 2
Hu. 104 3 8
NUYLI0S  A/0.00 3 &
tU. 108 dGuG.00 3 2
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Appendex C Comparison of Boundary Evaluators

For the features of boundary evaluators, iso-
contour displacement of boundary evaluators, Penalty
function and a new evaluators are plotted by X-Y
plotter. Calculation of the evaluators are run by
OKITAC-4500-C. The results prove that the discussion
in chapter seven is verified.

Experiment 1) Aspects of Penalty function and the
new boundary evaluator are examined and plotted for

the following simple geometry shape.

fll(x’ y)=X—42_O) f21(xx Y)=5"YZ OJ

i
w
!
<
v
°

le(X) Y)=1O—X207 f23(X’ Y)=Y">‘O:

I
<
I
-
Y
o
N
I
»
|
©
v
o

f14(X, v) f31(X;

Il

far(x, ) =2 - ((x - P+ (v - »Ezo0.

4 4
P=1N (fy(x, ¥) 201U [ (Fyilx, v) 2 0)]
i=1 i=1

>
Experiment 2) The same experiment as the experiment
1 is attempted. In this geometry shape, a different

operation is examined. The geometry shape 1s describ-

ed as follows.
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fi(x, ) =x - 12 0, foq(x, y) = x - 520,

fig(x, y) =4 - x>0, fog(x, ¥v) =4 -y= 0,
fia(x, ¥) =4 -y20, faa(x, y) =14 -x=0,
fra(x, v) =y =220, fo(x,y)=y-2=20,
2 2.1
fay(x, y) = 2 - {(x = 4)7 + (y - 3)7}* =2 0.
T4 T 4
P=[0 fi(x, y)20 N [{n ¢ _(x, y) = 0)}
i=1 i=1 21
L {f31(x, y) 2 0}1,
/A\_/ 4
where [ M (f1;(x, y) = 0)] shows [ U (- fq;(x, ¥)
i=1 i=1
Z0yl.



Aspect of Penalty

(a)

Aspect of the new evaluator

(b)

Result of experiment 1

B.1

Fig.
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Aspect of Penalty function

(a)

Aspect of the new evaluator

(b)

B.2 Result of experiment 2

Fig.
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