<table>
<thead>
<tr>
<th>Title</th>
<th>A study on keratan sulphate as a molecular marker to monitor cartilage metabolism in horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okumura, Masahiro</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-12-25</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/32738</td>
</tr>
<tr>
<td>Type</td>
<td>theses (doctoral)</td>
</tr>
<tr>
<td>File Information</td>
<td>5726.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
A study on keratan sulphate as a molecular marker to monitor cartilage metabolism in horses

（ウマにおける軟骨代謝を検索するための分子マーカーとしてのケラタン硫酸に関する研究）

Masahiro OKUMURA
Contents

1. Preface
 1.1. Equine joint diseases ... 1
 1.2. Aggrecans and keratan sulphate in articular cartilage 2
 1.3. Joint cartilage and biological markers in arthropathies .. 4
 1.4. Aims of this study .. 5

2. Establishment of a Monoclonal Antibody (1/14/16H9) for Quantification of Equine Keratan Sulphate
 2.1. Summary ... 6
 2.2. Introduction .. 7
 2.3. Materials and methods .. 8
 2.3.1. Purification of equine cartilage proteoglycan monomers... 8
 2.3.2. Enzymatically generated proteoglycan monomers 8
 2.3.3. Glycosaminoglycan chains and corneal keratan sulphate .. 9
 2.3.4. Immunization and antibody production 9
 2.3.5. Quantification of synovial fluid and serum keratan sulphate concentration .. 10
 2.3.6. Preparation of sera and synovial fluid 12
 2.3.7. Statistics ... 12
 2.4. Results .. 13
 2.4.1. Characterization of monoclonal antibody 1/14/16H9 13
 2.4.2. Optimization of the conditions of ELISA 14
 2.4.3. Comparison of keratan sulphate concentration in serum and synovial fluid, using monoclonal antibodies 1/14/16H9 and 1/20/5D4 .. 14
 2.5. Discussion ... 25

3. The Usefulness of the Measurement of Keratan Sulphate Reacting to 1/14/16H9 and 1/20/5D4 Antibodies to Monitor Cartilage Metabolism in in vitro Pellet-Cultured Equine Articular Chondrocytes
 3.1. Summary ... 28
3.2. Introduction ... 30
3.3. Materials and methods ... 31
 3.3.1. Isolation and culture of chondrocytes 31
 3.3.2. Supplements and culture procedures 32
 3.3.3. Purification of equine cartilage proteoglycan monomers 32
 3.3.4. Measurement of sulfated glycosaminoglycan (GAG)
 concentration in the culture media 32
 3.3.5. Measurement of keratan sulphate concentration in the culture
 media .. 32
 3.3.6. Statistical analysis .. 33
3.4. Results .. 34
 3.4.1. Proteoglycan concentration in the extracellular matrix of
 articular chondrocyte pellets cultured with growth factors 34
 3.4.2. Proteoglycan concentration in the media of articular
 chondrocyte pellets cultured with growth factors 34
 3.4.3. The change of GAG concentration in the extracellular matrix
 of articular chondrocyte pellets cultured with IL-1α 35
 3.4.4. The change of keratan sulphate concentration, reacting to
 1/14/16H9 and 1/20/5D4 antibodies, in the media of the pellets
 cultured with IGF-Iα and IL-1α 35
 3.4.5. Correlation between proteoglycans and antigenic
 keratan sulphate concentrations in the media of equine
 chondrocytes pellets .. 35
3.5. Discussion ... 47

4. Evaluation of Ovine Significant of Keratan Sulphate Reacting to 1/14/16H9
 and 1/20/5D4 Antibodies as a Cartilage Metabolic Marker in Serum and
 Synovial Fluid from Horses
 4.1. Summary .. 52
 4.2. Introduction ... 54
 4.3. Materials and methods ... 56
 4.3.1. Serum and synovial fluid samples 56
 4.3.1.1. Serum samples from growing foals 56
1. Preface

1.1. Equine joint diseases

Lameness is the most important cause of wastage in racing horses as well as in horses that perform in other athletic events (Rossdale et al., 1985; Todhunter et al., 1993). Joint disease is a common and major cause of morbidity in horses. While a certain incidence of acute primary synovitis has not been determined, the development of an acutely inflamed joint in racing or training horses is a prevalent problem for owners, trainers and veterinarians (Palmer and Bertone, 1994). Joint destruction in inflammatory and degenerative joint diseases is characterized by an imbalance of enzyme catalyzed cartilage breakdown and cartilage matrix regeneration (Landoni et al., 1996). Many medical and surgical treatments exist for various joint problems, but most of them are controversial, particularly with regards to its selection and definitive treatment results.

Much has been written on the management of different joint diseases, but little information exists documenting the clinical appearance of horses with different types of joint disease (Bramlage et al., 1988; Raker, 1968). With the ready availability of new imaging modalities, the physical examination for lameness may often be overlooked. The radiographic features of joint disease, however, do not directly correlate with the clinical symptomatology and stage of the disease.

Careful observation and palpation can provide very useful additional information regarding the clinical significance of the disease beyond what can be seen on radiographs and therefore should be part of the evaluation of any horse with problems emanating from within or around a joint.
Obviously, clinicians should use a comprehensive physical examination to determine the extent of involvement of the clinically affected joint, but also to ensure that subtle problems in other joints are not overlooked. This indicates that only primary and essential devices are available to understand the pathology of joint diseases in equine practice. Definitive and quantitative assessment of the damage in joints must be given intense attention for more accurate diagnosis and precise treatment.

1.2. Aggrecans and keratan sulphate in articular cartilage

Articular cartilage is a specialized tissue composed of mesenchymal cells and chondrocytes, embedded in an extensive extracellular matrix. The cartilage matrix has a high content of proteoglycans and collagens, which are important for normal function of the tissue, and is synthesized and organized by the chondrocytes. Mature cartilage is characterized by the absence of blood vessels and nerve fibers. Homeostasis of chondrocyte function and responses to traumatic or inflammatory tissue injury can be induced by regulatory factors that are produced by cells in the synovial tissue or fluid. An alternative mechanism for the induction of chondrocyte response is the generation of regulatory factors within cartilage. Turnover of cartilage matrix molecules is normally controlled by condrocytes that synthesize all the normal matrix components as well as proteinases, which can degrade them (Buttle et al., 1995). The chondrocyte is itself subject to regulation by various cytokines and growth factors that can shift the homeostatic balance in an anabolic or catabolic direction (Trippel, 1995).

Most proteoglycans in the cartilage are high molecular weight macromolecules that enable cartilage to undergo reversible deformation (Fisher and Barclay, 1984). The
mechanisms and rate of cartilage proteoglycan turnover in normal and abnormal cartilage remain unclear (Heinegard and Paulsson, 1984; Maroudas, 1975; Revell and Muir, 1972; Thonar et al., 1985). Lack of substantial amounts of partially degraded proteoglycans in the normal cartilage matrix suggests that proteoglycan molecules are usually rapidly degraded into smaller fragments, which are either engulfed by the chondrocytes or diffused into the body fluids that are in contact with cartilage (Thonar et al., 1985). Consequently, proteoglycan fragments and glycosaminoglycans were found in the synovial fluid (Heinegard et al., 1985; Saxone et al., 1986), and several species of glycosaminoglycans including chondroitin sulphate and keratan sulphate have also been detected in the blood (Block et al., 1989; Calatroni et al., 1969; Heinegard et al., 1984; Kliner et al., 1987; Thonar et al., 1985).

Keratan sulphate is a glycosaminoglycan that is distributed in the extracellular matrix of the joint cartilage. Keratan sulphate is mainly found in the aggrecans (approximately 99%), and to a lesser extent, in the cornea and other tissues (Axelsson and Heinegard, 1978). Therefore, to estimate the total catabolic activity of cartilage, keratan sulphate was measured as a metabolite of cartilage in the synovial fluid and blood (Block et al., 1989; Kliner et al., 1987; Poole et al., 1990; Sweet et al., 1988; Thonar et al., 1985).

Recently, an enzyme-linked immunosorbent assay (ELISA) using an anti-human keratan sulphate antibody (1/20/5D4; Caterson et al., 1983) has improved the measurement of low concentration of keratan sulphate (Thonar et al., 1985). Measurement of serum keratan sulphate concentration has been done in several species, and its use as a diagnostic test also has been suggested (Alwan et al., 1990; Leipold et al., 1989; Mehraban et al., 1991; Poole et al., 1990; Okumura et al., 1997; Okumura and Fujinaga, 1998; Todhunter et al., 1993; Todhunter et al., 1997).
1.3. Joint cartilage and biological markers in arthropathies

Measurement of the severity and extent of a joint damage is troublesome. In advanced inflammatory joint diseases, radiographs show cartilage loss and bone erosions at the joint. However, radiography is an insensitive technique that can provide only a historical record of the gross anatomical changes to a joint. Studies on a particular joint damage must be conducted over many years, during which the disease status may change radically. Much damage may be done early in the disease process, before the radiographic change, although it is uncertain which of the many aspects of synovitis are responsible for the joint damage. Sensitive ways of assessing the current status of cartilage and bone changes during the early stages of inflammatory joint disease would be of potential value to clinicians. As a result of considerable recent works on musculoskeletal tissues, particularly articular cartilage and bone, as well as the inflammatory process itself, better understanding could be given of the structure and metabolism of these tissues and how they are affected and changed by inflammation. Moreover, it has been possible to identify either specific molecules that are synthesized by only one connective tissue, such as cartilage or bone, or molecules that are predominantly produced and released from a single tissue. These molecules can be detected, mainly by immunoassay, in synovial fluid, serum and urine, in which their contents can be measured. Their presence is a product of the metabolism of the tissue from which they were derived: they may represent synthetic or degradative markers. Thus, it is now possible to examine body fluids for the presence of specific molecules and their degradation products. This information can be used to study and better understand the metabolism of the tissue from which they are
derived, and how the turnover of these tissue is influenced by the disease process and its therapy (Poole, 1994).

1.4. Aims of this study

The objective of this study was to establish definitive and quantitative assessment of the damage in joint by measurement of keratan sulphate, reacting to 2 types of monoclonal antibodies, in serum and synovial fluids for more accurate diagnosis and precise treatment in horses. The following experiments were therefore done in this study; (i) to establish a sensitive and specific monoclonal antibody to equine keratan sulphate and to develop an enzyme immunoassay for the measurement of its concentration in serum and synovial fluid from horses, (ii) to reproduce proteoglycan deposition and turnover of equine articular cartilage in vitro and to assess the use of keratan sulphate, reacting to 1/20/5D4 or newly established 1/14/16H9 antibody, as a cartilage catabolic or anabolic marker, and (iii) to determine keratan sulphate concentration in serum and synovial fluid from healthy horses, growing foals, and horses with joint problems and to evaluate clinically the role of keratan sulphate, reacting to 1/20/5D4 or newly established 1/14/16H9 antibody, as one of molecular markers to monitor cartilage metabolism in equine joint diseases.
2. Establishment of a Monoclonal Antibody (1/14/16H9) for Quantification of Equine Keratan Sulphate

2.1. Summary

To develop an enzyme immunoassay for measurement of the concentration of keratan sulphate in serum and synovial fluid from horses, a sensitive and specific monoclonal antibody to equine keratan sulphate, 1/14/16H9, was established.

BALB/c mice were immunized with chondroitinase-ABC-digested proteoglycan monomer from equine joint cartilage, and monoclonal antibodies were raised, using Sp2/0 cells as a fusion partner. A high-titer monoclonal antibody 1/14/16H9, which specifically recognizes the epitope on equine keratan sulphate, was identified. This antibody had no reactivity with chondroitin sulphate and core protein of proteoglycan monomers, hyaluronan, heparin, dermatan sulphate and heparan sulphate.

An inhibition enzyme-linked immunosorbent assay (ELISA) was optimized by using 1/14/16H9 antibody, and keratan sulphate concentration in 18 synovial fluids and 48 serum samples obtained from clinically normal horses and horses with arthritis was measured. Precision data were obtained over the range of 10 to 160 ng/ml. The within- and between-assay coefficients of variation of the assay were 10.0 and 12.7%, respectively.

A monoclonal antibody 1/14/16H9 that specifically recognized equine keratan sulphate was used for an enzyme immunoassay to measure the concentration of keratan sulphate in later chapter of this thesis.
2.2. Introduction

Articular cartilage has a high content of proteoglycans, which are important for normal function of the tissue. Proteoglycans consist of a protein core containing sulphated glycosaminoglycan side chains of chondroitin sulphate and keratan sulphate. These molecules, which are released as fragments into synovial fluid, blood and urine where they may be detected, could be used to diagnose osteoarthritis, monitor effects of treatment on cartilage turnover, and understand the catabolic and anabolic processes of articular cartilage metabolism (Alwan et al., 1990; Caterson, 1991; Heinegard and Saxne, 1991; Okumura et al., 1997; Palmer et al., 1995; Thonar et al., 1991).

Immunologic assays have been generally used to measure the concentration of fragments of the cartilage aggregating proteoglycan, aggrecan. Polyclonal aggrecan antibodies and monoclonal antibodies reacting with human keratan sulphate side chains have been used in assays for determination of aggrecan fragments in serum and synovial fluid (Heinegard et al., 1985; Kongtawelert et al., 1990; Thonar et al., 1985), the most widely used being human keratan sulphate monoclonal antibody 1/20/5D4. Several investigators have reported measurement of the concentration of keratan sulphate in equine serum and synovial fluid, using this antibody (Alwan et al., 1990; Okumura et al., 1997; Todhunter et al., 1997), however affinity of 1/20/5D4 antibody to keratan sulphate of horses is not well evaluated.

The objectives of this study were to establish a sensitive and specific monoclonal antibody to equine keratan sulphate, and to develop an enzyme immunoassay system for the measurement of the concentration of keratan sulphate in serum and synovial fluid from horses.
2.3. Materials and methods

2.3.1. Purification of equine cartilage proteoglycan monomers

Equine proteoglycan monomers were purified by use of a described method (Caterson et al., 1983; Okumura et al., 1997). Briefly, hyaline cartilage was collected from the synovial joints of a 1-year-old Thoroughbred foal which was euthanatized because of a problem unrelated to the musculoskeletal system. The cartilage was cut into small pieces, and extracted with 4 mol/l (M) guanidine HCl-0.05M sodium acetate. The extracts were separated from the cartilage residue by centrifugation (15,000 x g for 30 minutes at 4 °C), and dialized against 0.05M sodium acetate, pH 6.5. Equine proteoglycan monomers were obtained after CsCl equilibrium density gradient centrifugation (194,000 x g at 10 °C) under 2 conditions at densities of 1.65 (40 hours) and 1.50 g/cm³ (48 hours), respectively, and dialyzation against 0.1M sodium chloride. Equine proteoglycan monomers were then frozen and dried.

The procedure of this experiment and handling of the animals were planned and done according to the guideline for animal experiments in Graduate School of Veterinary Medicine, Hokkaido University.

2.3.2. Enzymatically generated proteoglycan monomers

Equine proteoglycan monomer fragments were obtained by enzymatic digestion of proteoglycan monomers as follows. Chondroitinase-ABC-digested proteoglycan monomers were obtained by incubating proteoglycan monomers with chondroitinase ABC (Sigma Chemical Co., St Louis, Mo., U.S.A.; 0.4 mU/μg proteoglycan monomer)
in 50 mM Tris, 0.015 mM sodium chloride (pH 7.5) at 37 °C for 4 hours. Keratanase-digested proteoglycan monomers were obtained by incubating proteoglycan monomers with keratanase (Seikagaku-kogyo, Tokyo; 0.0057 U/μg proteoglycan monomer) in 50 mM Tris, 35 mM sodium acetate, 1.7 mM calcium acetate, 50 mM sodium chloride, 0.1 g of bovine serum albumin/l (pH 7.4) at 37 °C for 4 hours. Papain-digested proteoglycan monomers were obtained by incubating proteoglycan monomers with papain (Sigma Chemical Co.; 10 μg/mg proteoglycan monomers) in a solution containing 0.2M sodium acetate, 5 mM ethylenediamine tetraacetic acid (EDTA), 5 mM cysteine (pH 5.0) at 37 °C. After 4 hours, another 10 μg of papain/mg of proteoglycan monomers was added and incubation continued for a total of 24 hours at 37 °C (Poole et al., 1989).

2.3.3. Glycosaminoglycan chains and corneal keratan sulphate

Bovine kidney heparan sulphate (Seikagaku-kogyo), hog skin dermatan sulphate (chondroitin sulphate B; Seikagaku-kogyo), bovine corneal keratan sulphate (Seikagaku-kogyo), heparin (Upjohn Japan, Tokyo), and hyaluronan (Bayer AG, Leverkusen, Germany) were purchased.

2.3.4. Immunization and antibody production

Ten BALB/c mice were inoculated every 2 weeks for a total of 4 subcutaneous injections of chondroitinase-ABC-digested proteoglycan monomers (100 μg/mouse/dose). The first injection was made with Freund's complete adjuvant; the 3 subsequent injections were done with incomplete adjuvant. One to 3 months after the last injection (3 days before fusion), 100 μg of chondroitinase-ABC-digested proteoglycan monomers
was administered intraperitoneally as a booster injection. Fusion was carried out by use of a described method (Gefter et al., 1977; Galfre and Milstein, 1981), with the myeloma cell line Sp2/O as a fusion partner. Using a direct enzyme-linked immunosorbent assay (ELISA) with chondroitinase ABC-digested proteoglycan monomer-coated wells, hybridoma supernatants were screened for proteoglycan monomers binding antibodies. The hybridoma cells were injected into primed BALB/c mice, where they grew as ascitic tumors. Ascitic fluids were harvested 1 to 3 weeks later, cells were then removed by centrifugation at 600 x g for 10 minutes, and fluids were stored at -20 °C until used. Immunoglobulin class was determined by direct ELISA, using a mouse immunoglobulin typing kit (Mouse immunoglobulin typer kit, Bio-Rad, Hercules, CA, U.S.A.).

2.3.5. Quantification of synovial fluid and serum keratan sulphate concentration

An inhibition ELISA, established by Thonar et al. (1985), with some modifications (Okumura et al., 1997), was used to measure keratan sulphate concentration in synovial fluid and serum from horses. One milligram of proteoglycan monomers was dissolved in 40 μl of buffer containing 0.2 U of chondroitinase-ABC, 0.1M sodium acetate, and 0.1M Tris, pH 7.3, followed by digestion for 2 hours at 37 °C. Just before coating the plates, the solution was diluted with 20 mM carbonate bicarbonate coating buffer, 0.02% sodium azide, pH 9.2, bringing the final concentration of proteoglycan monomers to 5 μg/ml. Coating buffer containing chondroitinase-ABC-digested proteoglycan monomers (200 μl), prepared immediately prior to use, was added to each well of the ELISA plate (Nunc, Copenhagen, Denmark), which was then kept at 20 to 22 °C (room temperature) for 2 hours, then at 4 °C until assayed.

Two hundred μl of monoclonal antibody 1/20/5D4 (Seikagaku-kogyo) or established monoclonal antibody 1/14/16H9 (ascites fluid) diluted to 1:5,000 and
1:25,000, respectively, in phosphate-buffered saline solution (PBS, pH 5.3) containing 0.05% Tween 20, 1% bovine serum albumin, and 0.05M EDTA was mixed with 200 μl of test samples or the keratan sulphate standard diluted in PBS. These monoclonal antibody-keratan sulphate inhibition mixtures were incubated at room temperature for 1 hour, then were kept at 4 °C overnight. The mixtures were allowed to equilibrate to room temperature, and a standard ELISA was then performed.

Chondroitinase-ABC-digested proteoglycan monomer-coated wells were washed 3 times (5 minutes each) with PBS (pH 7.0) containing 0.05% Tween 20 to remove excess antigen, then were incubated for 60 minutes at room temperature with 200 μl of the inhibition mixture (monoclonal antibody plus sample), prepared as described previously. After the incubation period, the wells were washed 3 times with PBS-0.05% Tween 20, after which 200 μl of a peroxidase-conjugated rabbit anti-mouse IgG1 (Zymed Laboratories, San Francisco, CA, U.S.A.) was added to the wells. This IgG1 antibody was diluted 2,500-fold with PBS-0.05% Tween 20, 0.05M EDTA. After incubation for 30 to 60 minutes at room temperature, the unbound antibody was removed by washing the plates 5 times (5 minutes each) with PBS-0.05% Tween 20. Two hundred μl of substrate, 0.015% H2O2 plus o-phenylenediamine (2 mg/ml), was added to each well, followed by incubation for 10 to 60 minutes. The reaction was stopped by addition of 50 μl of 2M H2SO4. The plates were read at a wavelength of 490 nm, using an ELISA plate reader (Microplate reader MTP-120, Corona Electric, Katsuta, Ibaraki).

The concentration of keratan sulphate in the samples was calculated by comparing the absorbance value with values generated from known concentrations of chondroitinase-ABC-digested proteoglycan monomers treated in similar manner as sample plates. The keratan sulphate content in the chondroitinase-ABC-digested
proteoglycan monomers was measured, using a dimethylmethylen blue assay (Farndale et al., 1982).

2.3.6. Preparation of sera and synovial fluid

Forty-eight serum and 18 synovial fluid samples were obtained from clinically normal horses and horses with arthritis at Hokkaido University and Shadai farm, Hokkaido.

2.3.7. Statistics

For analysis of correlation, Spearman’s rank test was used.
2.4. Results

2.4.1. Characterization of monoclonal antibody 1/14/16H9

The BALB/c mice were inoculated with chondroitinase-ABC-digested proteoglycan monomers, and hybrids secreting proteoglycan monomer antibodies were identified by direct ELISA, using chondroitinase-ABC-digested proteoglycan monomer coated wells. Several antibodies were characterized for their epitope specificity, and most proved to be keratan sulphate antibodies. After 4 sequences of cloning, a monoclonal antibody clone 1/14/16H9 that was secreting high-titer antibodies to chondroitinase-ABC-digested proteoglycan monomers was obtained. The subclass of 1/14/16H9 antibody was IgG_1, with κ type light chains.

Reactivity of monoclonal antibody 1/14/16H9 with the enzyme-treated proteoglycan monomers was examined. Digestion of proteoglycan monomers with keratanase almost completely eliminated its reactivity (Figure 1). Removal of the chondroitin sulphate side chains by enzymatic treatment of proteoglycan monomers with chondroitinase-ABC resulted in almost identical inhibition to that of the native, not enzymatically digested proteoglycan monomers. Dissolution of the core protein with papain slightly decreased the inhibition.

Reactivity of monoclonal antibody 1/14/16H9 with glycosaminoglycans, including corneal keratan sulphate, dermatan sulphate, heparan sulphate, heparin, and hyaluronan, was also examined by use of an inhibition ELISA. Inhibition with bovine corneal keratan sulphate indicated that monoclonal antibody 1/14/16H9 obviously bound to the keratan sulphate from the cornea (Figure 2). Inhibition of binding of monoclonal antibody 1/14/16H9 was not found for sodium hyaluronan, sodium heparin, dermatan sulphate
and heparan sulphate (Figure 3).

2.4.2 Optimization of the conditions of ELISA

The conditions of an inhibition ELISA for determination of keratan sulphate concentration form cartilage was optimized. In the assay, proteoglycan monomers in solution (the analyte) and chondroitinase-ABC-digested proteoglycan monomers were coated on wells of the ELISA microtitration plate for binding of monoclonal antibody (primary antibody) and binding was detected by addition of a peroxidase-conjugated antibody (second antibody).

Sensitivity of the assay could be substantially improved by increasing the dilution of the primary antibody. The standard curve was displaced to a lower measuring range by decreasing the concentration of the primary antibody (Figure 4). Further dilution resulted in too low an absorbance and decreased precision.

Optimal dilution of the secondary antibody also was determined. The standard curve was displaced to a lower measuring range by decreasing the concentration of the secondary antibody (Figure 5). Further dilution resulted in too low an absorbance and decreased precision. The standard data was not affected by the properties of serum or synovial fluid.

Assay precision was estimated by testing a serum and a synovial fluid sample 10 times each in 1 assay and in 6 consecutive assays. The within- and between-assay coefficients of variation were 10.0 and 12.7%, respectively (Table 1). Precision data was obtained over the range of 10.0 to 160 ng/ml (Figure 6).

2.4.3. Comparison of keratan sulphate concentration in serum and synovial fluid, using monoclonal antibodies 1/14/16H9 and 1/20/5D4
Concentration of keratan sulphate was measured in 48 serum and 18 synovial fluid samples by use of an inhibition ELISA, monoclonal antibodies 1/14/16H9 and 1/20/5D4. In serum at the concentration of < 150 ng/ml, lower concentrations were detected by monoclonal antibody 1/14/16H9 than by monoclonal antibody 1/20/5D4 (Figure 7). Conversely, synovial fluid contained higher concentration of keratan sulphate that was immunoreactive with monoclonal antibody 1/14/16H9 than with monoclonal antibody 1/20/5D4 (Figure 8). For measurements of keratan sulphate concentration in serum and synovial fluid samples, correlation between the 2 monoclonal antibodies was obtained ($r = 0.857$ and 0.871, respectively).
Figure 1-Reactivity of monoclonal antibody 1/14/16H9 with enzyme-treated proteoglycan (PG) monomer fragments. (Okumura and Fujinaga, 1998)

- ▲ Papain-digested PG monomer (keratan sulfate +)
- ● Non-treated PG monomer (keratan sulfate +)
- □ Chondroitinase ABC-digested PG monomer (keratan sulfate +)
- ● Keratanase-digested PG monomer (keratan sulfate -)
Figure 2- Reactivity of monoclonal antibody 1/14/16H9 with bovine corneal keratan sulfate.
(Okumura and Fujinaga, 1998)
Figure 3—Reactivity of monoclonal antibody 1/14/16H9 with glycosaminoglycans. (Okumura and Fujinaga, 1998)

- Dermatan sulfate
- Heparan sulfate
- Hyaluronic acid
- Heparin
Figure 4—Effect of dilution of monoclonal antibody 1/14/16H9 as the primary antibody on a standard curve. (Okumura and Fujinaga, 1998)

- 1 : 6,400 (1/14/16H9)
- 1 : 12,800 (1/14/16H9)
- 1 : 25,600 (1/14/16H9)
- 1 : 51,200 (1/14/16H9)
- 1 : 102,400 (1/14/16H9)
- 1 : 204,800 (1/14/16H9)
- 1 : 5,000 (1/20/5D4)
Figure 5—Effect of dilution of the secondary antibody on a standard curve. First antibody: 1/14/16H9. (Okumura and Fujinaga, 1998)
Figure 6-Standard curve for quantification of keratan sulfate.
First antibody: 1/14/16H9.
(Okumura and Fujinaga, 1998)
Figure 7-Comparison of keratan sulfate concentration in serum, using monoclonal antibodies 1/14/16H9 and 1/20/5D4. (Okumura and Fujinaga, 1998)
Figure 8-Comparison of keratan sulfate concentration in synovial fluid, using monoclonal antibody 1/14/16H9 and 1/20/5D4. (Okumura and Fujinaga, 1998)
Table 1. Precision of the keratan sulfate ELISA using 1/14/16H9 antibody

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>Mean (ng/ml)</th>
<th>SD (ng/ml)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within-assay</td>
<td>12</td>
<td>199.8</td>
<td>19.6</td>
<td>10.0</td>
</tr>
<tr>
<td>Between-assay</td>
<td>12</td>
<td>199.3</td>
<td>18.6</td>
<td>12.7</td>
</tr>
</tbody>
</table>

n = number of examinations; S.D. = standard deviation
C.V. = coefficient of variation
(Okumura and Fujinaga, 1998)
2.5. Discussion

Determination of proteoglycan monomer fragments in serum and synovial fluids has been used to monitor normal and abnormal catabolism of cartilage (Campion et al., 1991; Cruz et al., 1989; Kliner et al., 1987; Mehraban et al., 1991; Okumura et al., 1997; Saxne et al., 1993; Sweet et al., 1988; Todhunter et al., 1997), as well as to evaluate the response to clinical intervention (Carroll et al., 1992; Kongtawelert et al., 1989; Saxne et al., 1986). In horses with osteoarthritis, concentration of keratan sulphate in serum and synovial fluid is reported to be significantly higher than in clinically normal horses (Alwan et al., 1990). In ponies with experimentally induced articular cartilage injury, keratan sulphate concentrations in serum and synovial fluids were found to increase (Todhunter et al., 1993). The increases associated with acute generalized cartilage degradation (e.g., intra-articular injection of chymopapain) were greater than those associated with osteochondral defects (Todhunter et al., 1993). Other studies suggested that the concentrations of keratan sulphate in serum and synovial fluids from horses were affected by various joint diseases (Okumura et al., 1997; Palmer et al., 1995; Todhunter et al., 1997). For this purpose keratan sulphate antibodies, notably the monoclonal antibody clone 1/20/5D4 that recognized human cartilage keratan sulphate, have been widely used (Caterson et al., 1983).

The clone that secreted high-titer monoclonal antibody 1/14/16H9 was selected from some hybridomas that reacted with chondroitinase-ABC-digested equine proteoglycan monomers. Treatment of proteoglycan monomers with keratanase, chondroitinase-ABC and papain resulted in generation of glycosaminoglycans and a core protein. Native proteoglycan monomers have 2 types of glycosaminoglycan chains,
chondroitin sulphate and keratan sulphate, and a core protein. The epitope on equine proteoglycan monomers was susceptible to keratanase, but the antibody reacted strongly with chondroitinase-ABC-digested and nondigested equine proteoglycan monomers, and considerably with papain-digested equine proteoglycan monomers. This indicates that the antibody recognizes an epitope residing in the keratan sulphate region.

Reactivity of this antibody with corneal keratan sulphate or other glycosaminoglycans was examined. Inhibition of monoclonal antibody 1/14/16H9 by bovine corneal keratan sulphate was obvious, but inhibition was not detected for sodium hyaluronan, sodium heparin, dermatan sulphate and heparan sulphate. Corneal keratan sulphate has structure identical to that of keratan sulphate in cartilage (Caterson, 1991). Other glycosaminoglycan chains of proteoglycans tend to have the same linear disaccharide repeat sequences (Caterson, 1991). The antibody had appreciable reactivity with bovine corneal keratan sulphate, and less with dermatan sulphate, heparan sulphate, heparin and hyaluronan. It is, therefore, evident that the only glycosaminoglycan recognized by the antibody is keratan sulphate.

Effort was made to optimize an inhibition ELISA for determination of keratan sulphate of equine proteoglycan monomers, using the monoclonal antibody clone 1/14/16H9. This produced a stable, sensitive assay, which made detection of keratan sulphate in synovial fluid and serum possible, with an acceptable intra- and inter-assay precision. The sensitivity of the assay could be greatly improved by increasing dilution of the primary antibody.

Mean concentration of keratan sulphate measured by monoclonal antibody 1/14/16H9 in synovial fluid was approximately 170 times higher than the mean concentration in serum. Concentration measured by using monoclonal antibody 1/14/16H9 was not exactly the same value by monoclonal antibody 1/20/5D4 in synovial
fluid and serum. The concentration of the 1/14/16H9 epitopes was, however, directly proportional to that of 1/20/5D4 epitope in serum and synovial fluid, and correlation was found between the 2 antibody epitopes, 1/14/16H9 and 1/20/5D4, in serum and synovial fluid. It is also suggested that monoclonal antibody 1/14/16H9 recognizes an epitope on equine keratan sulphate.

Removal of the chondroitin sulphate side chains by enzymatic treatment of proteoglycan monomers with chondroitinase-ABC did not affect reactivity of the native proteoglycan monomers. This suggested that the affinity of monoclonal antibody 1/14/16H9 was not susceptible to degradation of the structure of proteoglycan monomers, and that the assay using monoclonal antibody 1/14/16H9 is relatively stable.

Furthermore, the within- and between-assay coefficient of variation for monoclonal antibody 1/14/16H9 were preferable (10.0 and 12.7%, respectively). These scores should be satisfactory not only for research purposes but also for clinical use (Kongtawelert et al., 1989). Although it would be more useful that this antibody may be applied for more stable immunoassay, such as a sandwich ELISA, even the inhibition ELISA using this monoclonal antibody would be valuable for multiparameter clinicobiological testing.

In this chapter, a sensitive and specific monoclonal antibody, 1/14/16H9, that specifically detected equine keratan sulphate was established, and used for development of an enzyme immunoassay system for measurement of the concentration of keratan sulphate in serum and synovial fluids from horses. It is expected that this assay system will contribute to evaluation of cartilage metabolic activity in horses.
3. The Usefulness of the Measurement of Keratan Sulphate Reacting to 1/14/16H9 and 1/20/5D4 Antibodies to Monitor Cartilage Metabolism in \textit{in vitro} Pellet-Cultured Equine Articular Chondrocytes

3.1. Summary

The usefulness of the measurement of keratan sulphate, reacting to newly established 1/14/16H9 and 1/20/5D4 antibodies, as a marker of cartilage metabolism was evaluated by using an \textit{in vitro} model of equine articular cartilage.

Articular cartilage was harvested from 3 clinically healthy 6 month-old Thoroughbred foals. Articular chondrocytes were centrifuged and cultured as pellets in centrifuge tubes. Chondrocytes were incubated with insulin-like growth factor (IGF)-Iα, transforming growth factor (TGF)-β1 or interleukin (IL)-1α for 2 weeks. Before incubation with IL-1α, chondrocytes were pre-incubated for 1 week with 10% fetal bovine serum. The keratan sulphate concentrations and sulfated glycosaminoglycans (GAG) in pellets or media were measured by an inhibition ELISA and a 1,9-dimethylmethylene blue colorimetric assay, respectively.

Synthesis of GAG was significantly increased by IGF-Iα and TGF-β1. Deposition of GAG in pellets was significantly increased by IGF-Iα, but not by TGF-β1.

The GAG and keratan sulphate concentrations in the culture media, which were stimulated by IGF-Iα or IL-1α, were also measured by an inhibition ELISA using 1/14/16H9 or 1/20/5D4 antibody. Keratan sulphate concentrations were significantly increased in those stimulated by IL-1α, while no significant change was found in those
stimulated by IGF-I\(\alpha\). A high correlation between keratan sulphate concentrations and GAG was found in the media of pellets stimulated by IL-1\(\alpha\) (\(r = 0.87\) and 0.84; GAG to 1/14/16H9 epitope and to 1/20/5D4 epitope, respectively), but lower in those stimulated by IGF-I\(\alpha\) (\(r = 0.43\) and 0.59; GAG to 1/14/16H9 epitope and to 1/20/5D4 epitope, respectively).

The results suggest that the \textit{in vitro} concentration of keratan sulphate reacting to 1/14/16H9 mirrors the GAG concentration during the stage of cartilage catabolism but not during the cartilage anabolic stage. On the other hands, the results also suggest that the \textit{in vitro} concentration of keratan sulphate reacting to 1/20/5D4 mirrors GAG concentration during the stage of cartilage catabolism and slightly during cartilage anabolism. These two differently reactive keratan sulphate concentrations in serum and synovial fluid could contribute as a marker to understand principally the catabolic process of articular cartilage metabolism and also represent in part some aspects of the cartilage anabolic process.
3.2. Introduction

The cartilage matrix has a high content of proteoglycans and collagens, which are important for normal function of cartilage, and is synthesized and organized by the chondrocytes. The chondrocyte is itself subject to regulation by various cytokines and growth factors that can shift the homeostatic balance in an anabolic or catabolic direction (Tippel, 1995). Insulin-like growth factor (IGF)-I and transforming growth factor (TGF)-β are thought to have a major influence on cartilage matrix synthesis (Trippel, 1995). Interleukin (IL)-1 induces increased synthesis of various matrix metalloproteinases by chondrocytes (Hembry et al., 1994; Mort et al., 1993).

A high-density pellet culture system was originally established for the study of growth plate chondrocyte hypertrophy (Kato et al., 1988). Intimate interaction between chondrocytes and the extracellular matrix in a pellet mass is believed to stabilize the ability of chondrocytes to deposit cartilaginous matrix and induce mineralization (Kato et al., 1988). This system has also been applied to cultures of chondrocytes from bovine nasal and articular cartilage (Xu et al., 1996).

In Chapter 2 of this thesis, an anti-equine keratan sulphate antibody 114/16H9 was established, and serum and synovial fluid keratan sulphate concentration was measured by an ELISA using this antibody (Okumura and Fujinaga, 1998). It is however unclear whether or not keratan sulphate can be used as a marker for cartilage anabolism and/or catabolism.

The objectives of this chapter were to measure antigenic keratan sulphate concentration, using newly established 114/16H9 (Okumura and Fujinaga, 1998) or 1/20/5D4 (Caterson et al., 1983) antibody, in the media of cultured equine articular chondrocytes in high-density pellets, the novel culture system of articular chondrocytes from horses, under anabolic or catabolic condition, and to evaluate whether keratan sulphate concentration can be used as an indicator to monitor cartilage metabolism in the biological fluid.
3.3. Materials and methods

3.3.1. Isolation and culture of chondrocytes

Articular cartilage was obtained from the femoropatellar joint of 6 month-old Thoroughbred foals (n=3) immediately after euthanasia, which was performed for a reason except musculoskeletal abnormalities. Full-thickness articular cartilage was aseptically harvested from the femoropatellar joint. The cartilage was then washed three times for 15 minutes in sterile PBS (pH7.2) containing 100 IU/ml penicillin, 100 μg/ml streptomycin, and 50 mg/ml gentamicin. Chondrocytes were released from freshly dissected articular cartilage specimens by sequential enzymatic digestion at 37 °C on a rotator with 2.5 mg/ml trypsin (Trypsin 1:250, Difco Lab., Detroit, MI, U.S.A.) for 30 minutes, and 2.5 mg/ml collagenase (Wako Pure Chemical Industry Ltd., Osaka) for 15 hours. The viability of the isolated cells was estimated with trypan blue exclusion test and was always above 92%. The isolated chondrocytes were resuspended at a density of 5 x 10^5 cells/ml in Dulbecco's Modified Eagle Medium (DMEM). In all experiments the medium contained 50 μg/ml ascorbic acid, 2 mM glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin throughout the culture period. In some experiments, the DMEM contained 10% fetal bovine serum (FBS).

To prepare high-density pellet cultures, 1-ml aliquots of the cell suspension (5 x 10^5 cells) were transferred into 15-ml polypropylene centrifuge tubes. The cells were centrifuged at 200 x g for 5 minutes. The resulting cell pellets were cultured in the same centrifuge tubes with loosened lids at 37 °C in a humidified atmosphere of 5 % CO₂/95% air. The medium was changed every 3 to 4 days and chondrocyte pellets were maintained for up to 2 weeks. Culture media were stored at the time of the medium replacement and at the end of culture, and stored at -20°C.
3.3.2. Supplements and culture procedures

In the study on extracellular matrix synthesis, recombinant human (rh) IGF-Iα (Sigma Chemical Co.) or rhTGF-β1 (Sigma Chemical Co.) was added in the medium for cultures grown for 2 weeks. In studies of extracellular matrix degradation, chondrocyte pellets were incubated in DMEM containing 10% FBS for 1 week, then supplemented with rhIL-1α (Sigma Chemical Co.) for another 2 weeks. In all these experiments, IGF-Iα or IL-1α was added at each time the medium was changed.

3.3.3. Purification of equine cartilage proteoglycan monomers

Equine proteoglycan monomers were purified similarly as previously described in chapter 2, Section 2.3.1.

3.3.4. Measurement of sulfated glycosaminoglycan (GAG) concentration in the culture media

The proteoglycan released in the culture media was evaluated by assaying GAG concentration colorimetrically using dimethymethylene blue (DMMB) (Aldrich Chemical Co., Milwaukee, WI, U.S.A.) (Farndale et al., 1982). The concentration of GAG in the samples were calculated by comparing the absorbance value with values generated from known concentrations of bovine corneal keratan sulphate (Seikagaku-kogyo) in similar manner as sample plates.

3.3.5. Measurement of keratan sulphate concentration in the culture media

An inhibition ELISA, established by Okumura and Fujinaga (1998), was used to measure keratan sulphate concentration in the culture medias described in Chapter 2, Section 2.3.5.
3.3.6. Statistical analysis

Comparisons between groups were made by the two-tailed Mann-Whitney U test with $P < 0.05$ taken as significant. The correlation between total GAG and keratan sulphate concentrations was evaluated by Spearman's correlation coefficient.
3.4. Results

3.4.1. Proteoglycan concentration in the extracellular matrix of articular chondrocyte pellets cultured with growth factors

Concentration of proteoglycans as extracellular matrix of articular chondrocytes could be detected in the chondrocyte pellets (Figure 9). Concentration of proteoglycans was significantly increased when the chondrocyte pellets were cultured with FBS (1.5 and 10%), or with IGF-Iα (1.0 and 10.0 ng/ml). Transforming growth factor-β1 did not significantly influence proteoglycan concentration in the matrix.

3.4.2. Proteoglycan concentration in the media of articular chondrocyte pellets cultured with growth factors

Changes in the concentration of proteoglycans from chondrocyte pellets in response to growth factors were detected by assaying the GAG in pellets and media (Table 2) and the proportion of GAG concentration in the tissue culture medium (Table 3) during the culture period. Both IGF-Iα and TGF-β1 significantly increased the concentration of GAG compared with that of control cultures, though the effect of IGF-Iα to chondrocyte pellets was greater and more clearly dose-dependent than that of TGF-β1 (Table 2). Only a small proportion of total GAG (both in-pellet and in-medium) was incorporated into the extracellular matrix during a 14-day period in control cultures; approximately 76% of total GAG was in the tissue culture medium (Table 3). This proportion was not affected significantly by IGF-Iα, however TGF-β1, at 1.0 and 10.0 ng/ml, significantly increased that of GAG in the medium (Table 3).
3.4.3. The change of GAG concentration in the extracellular matrix of articular chondrocyte pellets cultured with IL-1α

Articular chondrocytes were cultured for 1 week with 10% FBS in DMEM, and 2 weeks further in the same medium with 1.0, 5.0, 10.0 and 20.0 ng/ml of IL-1α. The cell pellets were then harvested for the assay of GAG. There was a significant decrease in the GAG concentration of articular chondrocyte pellets treated with 20.0 ng/ml of IL-1α compared with that of the control pellets (Figure 10).

3.4.4. The change of keratan sulphate concentration, reacting to 1/14/16H9 and 1/20/5D4 antibodies, in the media of the pellets cultured with IGF-Iα and IL-1α

Changes in the concentration of keratan sulphate reacting to either 1/14/16H9 or 1/20/5D4 antibody in response to IGF-Iα and IL-1α were evaluated by measuring the keratan sulphate in the culture media using an inhibition ELISA. The concentration of keratan sulphate reacting to either 1/14/16H9 or 1/20/5D4 antibody in the media of pellets cultured with IL-1α was significantly increased, compared with those of control cultures (Tables 4 & 5). Significant change of keratan sulphate concentration was not found in the media of pellets stimulated by IGF-Iα, compared with those of control cultures (Tables 6 & 7).

3.4.5. Correlation between proteoglycans and keratan sulphate concentrations in the media of equine chondrocytes pellets

Changes in the proteoglycan concentration in response to IGF-Iα and IL-1α were examined by assaying both GAG and keratan sulphate concentrations in the media of chondrocyte pellets during the entire culture period, and then the comparison between
these two parameters was done. A high correlation between GAG and keratan sulphate concentrations was found in the media of pellets cultured with IL-1α ($r = 0.87$ or 0.84, 1/14/16H9 or 1/20/5D4, respectively; Figure 11), while a low value was detected in the group of IGF-Iα ($r = 0.43$ or 0.59, 1/14/16H9 or 1/20/5D4, respectively; Figure 12).
Figure 9- Contents of sulphated glycosaminoglycans (GAG) in the extracellular matrix of equine articular chondrocyte pellets. Pellet were incubated for 2 weeks in Dulbecco's modified Eagle medium (DMEM) without supplement (Control), with fetal bovine serum (FBS) or insulin-like growth factor (IGF)-Iα or transforming growth factor (TGF)-β1. Each bar is the mean ± standard deviation (SD). n=12. *: P<0.05 compared with control cultures. (modified from Okumura et al., 2000)
Figure 10- Changes of proteoglycan content in the extracellular matrix of equine articular chondrocyte pellets by interleukin (IL)-1α supplement. Each bar is the mean ± SD. n=12. *: P<0.05 compared with control cultures. (modified from Okumura et al., 2000)
Figure 11- Comparison of keratan sulphate reacting to 1/14/16H9 or 1/20/5D4 antibody and GAG concentrations in the medium of equine articular chondrocyte pellets cultured with IL-1α.
(modified from Okumura et al., 2000 & Okumura and Fujinaga, 2000)
Figure 12: Comparison of keratan sulphate reacting to 1/14/16H9 or 1/20/5D4 and GAG concentrations in the medium of equine articular chondrocyte pellets cultured with IGF-Iα.
(Okumura et al., 2000 & Okumura and Fujinaga, 2000)
Table 2. GAG content in pellets and media cultured with growth factors

<table>
<thead>
<tr>
<th>Growth factor concentration (ng/ml)</th>
<th>GAG content in 2 weeks (μg/pellet)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGF-1α</td>
<td>TGF-β1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>0.0 (Control)</td>
<td>241</td>
<td>59</td>
<td>241</td>
</tr>
<tr>
<td>0.1</td>
<td>377*</td>
<td>77</td>
<td>323</td>
</tr>
<tr>
<td>1.0</td>
<td>391*</td>
<td>27</td>
<td>386*</td>
</tr>
<tr>
<td>10.0</td>
<td>526*</td>
<td>64</td>
<td>443*</td>
</tr>
</tbody>
</table>

Each value was calculated with 12 samples.
*P<0.05 compared with Control
(modified from Okumura et al., 2000)
Table 3. Percentage of GAG content in media of pellets

<table>
<thead>
<tr>
<th>Growth factor concentration (ng/ml)</th>
<th>GAG content in media (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGF-Iα</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>0.0 (Control)</td>
<td>76.2</td>
</tr>
<tr>
<td>0.1</td>
<td>78.3</td>
</tr>
<tr>
<td>1.0</td>
<td>74.3</td>
</tr>
<tr>
<td>10.0</td>
<td>72.5</td>
</tr>
</tbody>
</table>

Each value was calculated with 12 samples.
*P<0.05 compared with Control
(modified from Okumura et al., 2000)
Table 4. Concentrations of GAG and keratan sulphate (KS) reacting to 1/14/16H9 in the media of pellets cultured with IGF-I

<table>
<thead>
<tr>
<th>IGF-I (ng/ml)</th>
<th>GAG (µg/ml)</th>
<th>KS (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>0.0 (Control)</td>
<td>37.1</td>
<td>3.4</td>
</tr>
<tr>
<td>0.1</td>
<td>60.2*</td>
<td>8.1</td>
</tr>
<tr>
<td>1.0</td>
<td>58.5*</td>
<td>2.0</td>
</tr>
<tr>
<td>10.0</td>
<td>74.5*</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Each value was calculated with 12 samples.
*P<0.05 compared with Control.
(modified from Okumura et al., 2000)
Table 5. Concentrations of GAG and KS reacting to 1/20/5D4 in the media of pellets cultured with IGF-I

<table>
<thead>
<tr>
<th>IGF-I (ng/ml)</th>
<th>GAG (µg/ml)</th>
<th>KS (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>0.0 (Control)</td>
<td>38.0</td>
<td>10.5</td>
</tr>
<tr>
<td>0.1</td>
<td>51.4</td>
<td>10.8</td>
</tr>
<tr>
<td>1.0</td>
<td>58.5*</td>
<td>2.0</td>
</tr>
<tr>
<td>10.0</td>
<td>74.7*</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Each value was calculated with 12 samples.
*P<0.05 compared with Control.
(modified from Okumura et al., 2000)
Table 6. Concentrations of GAG and KS reacting to 1/14/16H9 in the media of pellets cultured with IL-1

<table>
<thead>
<tr>
<th>IL-1 (ng/ml)</th>
<th>GAG (µg/ml)</th>
<th>KS (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>0.0 (Control)</td>
<td>65.6</td>
<td>11.2</td>
</tr>
<tr>
<td>1.0</td>
<td>68.9</td>
<td>13.4</td>
</tr>
<tr>
<td>5.0</td>
<td>65.2</td>
<td>19.7</td>
</tr>
<tr>
<td>10.0</td>
<td>72.0</td>
<td>15.5</td>
</tr>
<tr>
<td>20.0</td>
<td>85.1*</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Each value was calculated with 12 samples.
*P<0.05 compared with Control.
(modified from Okumura et al., 2000)
Table 7. Concentrations of GAG and KS reacting to 1/20/5D4 in the media of pellets cultured with IL-1

<table>
<thead>
<tr>
<th>IL-1 (ng/ml)</th>
<th>GAG (μg/ml)</th>
<th>Mean</th>
<th>SD</th>
<th>KS (ng/ml)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 (Control)</td>
<td>29.0</td>
<td>3.0</td>
<td></td>
<td>580</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>29.2</td>
<td>5.6</td>
<td></td>
<td>584</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>28.7</td>
<td>8.8</td>
<td></td>
<td>575*</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>33.7*</td>
<td>1.3</td>
<td></td>
<td>675*</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>39.4*</td>
<td>3.0</td>
<td></td>
<td>789*</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05 compared with Control.
(modified from Okumura et al., 2000)
3.5. Discussion

Equine articular chondrocytes from 6 month-old foals were cultured as pellets and synthesized a cartilage-like matrix that contained abundant proteoglycans. This in vitro deposition of extracellular matrix of articular cartilage was demonstrated by the quantitative assay of GAG. The matrix accumulated externally around the chondrocytes, unlike in monolayer cultures of chondrocytes where there is an intracellular accumulation of the matrix (Frazer et al., 1994). The pellet-cultured equine chondrocytes maintained good viability and showed no tendency to change phenotypic appearance towards dedifferentiation. This indicates that the pellet-cultured equine articular chondrocytes maintained their own biological properties in vitro.

Formation of the organized extracellular matrix occurred in the absence of growth factors, but the rate of matrix deposition was significantly increased by 1, 5 and 10% FBS and 1.0 and 10.0 ng/ml IGF-Iα. The effect of IGF-I on cultured cartilage was reported to be a forceful stimulator of proteoglycan synthesis by chondrocytes (Fosang et al., 1991; Luyten et al., 1988; McQuillan et al., 1986; Schalkwijk et al., 1989; Tyler, 1989), and it may also include a chondroprotective effect in IL-1-conditioned explants (Frisbie and Nixon, 1997), by possibly inhibiting the synthesis of proteolytic enzymes (Tyler et al., 1989; Fosang et al., 1991). The results in this study confirm previous studies that documented the ability of IGF-I on chondrocyte-mediated matrix metabolism in the pellet-cultures. Rogachefsky et al. (1993) demonstrated similar effects of IGF-I to chondrocytes in vivo, when combined with anti-inflammatory agents, and furthermore the role of IGF-I in cartilage repair. It was also reported that the in vivo anabolic effects of joint loading on the cartilage should be, at least partially, mediated by IGF-I in the synovial fluid of ponies (van den Hoogen et al., 1998).
TGF-β1 mRNA expression was observed in the chondrocyte clusters immediately surrounding a lesion of dyschondroplasia in horses, and this alteration could be involved in the pathogenesis of this condition in horses (Henson et al., 1997). TGF-β1 (0.1-10.0 ng/ml) did not significantly increase or inhibit proteoglycan deposition of the matrix in the chondrocyte pellets, while it evidently increased synthesis of proteoglycans. TGF is well known to be a pleiotropic growth factor, which has complex effects on cartilage metabolism and is secreted by many cells, including chondrocytes (Fortier et al., 1997; Massague, 1990; Morales et al., 1991; Rosier et al., 1989). Many studies on this growth factor have focused on proteoglycan and type II collagen synthesis in cartilage explant and chondrocyte monolayer cultures. It has been demonstrated that TGF-β has either stimulated (Frazer et al., 1994; Hiraki et al., 1988; Morales and Roberts, 1988) or inhibited (Horton et al., 1989; Van der Kraan et al., 1992) the cartilage matrix synthesis. The pellet culture system that was employed in this study contributes to the measurement of synthesis, deposition, release and degradation of matrix macromolecules in any one culture well, for which previous culture systems could not be applied (Xu et al., 1996). These conflicting results can be explained by the increased release of GAG into the medium at 1.0 and 10.0 ng/ml of TGF-β1. It was detected that the level of aggrecan concentration in medium was increased by TGF-β1-stimulation on cultured bovine cartilage (Xu et al., 1996). Possible interpretation of these results may include an increased degradation of the newly synthetized proteoglycans.

Changes in the concentration of proteoglycans in response to growth factors were examined by assaying the GAG synthesized and the proportion of GAG released into the tissue culture medium during the culture period. Both IGF-Iα and TGF-β1 significantly increased the synthesis of proteoglycans compared with that of control cultures, and the proportion of proteoglycan released was not significantly affected by IGF-Iα, but TGF
-β1 significantly increased this proportion at 1.0 and 10.0 ng/ml. It is suggested that TGF-β1 may increase turnover of the chondrocyte extracellular matrix in contrast to IGF-Iα, which increases synthesis and deposition of the matrix proteins. In the present study the deposition of cartilage extracellular matrix was neither increased nor decreased by TGF-β stimuli, unlike in a previous study using pellet-cultured bovine nasal chondrocytes (Xu et al., 1996). This minor contrast would be caused by the difference of the age or the maturation of the horse, from which the cartilage samples were harvested (Xu et al., 1996). The results reported here would mean some degradation of the articular cartilage induced by TGF-β1.

There was a significant decrease in GAG contents of equine articular chondrocyte pellets treated with 20 ng/ml of IL-1α compared with that of control pellets. IL-1 derived from various cells, including synoviocytes and chondrocytes, is considered the predominant catabolic mediator responsible for cartilage degradation (Hasty et al., 1990). IL-1 has been shown to stimulate chondrocyte production of metalloproteinases (Chandrasekhar and Phadke, 1988; MacDonald et al., 1992; Morris and Treadwell, 1994; Tyler, 1989), and to inhibit the synthesis of collagen and proteoglycans by chondrocytes (Hasty et al., 1990; Morris and Treadwell, 1994; Platt and Bayliss, 1994; Tyler, 1989). The results observed from the pellet-cultured chondrocytes in the present study support previous observations (Benya and Shaffer, 1982; Chandrasekhar and Phadke, 1988; Hasty et al., 1990; Morris and Treadwell, 1994; Platt and Bayliss, 1994; Tyler, 1989). This pellet culture system established for equine articular chondrocytes was used for the following investigation of keratan sulphate as a metabolic marker of cartilage.

Equine articular chondrocytes from 6 month-old foals were cultured as pellets to allow them to synthesize or degrade their own extracellular matrix when supplemented with IGF-Iα or IL-1α as described above. This in vitro turnover of extracellular matrix
of the articular cartilage was evaluated by quantitative assays of GAG and keratan sulphate concentration reacting to 1/14/16H9 or 1/20/5D4 antibody.

The concentration of keratan sulphate reacting to the newly established anti-equine 1/14/16H9 and the anti-human keratan sulphate 1/20/5D4 antibodies in the media showed similar change as GAG did. The concentration of keratan sulphate in the serum was suggested to serve as a diagnostic test for generalized osteoarthritis (Thonar et al., 1985). It was reported that levels of keratan sulphate in serum might provide information on the systemic changes in metabolism of cartilage proteoglycans (Block et al., 1989; Roos et al., 1995; Sweet et al., 1988; Williams et al., 1988). A higher correlation between GAG contents and keratan sulphate concentrations reacting to these antibodies was found in the media of the pellets cultured with IL-1α, while a low value was in the media of the pellets cultured with IGF-1α. An in vitro study implied that keratan sulphate concentration, reacting to 1/20/5D4 antibody (Block et al., 1989), may be used as a marker of cartilage degeneration and chondroitin sulphate as a marker of its synthesis (Poole, 1994; Poole et al., 1990). The change of keratan sulphate concentration reacting to 1/14/16H9 or 1/20/5D4 antibody in the media of the pellets stimulated by IGF-1α did not show the same manner as proteoglycan concentration did, a better correlation value with GAG was found in keratan sulphate concentration measured by 1/20/5D4 (r = 0.59) antibody than by 1/14/16H9 (r = 0.43) antibody. This indicates that keratan sulphate concentration does not entirely represent the synthesis of cartilage matrix.

In this chapter, the pellet culture system has been successfully adapted for further understanding of cartilage matrix metabolism of equine articular chondrocytes. The results suggest that the in vitro concentration of keratan sulphate reacting to 1/14/16H9 mirrors the GAG concentration during the stage of cartilage catabolism but not during the cartilage anabolic stage. On the other hands, the results also suggest that the in vitro concentration of keratan sulphate reacting to 1/20/5D4 mirrors GAG concentration during
the stage of cartilage catabolism and slightly during cartilage anabolism. These two differently reactive keratan sulphate concentrations in serum and synovial fluid could contribute as a marker to understand principally the catabolic process of articular cartilage metabolism and also represent in part some aspects of the cartilage anabolic process.
4. Evaluation of Clinical Significance of Keratan Sulphate Reacting to 1/14/16H9 and 1/20/5D4 Antibodies as a Cartilage Metabolic Marker in Serum and Synovial Fluid from Horses

4.1 Summary

The clinical significance of keratan sulphate as a cartilage metabolic marker was evaluated by measurement of keratan sulphate concentration reacting to the newly established anti-equine keratan sulphate 1/14/16H9 and an anti-human keratan sulphate 1/20/5D4 antibodies in sera and synovial fluid from horses. Serum and synovial fluid samples were obtained from training and growing foals, resting horses, and horses with spontaneous or experimentally-induced osteoarthritis. Keratan sulphate concentration in serum and synovial fluid was measured by an inhibition ELISA using 1/14/16H9 and 1/20/5D4 antibodies. Serum alkaline phosphatase (ALP) activity, as well as radiographic and physical examinations, was measured in growing foals as a background data.

Serum keratan sulphate concentration, reacting to 1/14/16H9 and 1/20/5D4 antibodies, in growing foals (up to 3 months of age) was significantly higher than the value in foals over 4 months old. Serum keratan sulphate concentration in three foals, which had joint abnormalities, was higher than those in 12 normally growing foals during the first 3 months after birth.

In on-training horses, keratan sulphate concentrations in 2-year old horses was significantly higher than 3- or 4-year old horses while, in long-term resting group, that in 2-year old horses was not statistically higher than of the other older age groups. Significantly higher concentration of keratan sulphate was found in the on-training group.
than in the long-term resting group in 2-year old horses. Keratan sulphate concentration significantly increased immediately after the training in healthy horses, while keratan sulphate concentrations at 1-, 5-, 9- and 24-hours after the training remained at similar levels to the pre-training conditions.

There was no significant difference in the levels of two different keratan sulphate concentrations reacting to 1/14/16H9 or 1/20/5D4 antibodies in synovial fluid between normal horses and horses with osteoarthritis.

The concentrations of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in sera peaked 3 days after the intra-articular injection of chymopapain, and were approximately 1.4- and 1.9-folds higher than the preinjected value, respectively. The concentrations of keratan sulphate in synovial fluid peaked 3 days after the intra-articular injection of chymopapain, and were approximately 4-folds higher than the value before the injection, in keratan sulphate reacting to both antibodies.

The results suggest that the measurement of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in sera and synovial fluid is valuable in understanding the cartilage metabolic activity related to various conditions of the joints. Both the newly established 1/14/16H9 antibody and the common antibody for the detection of keratan sulphate, 1/20/5D4, could contribute to search for the key of the catabolic activity of joint cartilage in the various conditions of the joints in horses.
4.2. Introduction

Much work has progressed out in the search for a marker of cartilage metabolism in human beings and animals with arthropathies and secondary osteoarthritis (Alwan et al., 1990; Block et al., 1989; Heinegard et al., 1985; Kliner et al., 1987; Okumura et al., 1997; Okumura and Fujinaga, 1998; Saxone et al., 1986; Thonar et al., 1985; Todhunter et al., 1993). Most proteoglycans in the cartilage are high molecular weight macromolecules that enable cartilage to undergo reversible deformation (Fisher and Barclay, 1984). The mechanisms and rate of cartilage proteoglycan turnover in normal and abnormal cartilage remain unclear (Heinegard and Paulsson, 1984; Maroudas, 1975; Revell and Muir, 1972; Thonar et al., 1985). Lack of substantial amounts of partially degraded proteoglycans in the normal cartilage matrix suggests that proteoglycan molecules are usually rapidly degraded into smaller fragments, which are either engulfed by the chondrocytes or diffused into the body fluids that are in contact with cartilage (Thonar et al., 1985). Consequently, proteoglycan fragments and GAG were found in synovial fluid (Heinegard et al., 1985; Saxone et al., 1986), and several species of GAG, including chondroitin sulphate and keratan sulphate, have also been detected in blood (Block et al., 1989; Heinegard and Paulsson, 1984; Kliner et al., 1987; Thonar et al., 1985).

Keratan sulphate is a GAG that is distributed in the extracellular matrix of joint cartilage. Recently, an ELISA using an anti-human keratan sulphate antibody 1/20/5D4 (Caterson et al., 1983) has led to improvements in measurement of low concentration of keratan sulphate (Thonar et al., 1985).

The objectives of this chapter were to determine the amount of keratan sulphate,
reacting to the newly established anti-equine keratan sulphate 1/14/16H9 and an anti-human keratan sulphate 1/20/5D4 antibodies, in serum and synovial fluid of foals at the early stage of life, horses in resting or training period, and horses with spontaneous or experimental osteoarthritis, and to evaluate the clinical significance of keratan sulphate as a marker to understand cartilage metabolism of the joints.
4.3. Materials and methods

4.3.1. Serum and synovial fluid samples from horses

4.3.1.1. Serum samples from growing foals

Twenty neonatal foals were chosen at random from Shadai farm in Hokkaido, and 15 foals were further selected for this study. Monthly radiographic and physical examinations were done. Foal 1-12 had normal growth and Foal 13-15 had joint abnormalities (Table 8). Blood was collected from the foals 1 week after birth, then monthly for 6 months. Sera were stored at -20 °C until assayed.

For each time of blood sample collection, physical examination of the neck and limbs and radiography of the carpal joint (lateral and ventrodorsal[VD] views), hock (lateral and laterodorsal oblique views) and fetlocks (lateral and VD views) on the right side were done to investigate for any abnormalities of the joints. Additionally, serum ALP activity was also measured as a quantification of osteoblastic activity in foals.

4.3.1.2. Serum samples from long-term resting and on-training horses

Serum samples were obtained from long-term resting horses, which had not raced for more than 3 months for the reasons other than joint problems, and on-training horses, which had daily racetrack training for more than 3 months. Each group consisted of 3 generations including 2, 3 and 4-year old horses (each generation had 10 horses). Blood samples were collected from on-training horses after more than 24 hours from the last practice. Horses in either long-term resting or on-training had no clinical signs of joint diseases. Serum samples were stored at -20 °C until assayed.

4.3.1.3. Serum samples from on-training horses within 24 hours after training

Serum samples were obtained from five training horses (five males, 3 years of age)
before and immediately after 2-minutes-gallop, and 1, 5, 9 and 24 hours after training. The horses had no clinical signs of joint diseases. Serum samples were stored at -20 °C until assayed.

4.3.1.4. Serum and synovial fluid samples from horses with spontaneous and experimentally-induced osteoarthritis

Serum and synovial fluid samples were obtained from horses with no clinical signs of joint diseases and horses diagnosed clinically as having osteoarthritis in Shadai Horse Clinic, Hokkaido. The diagnosis of osteoarthritis was based on history, complaint, signalment, clinical examination and radiographic assessment.

Serum and synovial fluid samples were obtained from horses (four Thoroughbreds and one Arabian with ages ranging from 3 to 6 years old) with experimentally-induced osteoarthritis by an injection of 30 mg of chymopapain (Sigma Chem. Co.) into unilateral carpal joints. Blood was collected 0, 3, 7, 10, 14, 21, 28, 35, 42, 52 and 49 days after chymopapain injection. Synovial fluid was collected 0, 3, 10, 17, 24 and 35 days after the injection. Serum and synovial fluid samples were stored at -20 °C until assayed.

The procedure of this experiment and handling of the animals were planned and done according to the guideline for animal experiments in Graduate School of Veterinary Medicine, Hokkaido University.

4.3.2. Purification of equine cartilage proteoglycan monomers

Equine proteoglycan monomers were purified similarly as previously described in Chapter 2, Section 2.3.1.

4.3.3. Measurement of keratan sulphate concentration in sera and synovial fluid
An inhibition ELISA, established by Okumura and Fujinaga (1998), was used to measure keratan sulphate concentration in sera and synovial fluid as described in Chapter 2, Section 2.3.5.

4.3.4. Measurement of serum alkaline phosphatase (ALP) activity

Serum ALP activity was measured in foals by use of a serum analyzer (COBAS MIRA, F. Hoffmann-La Rosch Co. LTD, Basel, Switzerland).

4.3.5. Statistical analysis

For analysis of significance of data obtained for normally growing foals, repeated measures analysis of variance was used. Fisher's protected least significant difference was used as a post-hoc test. A P value < 0.05 was considered statistically significant.

Comparisons of serum or synovial fluid keratan sulphate concentration between normal and arthritic horses were made by the two-tailed Mann-Whitney U test with $P < 0.05$ taken as significant. The correlation between two different concentration of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies was evaluated by Spearman's correlation coefficient.
4.4. Results

4.4.1. Serum samples from growing foals

In all foals, serum keratan sulphate concentration was high from 1 week after birth to 3 months of age, and started to decrease rapidly from 4 to 5 months of age (Figure 15). In three foals (No. 13-15), which had joint problems, keratan sulphate concentration was higher than that in normally growing 12 foals at 1 week, and 1, 2, and 3 months of age. Both keratan sulphate epitopes, reacting to 1/14/16H9 and 1/20/5D4 antibodies, showed the same manner of changes in growing foals (Figure 13). Keratan sulphate concentration reacting to 1/20/5D4 antibody was always higher than that to 1/14/16H9 antibody, however prominent change of keratan sulphate concentration in three horses with joint diseases was likely to be more clearly represented in keratan sulphate concentration reacting to 1/14/16H9 antibody.

Radiographic findings for the hock, carpal joint, and fetlocks on the right side in normally growing 12 foals were not significant. The left hock of Foal No.13 had an osteochondrosis dissecans at the distal intermediate ridge of the tibia at 9 months of age, accompanied by swelling of the same joint (Table 8). In Foal No.14, swelling on both sides of the carpal joint and hock, and severe extroversion of both forelimbs were seen without significant radiographic findings. In Foal No.15, swelling but not a radiographic abnormality was found on both hocks (Table 8). Any other problems of the skeletal system were not detected during physical examination of Foal Nos.13-15 (Table 8).

The ALP value during the first 3 months was higher than the stable value after 5 months of age, despite no significant difference between male and female normally growing foals (Figure 14). The fluctuation in ALP activity in Foal Nos. 13-15 was...
similar to that seen in other foals.

4.4.2. Serum keratan sulphate concentration in long-term resting and on-training horses

Both keratan sulphate concentrations, reacting to 1/14/16H9 and 1/20/5D4 antibodies, showed the same manner of changes in each group of horses.

In long-term resting horses, keratan sulphate concentration in 2-year old horses was higher than that of 3- or 4-year old horses, but a significant difference could not be detected among them (Figure 15). In on-training horses, keratan sulphate concentration in 2-year old horses was significantly higher than that of the 3- or 4-year old horses (Figure 15). In the 2-year old horses, significantly higher keratan sulphate concentration was found in the on-training group than in the long-term resting group (Figure 15). The 1/14/16H9 keratan sulphate likely showed more clearly the tendency (Figure 15).

4.4.3. Short-term change of keratan sulphate concentration in the blood from horses within 24 hours after training

Keratan sulphate concentration before and after the training of 2-minute-gallop was measured in five horses. Both keratan sulphate concentrations, reacting to 1/14/16H9 and 1/20/5D4 antibodies, showed the same manner of changes in these horses (Figure 16). Keratan sulphate concentration immediately after the training was significantly higher than that before the training, while keratan sulphate concentration 1-, 5-, 9- and 24-hours after training was the same level as before the training (Figure 16).

4.4.4. Serum and synovial fluid samples from horses with experimentally-induced osteoarthritis

The serum concentration of keratan sulphate peaked 3 days after the injection, and
was approximately 1.4- and 1.9-folds higher in horses that received chymopapain intra-articularly than the preinjected value, when estimated using 1/14/16H9 and 1/20/SD4 antibodies, respectively (Figure 17). The concentration of keratan sulphate reacting to 1/20/SD4 in sera was lowest 21 days after the injection and increased to a slightly higher value than the preinjected values, and then returned towards the preinjected value up to 49 days after the injection, while the concentration of keratan sulphate reacting to 1/14/16H9 antibody did not show the second increase after 21 days (Figure 17). Both keratan sulphate concentrations in sera, reacting to 1/14/16H9 and 1/20/SD4 antibodies, showed the same manner of changes (Figure 17). Although keratan sulphate level in 1/20/SD4 was always higher than that in 1/14/16H9, prominent change of keratan sulphate concentration at the first peak after the injection was apparently represented in the keratan sulphate reacting to 1/14/16H9 antibody (Figure 17).

The concentration of keratan sulphate in synovial fluid peaked 3 days after the injection of chymopapain, and was approximately 4-fold higher after the injection than that before the injection, and keratan sulphate concentration 10 days after the injection was still significantly higher than that before the injection (Figure 18). The concentration of keratan sulphate returned toward the preinjection values 24 days after the injection. Keratan sulphate concentrations, reacting to 1/14/16H9 and 1/20/SD4 antibodies, showed similar change and value in these horses (Figure 18).

4.4.5. Serum and synovial fluid samples from horses with spontaneous osteoarthritis

The results of the keratan sulphate assay in sera and synovial fluid are summarized in Table 9. The concentrations of serum keratan sulphate reacting to 1/14/16H9 (159.2±41.9 ng/ml) and 1/20/SD4 (204.0±82.4 ng/ml) antibodies in horses were both significantly increased, as compared to normal horses (98.6±21.6 and 139.4±43.7
There was no significant difference (P>0.05) in concentrations of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in synovial fluid between normal (36.7± 29.3 and 36.7± 29.3 μg/ml, respectively) and osteoarthritis (33.5± 18.5 and 28.3± 19.9 μg/ml, respectively).

In serum samples, the concentration of keratan sulphate reacting to 1/14/16H9 antibody (159.2± 41.9 ng/ml) was significantly lower than that to 1/20/5D4 antibody (204.0± 82.4 ng/ml), while no statistical difference was found between concentrations of keratan sulphate to 1/14/16H9 (36.7± 29.3 μg/ml) and 1/20/5D4 (37.9± 22.2 μg/ml) antibodies in synovial fluids.
Figure 13-Changes in serum keratan sulfate reacting to 1/14/16H9 or 1/20/5D4 antibody concentrations with aging in foals.

Values are mean ± standard error (SE).

○ = Foal No. 1-12 (normally growing foals; n=12)

▲ = Foal No. 13, □ = Foal No. 14, ■ = Foal No. 15 (for details, see Table 8).

(modified from Okumura et al., 1997)
Figure 14-Changes of serum alkaline phosphatase (ALP) activity in foals. Values are mean ± SE.

- Foal No. 1-15 (n=15).

(modified from Okumura et al., 1997)
Figure 15—Serum keratan sulphate concentration reacting to 1/14/16H9 or 1/20/5D4 antibody in long-term resting and on-training horses. Values are mean ± standard error (SE).

*P<0.05 compared between resting and training horses.
Figure 16-Keratan sulphate concentration before and after the training of 2-minutes-gallop

Values are mean ± SD.
Pre: before training.
Post: within 5 minutes after training.

- ■ 1/14/16H9 antibody
- ○ 1/20/5D4 antibody
Figure 17-The concentration of keratan sulphate in sera from horses with experimentally-induced osteoarthritis.

Values are mean ± SD.

- 1/14/16H9 antibody
- 1/20/5D4 antibody
Figure 18 - The concentration of keratan sulphate in synovial fluid from horses with experimentally-induced osteoarthritis. Values are mean ± SD.

- ■ 1/14/16H9 antibody
- ○ 1/20/5D4 antibody
Table 8. Clinical findings of Foals No.13-15

<table>
<thead>
<tr>
<th>No.</th>
<th>Sex</th>
<th>Clinical signs</th>
<th>Radiologyraph</th>
<th>Other findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Male</td>
<td>Swelling on the left at 9 months</td>
<td>OCD at 9 months</td>
<td>Arthroscopic surgery to remove osteochondral fragment from the left hock at 9 months.</td>
</tr>
<tr>
<td>14</td>
<td>Male</td>
<td>Joint effusion on the both hocks and severe extroversion of both forelimbs at 3 months</td>
<td>NS</td>
<td>Necropsy findings at 6 months. - Septic arthritis on both hocks - Degenerative lesion on both affected joints</td>
</tr>
<tr>
<td>15</td>
<td>Male</td>
<td>Joint effusion on both hocks at 3 months</td>
<td>NS</td>
<td>Recovered at 5 months.</td>
</tr>
</tbody>
</table>

OCD = Osteochondrosis dissecans; NS = not significant.

(Okumura et al., 1997)
Table 9. Keratan sulphate concentration reacting to 1/14/16H9 and 1/20/5D4 antibodies in sera and synovial fluid (SF) from normal horses (Controls) and horses with osteoarthritis (OA)

<table>
<thead>
<tr>
<th>Diagnosis groups</th>
<th>n</th>
<th>Age (years)</th>
<th>1/14/16H9</th>
<th>1/20/5D4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/14/16H9</td>
<td>1/20/5D4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean± SD</td>
<td>median</td>
</tr>
<tr>
<td>Controls</td>
<td>Serum#</td>
<td>20</td>
<td>5.20</td>
<td>98.6± 21.6</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>20</td>
<td>5.20</td>
<td>37.9± 22.2</td>
</tr>
<tr>
<td>OA</td>
<td>Serum#</td>
<td>38</td>
<td>4.61</td>
<td>159.2± 41.9</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>20</td>
<td>4.93</td>
<td>33.5± 18.5</td>
</tr>
</tbody>
</table>

keratan sulphate: 1) ng/ml, 2) μg/ml.
*: P<0.05 as compared to Controls.
#: P<0.05 as compared between 1/14/16H9 and 1/20/5D4.
(modified from "Okumura et al., 1998")
4.5. Discussion

According to the results of in vitro study in Chapter 3, keratan sulphate concentration in 1/14/16H9 could be a more accurate marker to evaluate cartilage catabolic activity in the culture media than that in 1/20/5D4.

Serum keratan sulphate concentration in growing foals (up to 3 months of age) was significantly higher than the value in foals more than 4 months of age. This suggests that the metabolic activity of cartilage, the rate of both catabolism and possibly anabolism are high at the initial growth stage in foals (Poole and Dieppe, 1994). Similarly, the keratan sulphate concentrations in children (5 to 12 years old) are higher than these in adult human beings (Thonar et al., 1985). Proteoglycan concentration in puppy (2 weeks to 2 months old) was 3 times more than that of adult values (Lust and Summers, 1981).

Serum keratan sulphate concentrations in Foals Nos.13-15, which had joint abnormalities, was higher than in the normally growing foals 1-12 during the first 3 months after birth. Foal No.13 was diagnosed to have osteochondrosis dissecans after 6 months of age, although its serum keratan sulphate concentration decreased in normal manner, similarly in the other growing foals. Osteochondrosis dissecans is usually diagnosed by findings of mild abnormalities in the affected joints long time after its onset. Though it is not more than an inference because only one case of osteochondrosis dissecans was found during this study, higher cartilage catabolic activity might indicate a weakness of the cartilage matrix during the early growing stages in this foal. On the other hand, high keratan sulphate values in sera from all foals examined during the first 3 months suggest that the immature joint during the time could be easily affected by any factor of loading. In Foals Nos.14 and 15, serum keratan sulphate concentration was
higher than that in normally growing foals at the time they had joint problems. This might indicate that serum keratan sulphate concentration would be of value for monitoring the cartilage damage associated with joint diseases during the early stages of life.

Serum keratan sulphate concentration in foals decreased remarkably more than 3 months of age. In a previous report (Thonar et al., 1985), serum keratan sulphate values were found to decrease in human beings from 13 to 15 years of age. This indicated that the catabolic activity of cartilage in foals was likely to be higher than that during any other phase of their life, similar to that in human beings (Heinegard et al., 1985).

Both keratan sulphate epitopes, reacting to 1/14/16H9 and 1/20/5D4 antibodies, showed the same manner of changes in growing foals. Keratan sulphate concentration reacting to 1/20/5D4 was always higher than 1/14/16H9, and prominent change of keratan sulphate concentration in three horses with joint diseases was clearly represented in 1/14/16H9. This suggests that serum keratan sulphate concentration in three horses with joint abnormalities represented mainly the catabolism of the cartilage, and that the values in the healthy foals expresses not only the catabolism but also the anabolism of the cartilage.

Serum ALP activity peaked 1 week of age, then decreased rapidly for 1 month after birth. Each foal had almost the same fluctuation for 6 months. Alkaline phosphatase is one of important diagnostic makers in bone metabolism, or liver and bile duct function (Blackmore and Elton, 1975; Kramer and Sleight, 1968; Pickrell et al., 1974). In kittens, increased serum ALP activity was suggested to reflect higher activity of osteoblasts (Kramer and Sleight, 1968). High serum ALP values were also found in the foals in this study, similar to that in kittens. However, serum ALP activity did not parallel serum keratan sulphate concentration, which reached the peak value at 1 month of age and was maintained for 3 months. It also suggests that higher serum keratan sulphate
concentration might reflect not only growth of cartilage but cartilage damage for the first 3 months of life.

In on-training horses, keratan sulphate concentration in 2-year old horses was significantly higher than that of 3- or 4-year old horses, while those in 2-year old horses was not significantly higher than other older age groups in long-term resting horses. Significantly higher concentration of keratan sulphate was found in the on-training group than in the long-term resting group in 2-year old horses. Serum keratan sulphate concentration was 3.5-folds higher in dogs younger than 2 months of age than in older dogs (Leipold et al., 1989). This suggests that cartilage of younger animals is actively degrading itself and is mechanically immature. It was also reported that the concentration of keratan sulphate in serum was increased after exercise in 33 healthy athletes (Roos et al., 1995). Because keratan sulphate concentration to 1/14/16H9 is likely to show more remarkable increase in younger horses than that to 1/20/5D4, the change after exercise may mainly represent the catabolic activity of mechanical stress to the joint cartilage. The increase of serum keratan sulphate reacting to both two antibodies is therefore suggested to reflect an effect of mechanical loading in combination with a possible high turnover rate of cartilage matrix in these individuals. The results in the present study suggest that young horses have low tolerance to striking mechanical stress during a high-speed run on a racetrack.

Short-term catabolism and discharge of keratan sulphate fragments in blood was examined by measurement of keratan sulphate concentration before and after the training of 2-minutes gallop in five horses. A 2-minutes-gallop is a remarkable stress for Thoroughbred horses, so that much mechanical stress will be bore by their bones and joints. This would cause a transient joint cartilage degradation. The time-course transient increase of degradation of joint cartilage was examined by measurement of serum keratan
sulphate for 24 hours. Immediately after the training in healthy horses, keratan sulphate was significantly higher than that before the training, while keratan sulphate concentration at 1-, 5-, 9- and 24-hours after training was at the same level as before the training. The immediate return of keratan sulphate concentration in the serum to pretraining values suggests the possible discharge of proteoglycan fragments from the blood to the urine, liver or other tissues for a short term, and the prolonged increase of keratan sulphate might demonstrate the active degradation of cartilage present in the joints or other cartilaginous tissues.

The serum concentrations of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 peaked 3 days after the intra-articular injection of chymopapain, and were approximately 1.4- and 1.9-folds higher than the preinjected value, respectively. The concentration of keratan sulphate reacting to both antibodies in synovial fluid peaked on the 3rd day after the injection of chymopapain, and was approximately 4-fold higher after the injection than that before the injection. Chymopapain is a serine proteinase which, when activated by cysteine, will cleave the protein core of aggrecan, releasing keratan sulphate into the synovial fluid and, hence, into the systemic circulation. Further degradation of aggrecan probably occurred because of synovial inflammation that accompanied chymopapain injection (Todhunter et al., 1993).

The concentrations of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies showed almost the same change and level in the synovial fluid from the horse with experimentally-induced osteoarthritis. This suggests that keratan sulphate, up to 31 days after chymopapain injection, represented mainly the catabolic activity of joint cartilage. On the other hand, the concentration of keratan sulphate in sera peaked 3 days after the injection, and was approximately 1.4- and 1.9-folds higher in horses that received chymopapain intra-articularly than the preinjected value, in the epitopes of
1/14/16H9 and 1/20/5D4, respectively. This suggests that the base-line value of serum keratan sulphate may reflect systemic cartilage metabolism, so that the pre-injection value of 1/20/5D4 epitope is higher than that of 1/14/16H9 value.

The concentration of keratan sulphate reacting to 1/20/5D4 in sera was lowest 21 days after the injection and again slightly increased to higher value than the pre-injection values, then returned towards the preinjected value by 49 days after the injection, while the concentration of keratan sulphate reacting to 1/14/16H9 antibody did not show any remarkable change after the 21st day of a chymopapain injection. The second peak may represent the repairing response of damaged cartilage including both cartilage anabolic and catabolic activities, while the first peak represents the destruction of cartilage by chymopapain.

The concentrations of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in sera from horses with osteoarthritis were both significantly increased, as compared to normal horses. It was reported that the concentration of keratan sulphate in serum from horses with osteoarthritis (Alwan et al., 1990) and inflammatory arthritis (Todhunter et al., 1997) was significantly higher than in normal horses, although a finding contrary to this was also stated in osteoarthritis (Todhunter et al., 1997). It is therefore suggested that this increase of keratan sulphate in sera may mirror cartilage catabolic activity in the joint.

There was no significant difference in the concentrations of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in the synovial fluid between the normal horses and horses with osteoarthritis. The keratan sulphate in synovial fluid should have a wide range of concentration (Todhunter et al., 1997). Total GAG concentration in synovial fluid of human inflammatory arthritis was reported to be of a higher value in acute inflammatory conditions and a border range of lower value in chronic conditions.
(Ractcliffe et al., 1988). It is thought that the metabolism of cartilage and synovial function should be changed strikingly for a short time after the onset of joint diseases, and that plasma effusion into synovial fluid and inflammatory reaction afterwards might contribute for the concentration to compromise itself.

In this chapter, keratan sulphate concentration reacting to 1/14/16H9 and 1/20/5D4 antibodies were measured in growing foals, training and resting horses and horses with experimentally-induced and spontaneous osteoarthritis. The results demonstrate that the measurement of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in sera and synovial fluid would be of value to understand the cartilage catabolic activity related to various conditions of the joints. By comparing of the concentrations of keratan sulphate reacting to newly established 1/14/16H9 and the common antibody 1/20/5D4, it was shown that more accurate estimation of the catabolic or anabolic activity of cartilage could be made in the various conditions of the joints in horses.
5. General Conclusion

Joint damage is difficult to estimate its term of severity and extent objectively. Much damage may be done early in the disease process, before the detection of any radiographical changes, although it is uncertain which of the many aspects of synovitis are responsible for joint damage. Sensitive ways of assessing the current status of cartilage and bone changes during the early inflammatory joint disease would be of potential value to clinicians for more accurate diagnosis and precise treatment.

Articular cartilage is a specialized tissue composed of mesenchymal cells and chondrocytes, embedded in an extensive extracellular matrix. Proteoglycan molecules are usually rapidly degraded into smaller fragments, which are either engulfed by the chondrocytes or diffused into the body fluids that are in contact with cartilage. Consequently, proteoglycan fragments and glycosaminoglycans are found in the synovial fluid, and several species of glycosaminoglycans, including chondroitin sulphate and keratan sulphate, are also detected in the blood or urine. Keratan sulphate is a glycosaminoglycan that is distributed in the extracellular matrix of joint cartilage. Keratan sulphate is mainly found in aggrecans (approximately 99%), and to a lesser extent, in the cornea and other tissues. Therefore, to estimate the total catabolic activity of cartilage, keratan sulphate could be used as a representative metabolite of cartilage in the synovial fluid and blood.

In this study, firstly, a sensitive and specific monoclonal antibody to equine keratan sulphate, 1/14/16H9, was established to develop an enzyme immunoassay for measurement of the concentration of keratan sulphate in serum and synovial fluid from
horses. An inhibition enzyme linked immunosorbent assay (ELISA) was optimized by using the established monoclonal antibody, and keratan sulphate concentration in 18 synovial fluid and 48 serum samples obtained from clinically normal horses and horses with arthritis was measured. Precision data were obtained over the range of 10 to 160 ng/ml. The within- and between-assay coefficients of variation of the assay were 10.0 and 12.7 %, respectively.

Secondly, the significance of keratan sulphate reacting to the newly-established anti-equine keratan sulphate 1/14/16H9 antibody and an anti-human keratan sulphate 1/20/5D4 antibody as a marker of cartilage metabolism was evaluated by using an in vitro model of equine articular cartilage. Articular cartilage was harvested from clinically healthy 6 month-old Thoroughbred foals. Articular chondrocytes were centrifuged and cultured as pellets in centrifuge tubes. Chondrocytes were incubated with insulin-like growth factor (IGF)-1α, transforming growth factor (TGF)-β1 or interleukin (IL)-1α for 2 weeks. The sulfated glycosaminoglycans (GAG) and keratan sulfate concentrations in pellets or media were measured by a 1,9-dimethyl-methylene blue colorimetric assay and an inhibition ELISA, respectively. The concentration of GAG in the culture media was significantly increased by the supplement of IGF-1α and TGF-β1. The concentration of GAG in pellets was significantly increased by the supplement of IGF-1α, but not by TGF-β1.

The concentration of keratan sulphate reacting to 1/14/16H9 and 1/20/5D4 antibodies in the culture media were also measured. A high correlation between GAG and keratan sulphate concentrations was found in the media of pellets stimulated by IL-1α (r
These two differently reactive keratan sulphate, 1/14/16H9 and 1/20/5D4, concentrations in serum and synovial fluid could contribute as a marker to understand principally the catabolic process of articular cartilage metabolism and also represent in part some aspects of the cartilage anabolic process.

Finally, the clinical significance of keratan sulphate as a cartilage metabolic marker was evaluated by measurement of keratan sulphate concentration reacting to 1/14/16H9 and 1/20/5D4 antibodies in serum and synovial fluid from horses.

Serum keratan sulphate concentration in growing foals (up to 3 months of age) was significantly higher than the value in foals over 4 months old. Serum keratan sulphate concentration in three foals, which had joint abnormalities, was higher than those in the normally growing 12 foals during the first 3 months after birth.

In on-training horses, keratan sulphate concentration in 2-year old horses was significantly higher than 3- or 4-year old horses. Significantly higher concentration of keratan sulphate was found in the on-training group than in the long-term resting group in 2-year old horses. Immediately after the training in healthy horses, keratan sulphate concentration was significantly higher than before the training.

The concentration of keratan sulphate in sera peaked 3 days after the experimental injection of chymopapain intra-articularly, and was approximately 1.9- and 1.4-folds higher than the preinjected value, in 1/14/16H9 and 1/20/5D4 keratan sulphate, respectively. The concentration of keratan sulphate in the synovial fluid peaked 3 days
after injection of chymopapain, and was approximately 4-folds higher than before the
injection, in both keratan sulphates. There was no significant difference in the levels of
keratan sulphate concentration reacting to 1/14/16H9 and 1/20/5D4 antibodies in synovial
fluid between normal horses and horses with osteoarthritis.

Both established 1/14/16H9 antibody and the common antibody (1/20/5D4) for the
detection of keratan sulphate could contribute to understand the catabolic activity of joint
cartilage in the various conditions of the joints in horses.

In conclusion, my study showed that the measurement of keratan sulphate reacting
to 1/14/16H9 and 1/20/5D4 antibodies in sera and synovial fluid would be of value to
understand the cartilage metabolic activity related to various conditions of the joints.
Comparison of the concentrations of keratan sulphate reacting to both newly established
1/14/16H9 and the common antibody 1/20/5D4 would contribute to understand more
accurately the catabolic or anabolic activity of joint cartilage in the various conditions of
the joints in horses. The measurement of keratan sulphate in sera and synovial fluid
would be of value to understand the catabolic activity of joint cartilage, so that keratan
sulphate could be an noninvasive and possibly direct informative marker to detect
cartilage pathology in horses with joint diseases.
6. References

63. Revell PA, Muir H. The excretion and degradation of chondroitin 4-sulphate administered to guinea pigs as free chondroitin sulphate and as proteoglycan. *Biochem J* 1972;130:597-606.

77. Tyler JA, Benton HP. Synthesis of type II collagen is decreased in cartilage cultured with interleukin 1 while the rate of intracellular degradation remains unchanged. Coll Relat Res 1988;8:393-405.

7. 和文要約

関節障害の程度およびその病態を具体的に把握することは、通常非常に困難である。関節障害発症機序のいずれの場面において滑膜炎が最も重要な役割を演じているかは明らかではないが、関節疾患の初期、つまりX線検査で明らかな病変が発見される前に関節内では軟骨の大きな傷害が発生する。初期の炎症性関節疾患における軟骨および骨病変の状態を評価するための感度の高い検査手法は、臨床獣医師が関節疾患のより正確な診断と適切な治療法を選択する上で有用である。

関節軟骨は、非常に多くの細胞外基質の中にその実質細胞である軟骨細胞が散在する特殊な組織である。通常の代謝過程において、プロテオグリカン分子は一定の速度で小断片に分解され、軟骨に隣接する体液中に拡散する。体液中に拡散したそれらプロテオグリカン断片は、コンドロイチン硫酸あるいはアラタタン硫酸等のグリコサミノグリカンとして血液や尿中で確認される。アラタタン硫酸は、軟骨の細胞外基質に多く存在するグリコサミノグリカンであり（軟骨中に体内含量の99％が存在）、軟骨以外では角膜などの組織にわずかに存在するのみである。そのため、血中あるいは関節液中における代謝産物としてのアラタタン硫酸を測定することは軟骨固有の基質代謝をほぼ反映しているものと考えられ、アラタタン硫酸は非侵襲的な軟骨代謝マーカーとして期待されるようになった。

本研究は、ウマにおいて関節軟骨代謝の変動から関節疾患の病態を把握することを目指し、1）ウマアラタタン硫酸を特異的に認識するモノクローナル抗体を開発し、高感度のアラタタン硫酸測定法を開発すること、2）ペレット培養法を応用したin vitro培養軟骨細胞を、インスリン様成長因子 (IGF)-1α、形質転換
成長因子(TGF)-β1およびインターロイキン(IL)-1αで刺激し、関節軟骨代謝を変動させて培養液中およびペレット中のケラタン硫酸濃度を、本研究で新たに開発した抗ウマケラタン硫酸抗体および抗ヒトケラタン硫酸抗体の2種類を用いて測定し、ケラタン硫酸測定の意義を評価すること、および3）ウマの血清および関節液を用いて、成長、機械的刺激による短期の代謝変動、実験的および自然発症の関節炎におけるケラタン硫酸濃度の変動を評価し、軟骨代謝におけるケラタン硫酸濃度測定の意義を検討することを目的とした。

まず、ウマの血清および関節液中ケラタン硫酸濃度を測定する酵素免疫測定法を開発するために、ウマのケラタン硫酸を特異的に認識する高感度のモノクローナル抗体（1/14/16H9）を作成した。開発したモノクローナル抗体を用いて競合酵素免疫測定法を最適化し、臨床的に正常なウマおよび関節炎発症馬から得られた血清48材料および関節液18材料のケラタン硫酸濃度を測定した。最適化した測定法では、ケラタン硫酸濃度が10から160 ng/mlの範囲で測定でき、同一測定内誤差および時差測定間誤差がそれぞれ10.0％および12.7％であった。

次に、今回開発した抗ウマケラタン硫酸抗体1/14/16H9と抗ヒトケラタン硫酸抗体1/20/5D4に反応するケラタン硫酸の軟骨代謝マーカーとしての有用性を、in vitro培養軟骨モデルを用いて評価した。6か月齢のサラブレッド種ウマ3頭から関節軟骨を採取し、軟骨細胞に分離後、遠心管内でペレットとし
て培養した。軟骨細胞をIGF-Iα、TGF-β1あるいはIL-1αを添加した培養液で2週間培養し、ペレット中あるいはその培養液中のポリ硫酸化グリコサミノグリカン(GAG)およびケラタン硫酸（1/14/16H9および1/20/5D4）濃度を、それぞれ1,9-ジメチルメチレンブルー比色定量法および競合酵素免疫測定法によって定量した。培養液中のGAG濃度は、IGF-IαおよびTGF-β1添加によって
有意に増加した。ベレット中のGAG濃度は、IGF-Iαの添加によって有意に増加したが、TGF-β1の添加では有意な変化はみられなかった。一方、GAG濃度と抗ウマケラタント硫酸抗体1/14/16H9および抗ヒトケラタント硫酸抗体1/20/5D4に反応するケラタント硫酸濃度を比較したところ、IL-1α添加時にGAG濃度とケラタント硫酸は高い相関性（GAGと1/14/16H9抗体：0.87；GAGと1/20/5D4抗体：0.84）を示したが、IGF-Iα添加時には、その相関性は低かった（GAGと1/14/16H9抗体：0.43；GAGと1/20/5D4抗体：0.59）。

以上の結果から、これら2つの抗体（1/14/16H9および1/20/5D4）によって測定されるケラタント硫酸濃度は、主に軟骨異化を示すマーカーとして有用であると考えられ、場合によっては軟骨同化をも反映する可能性があると考えられた。

最後に、in vivoにおける軟骨代謝マーカーとしてのケラタント硫酸の臨床的な有用性を評価するため、今回作成した抗ウマケラタント硫酸抗体1/14/16H9および抗ヒトケラタント硫酸抗体1/20/5D4を用いて、ウマの成長過程、機械的刺激による短期の代謝変動、実験的および自然癒症の関節炎における血清および関節液中ケラタント硫酸濃度を測定した。

出生直後から3か月までの血清ケラタント硫酸濃度（1/14/16H9および1/20/5D4）は4か月以降のそれと比較して有意に高値を示した。また、関節疾患を発症した3頭のウマの血清ケラタント硫酸濃度（1/14/16H9および1/20/5D4）は正常に発症した12頭のウマのそれに比較して著しく高値を示した。

トレーニング中のウマでは、3および4歳馬に比較して2歳馬で血清ケラタント硫酸濃度（1/14/16H9および1/20/5D4）が有意に高値を示した。常時運動を行っている2歳馬では6か月以上休養している2歳馬に比較して血清ケラ
タン硫酸濃度が有意に高値を示した。また、運動直後の血清ケラタシン硫酸濃度（1/14/16H9および1/20/5D4）は、運動直前のそれに比較して有意に増加し、運動終了後1時間以内に運動直前のレベルに低下した。

キモババイン関節内投与によって実験的に変形性関節症を作出したウマにおける血清および関節液中のケラタシン硫酸濃度を測定した。キモババイン投与3日目の1/14/16H9および1/20/5D4抗体で測定した血清ケラタシン硫酸濃度は、投与前のそれぞれ1.9および1.4倍に増加した。同様に関節液中のケラタシン硫酸濃度（1/14/16H9および1/20/5D4）はキモババイン投与3日目に、投与前の約4倍に増加した。また、変形性関節症を自然発症したウマにおける関節液中ケラタシン硫酸濃度は、正常のウマのそれと比較して両抗体とも有意な変動はみられなかったが、血清中ケラタシン硫酸濃度は、正常のウマのそれと比較して両抗体とも高い傾向が認められた。

今回作出した抗ウマケラタシン硫酸抗体1/14/16H9および抗ヒトケラタシン硫酸抗体1/20/5D4によって測定されたケラタシン硫酸濃度は、生体のウマの関節における関節異化を理解する上で有用な指標になりうることが、in vitro培養軟骨モデルを用いた試験で示された。また、生体の馬の血清および関節液を用いた試験においても、1/14/16H9抗体と1/20/5D4抗体それぞれに反応するケラタシン硫酸濃度の比較によって、軟骨基質が異化あるいは同化作用をうけている状況を把握するのに有用であることが示された。ウマの関節疾患の病態を把握する上で、ケラタシン硫酸の測定は特に軟骨の損傷を表現する、非侵襲的かつ直接的な情報を提供するマーカーであることが示唆された。
8. 謝 辞

本論文を終えるにあたり、著者が北海道大学獣医学部・大学院獣医学研究科在学中より現在に至るまで終始懇篤なるご指導をいただいた北海道大学大学院獣医学研究科診断治療学講座獣医外科学教室藤永徹教授に深甚なる敬意をささげるとともに、校閲の労を執られた同比較形態機能学講座生化学教室斉藤昌之教授、同比較形態機能学講座解剖学教室岩永敏彦教授ならびに同診断治療学講座比較病理学教室梅村孝司教授に深謝いたします。

実験遂行にあたり、材料の提供、臨床診断法等をご指導いただいた日本中央競馬会本部防疫課水野豊香博士、社台ホースクリニック上田正明獣医師、白老ファーム服卷滋之獣医師ならびに社台ファーム築山勝治獣医師に深謝いたします。獣医関節学に関する多くの知識・考え方を教示いただいた英国ケンブリッジ大学臨床獣医学講座John Edwin Freeman Houlton欧州獣医外科学・放射線学専門医に深謝いたします。また、終始多大なるご協力を賜りました北海道大学大学院獣医学研究科診断治療学講座獣医外科学教室廉澤剛講師ならびに教員各位に感謝いたします。

最後に、実験に際して尊い生命を捧げてくれた動物たちの冥福を祈り、本論文が彼らの犠牲の上に完成されたことを申し添えます。