<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>統合・基礎神経学　神経系の構造を中心に</td>
</tr>
<tr>
<td>アウター</td>
<td>井上 芳郎</td>
</tr>
<tr>
<td>著者</td>
<td>北海道大学大学院医学研究科・脳科学専攻　神経機能学講座・分子解剖学分野</td>
</tr>
<tr>
<td>受け入れ日</td>
<td>1990</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>basic-neuroanatomy.pdf</td>
</tr>
<tr>
<td>リンク</td>
<td>http://hdl.handle.net/2115/329</td>
</tr>
<tr>
<td>ライセンス</td>
<td>http://creativecommons.org/licenses/by-nc-sa/2.1/jp/</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY

統合・基礎神経学　神経系の構造を中心に
統合・基礎神経学
－神経系の構造を中心に－

北海道大学大学院医学研究科・脳科学専攻
神経機能学講座・分子解剖学分野
目次

[□] 神経組織学
1 中枢神経系の構成細胞 1
2 中枢神経系の組織構築上の特徴 2
3 神経細胞の形態と構造 3
4 神経細胞の細胞体の構造と特徴 5
5 树状突起の形態 6
6 軸索 (突起) の構造と機能 7

[□] 神経系の発生
1 受精後の初期発生過程 16
2 神絨系の発生 17
3 ニューロンとグリア細胞の発生分化 19
4 神絨管の構造と機能分化 20
5 神絨系の発生と分化 21
6 ニューロンの移動と細胞構築形成 22

[□] 神絨系の変性と再生
1 ワ - ラ - 変性と再生 23
2 逆行性変性 25
3 とび越変性 25
4 神絨細胞死 26

[□] 脳脊髄の筋膜と脳室・脳脊髄液
1 筋膜 27
2 脳室 29

[□] 脳・脊髄の血管系
1 脳脊髄の動脈 32
2 脳脊髄の分岐の仕方 33
3 脳脊髄と脊髄の静脈 34
4 脳の動脈 35
5 大脳の静脈 40
6 小脳の静脈 42
7 脳幹の静脈 42
8 硬膜に分布する動脈 42
9 脳硬膜静脈洞 43
10 導出静脈 43

[□] 大脳半球 (終脳)
1 終脳 (大脳半球) の概観 45
2 外套皮質 45
3 大脳皮質の細胞構築と筋構築 51
4 古皮質 53
| 5 | 原皮質 | 6 | 大脳辺緣系 | 7 | 大脳皮質の機能局在 | () 間脳 | 1 | 間脳の外観 | 2 | 視床の内部構造と線維連絡 | 3 | 視床上部の構造と線維連絡 |
| 6 | 大脳辺縁系 | 7 | 大脳皮質の機能局在 | 6 | 大脳辺縁系 | 7 | 大脳皮質の機能局在 | 5 | 視床の内部構造と線維連絡 | 6 | 視床上部の構造と線維連絡 |

()	脳幹（中脳、橋、延髄）の肉眼的構造	1	脳幹の背側部の外観	2	脳幹の腹側部の外観	() 脳幹の神経と脳神経核	1	脳神経核の位置	2	動眼神経と関係する神経核	3	滑車神経と関係する神経核	4	三叉神経と関係する神経核	5	外転神経と関係する神経核	6	顔面神経と関係する神経核	7	前庭神経と関係する神経核
()	中脳の構造と線維連絡	1	中脳の内景	2	上丘の高さの構造	3	下丘の高さの構造	()	橋の内部構造と線維連絡	1	橋の内景	2	橋脛後肢（橋脛部の神経核）	3	橋脛部の神経線維束					
()	延髄の内部構造と線維連絡	1	延髄の内景の概略	2	後索核	3	副楔状束核	4	網様体											
()	小脳の構造と線維連絡	1	小脳の外観	2	小脳の区分	3	小脳皮質の細胞構築	4	小脳皮質の線維結合	5	苔状線維と顆粒細胞	6	登上線維とブレンデル細胞	7	小脳皮質を出る出力線維	8	小脳を中心とした神経回路			
9 小脳の機能異常ⅡⅡⅡⅡⅡⅡ107

(ⅡⅡ) 脊髄ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ108
1 脊髄の外観ⅠⅠⅠⅠⅠⅠⅠ108 6 脊髄の神経線維ⅠⅠⅠⅠⅠⅠⅠ111
2 脊髄の横断面より見た内景ⅠⅠⅠ108 7 反射弧ⅠⅠⅠⅠⅠⅠⅠⅠⅠ112
3 脊髄の部位による差ⅠⅠⅠⅠⅠⅠⅠ109 8 伝導路ⅠⅠⅠⅠⅠⅠⅠⅠⅠ112
4 脊髄を構成するニューロン群Ⅱ110
5 灰白質を構成する神経核ⅠⅠⅠ110

(ⅡⅡ) 伝導路ⅠⅠ運動路ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ114
1 運動路の構成ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ114 4 錐体外路系ⅠⅠⅠⅠⅠⅠⅠⅠⅠ119
2 下位運動ニューロンから筋へⅠⅠⅠⅠⅠⅠⅠ115 5 隨意運動の障害ⅠⅠⅠⅠⅠⅠⅠⅠ119
3 大脳皮質から下位運動ニューロンへⅠⅠ116

(ⅡⅡ) 伝導路ⅠⅠ知覚路ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ121
1 体性知覚系の伝導路の構成ⅠⅠⅠ121 4 知覚解離の成立機転ⅠⅠⅠⅠⅠ124
2 顔面の体性知覚伝導路ⅠⅠⅠ121 5 随意運動の障害ⅠⅠⅠⅠⅠ119
3 顔面以外の部位の

(ⅡⅡ) 伝導路ⅠⅠ味覚と嗅覚系ⅠⅠⅠⅠⅠⅠⅠⅠ125
1 味覚の伝導路ⅠⅠⅠⅠⅠⅠⅠ125 2 嗅覚の伝導路ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ126

(ⅡⅡ) 伝導路ⅠⅠ視覚路と聴覚路ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ128
1 視覚に関する伝導路の構成ⅠⅠⅠⅠ128 3 聴覚に関する伝導路の構成ⅠⅠⅠ131
2 視覚の伝導路ⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠⅠ128
[□] 神経組織学

[一般目標]
神経組織学の機能的特性である興奮の伝達を理解するために神経細胞とそれを支持する間質のグリア細胞について構造上の特徴を理解する。

[行動目標]
1. ニューロンの基本形態を説明できる。
2. ニューロンの細胞内構造の特徴を説明できる。
3. 神経回路網の成り立ちを形態学的・神経学的・生理学的観点から説明できる。
4. 中枢神経系の間質細胞であるグリア細胞について説明できる。
5. 髄鞘の構造、形成過程について説明できる。

1 中枢神経系の構成細胞

中枢神経系は次のものから構成される。

■ 神経系の機能を司む細胞：
神経細胞 nerve cell
ニューロン、神経元 neuron

■ 神経細胞を支持する細胞：
神経膠 neuroglia

■ ニューロンが神経細胞、神経腫が神経節細胞、神経節神経細胞を含め、神経組織を構成する。特にニューロンの神経節細胞と神経節神経細胞の間質細胞の特徴を観察する。

* 右図はヒト大脳皮質のヘマトキシリン・エオシン染色像でニューロン N とグリア Gl の細胞体と核が染色され観察される。その間の均質に見えるところを neuropil 神経網と云い、ニューロンやグリアの突起が錯綜してい る。これらの突起はゴルジ鍍銀法などの特殊な染色を施さないと観察できない。

 Glacier = glial cell or glia
Blood vessel = blood vessel
Neuropil
2 中枢神経系の組織構築上の特徴

(1) 血管周囲を除いて結合組織系の組織隔間が存在しないのが中枢神経系の特徴である。ニューロンは僅かの細胞隔間をもって他のニューロンやグルリア細胞に接する。

(2) 中枢神経系の脑と脊髄の表面と血管表面は星状膠細胞の細胞質が連続的に配列して形成されるグルリア境界膜 glia limitans に覆われる。このグルリア境界膜は血管とは血液脳関門 blood-brain barrier を作り、脳表面や脳室（壁を形成するのは上衣細胞であるが）にあっては

脳液脳関門 liquor-brain barrier を形成して物質の移動に選択的な制限をあたえている。従って、神経細胞はグルリア境界膜によって外界から隔離保護されたコンパートメント内にあって機能していることになる。例えば青い色素を動物に静脈注射すると全ての臓器は皮膚を含めて青くなるが、脳だけは血液脳関門があるために色素は脳実質内には入れず真っ白のままで色素の影響はニューロンには及びしない。このことは他の薬物でも同じことが言え、血液脳関門を通過できない薬はニューロンに効果がないことになる。

この図はグルリア境界膜の模式図である。ニューロンがグルリア境界膜の内部に位置することを理解する。
３ 神経細胞の形態と構造

Ⅰ 神経細胞の基本形態
次の３部位からなる。
1. 細胞体 cell body or soma：細胞の核がある部位
2. 樹状突起 dendrites：複数の太い突起
3. 軸索 axon：１本の細長い突起

右の図は大脳皮質第Ⅱ層にある錐体ニューロンのゴルジ銀錬像である。軟膜 pia mater に向かう１本の樹状突起を頂上樹状突起と言いかその他の樹状突起を基底樹状突起と言う。細胞体の底部から細い軸索が１本出ている。

* 神経の興奮は原則として、樹状突起〜細胞体〜軸索〜軸索終末の方向に流れる。この流れの方向性を「順行性anterograde」といいう、逆の流れを「逆行性retrograde」という（順行性軸索流、逆行性軸索流、順行性変性、逆行性変性などの用語に使われる。）

Ⅱ 形態から見た神経細胞の分類
1. 単極性ニューロン
 unipolar neuron：
 三叉神経中脳路核にのみある。
2. 単極性ニューロン
 pseudouniplar neuron：
 脊髄神経節、三叉神経節などの知覚神経節を形成し、脊髄、脳幹に沿って分布する。
3. 双極性ニューロン
 bipolar neuron：
 綱膜、嗅粘膜、ラセン神経節、前庭神経節にある。
4. 多極性ニューロン
 multipolar neuron：
 最も一般的なニューロンで錐体ニューロンも多極性ニューロンである。

Ⅲ 軸索の長さによる分類
1. ゴルジⅠ型細胞：
 長い軸索を有する細胞で、皮質脊髄路ニューロン、皮質橋核ニューロンなどの投射ニューロンが該当する。
2. ゴルジⅡ型細胞：
 短い軸索を有する細胞で、脊髄の Renshaw cell, 小脳の星状細胞、ゴルジ細胞などの介在ニューロンが該当する。
説明：A 神経核から B 神経核へ投射線維を出すニューロンはゴルジⅠ型ニューロンと云い、
各神経細胞の軸索の短いニューロンをゴルジⅡ型ニューロンと云う。

4 神経細胞の形態を見る方法

神経細胞は複雑な外形をもつ特殊な形態の細胞であるため、H&E 染色のような単純な染色法
ではその全体像を見る事は出来ない。そこで様々な特殊な方法を用いる。
1 ゴルジ銀浸漬法：

神経細胞に金属塩を沈着させてその全体像を観察する。ニューロンの正確な輪郭がわかる。
2 その他の銀浸漬法：

Bodian 法、Bielschowsky 法などが挙げられる。神経細胞の神経細管や神経細胞系に金属塩を
沈着させて観察する。ニューロンの正確な輪郭はわからない。
3 標識物質の直接注入法：

微小ガラス電極を1つ1つのニューロンに電気生理学的手法を用いて刺入し、標識物質
horse-radish peroxidase HRP biocytin、Procion yellow などを注入して観察する。電気生理学
の手法と形態学を結びつける方法として現在広く用いられている。
4 逆行性標識法：

軸索の附近に標識物質 HRP、biocytin、コレラ毒、fast blue、Dil 鎌光色素などを注入し
て、そこから軸索流によってニューロンの細胞体や樹状突起に運ばれて、ニューロンの細胞
質内の全体に蓄積したところで化学反応や免疫組織化学などを行い、光学顕微鏡や蛍光顕微
鏡、共焦点レーザー蛍光走査顕微鏡などで観察する。
5 免疫組織化学的染色：

神経細胞特有の蛋白質に対する抗体を用いて免疫組織化学の手法で染色する（下記の「免
疫組織化学」を参照）。
6 連続電子顕微鏡の復構 reconstruction：

電子顕微鏡の2次元的な連続写真をコンピュータを使って立体像に復構する。
7 その他

免疫組織化学 immunohistochemistry

細胞・組織に含まれる蛋白質あるいはその他の物質を抗原 angitgen として、それに対する
抗体 antibody を作製して、組織切片上で抗原抗体反応を行い、抗体部分を染め出すことによ
って細胞・組織内の抗原の位置を同定する方法。生化学と組織学を結びつける方法として、
現在広く用いられている。抗体部分の染色は市販の染色キットを利用することで誰でも容易
に染められる。大切なことはいかにして良質の抗体を作成するかにかかっている。
４ 神経細胞の細胞体の構造と特徴

① 細胞膜

細胞膜は他の細胞と同様の構造をもつが、部分的にインパルスの伝達に関係する所、例えば、シナプスを形成する所、軸索の起始部 initial segment あるいは軸索のランビ - ル氏繊軸 node of Ranvier のある所などでは、裏方の構造 △ undercoating △ の特殊化した構造をもつ △ シナプスの項を参照 △ 当然、伝達物質に対する受容体やイオンが流出するチャネルが存在するはずであるがその形態は観察されていない。

② 核 nucleus

神経細胞の核は染色質が少なく明調に染色され、大きい核小体 nucleolus を有する特徴がある。一般には細胞体の中央に一つの核がある。とくに皮質の内層外縁部の核を持つ大型の細胞が観察される。とくに筋層間神経叢の神経細胞である。

（右図 アカゲサル脳細運動ニュ - ロン Nu = 核）

③ ニッスル小体 Nissl bodies or substance

塩基性アミリン色素で顆粒状に染まる物質が主として細胞体の核周囲部と樹状突起に見られ、発見した Franz Nissl 1860 - 1919 年にちなんでこの名がある。その本体は電子顕微鏡で見ると粗面小胞体と遊離リボソームの集合で、その集合体が粗大顆粒として染色される。

④ 虎斑 tigroid

脊髄前角の運動ニュ - ロン（脳幹の下位運動ニュ - ロンも同様）のニッスル小体のように大きな颗粒からなるとき、これを虎斑と呼ぶことがある。

⑤ 神経細糸 neurofilament と神経細管 neurotubules

電子顕微鏡の上で 10nm 径位の太さの細い線維 △ 中間径フィラメントと呼ぶことがある △ が核周囲部、軸索内に見られ神経細糸と言う。また、15-30nm 径の細い管状の微細管 microtubules △ 神経細管 neurotubules とも言う △ がはっきり電子顕微鏡で証明される。これはニュ - ロンの形態を支持する骨格をつくるとともに物質の細胞内輸送（軸索流と云う）を担うレ・ルのような機能を有すると言われる。

* 前述の録録法によって神経細胞の細胞体や突起、とくに軸索内に線維状の構造を染めだし、神経原線維 neurofibrils と呼んだが、上記の神経細糸が銀染色で染められるという説と人工産物であるという説がある。

⑥ その他

① ゴルジ装置 Golgi apparatus or complex

これは他の細胞にも一般的に見られるが、Camillo Golgi 1843 - 1926 年が初めて神経細胞に見いだしたように、本細胞では良く発達している。

右の図はゴルジが初めて公表したゴルジ装置のスケッチである。
2. メラニン顆粒 melanin granules:
これの色素 pigments として含有する神経細胞がある。たとえば黒質や青斑などの神経の神経細胞に多量のメラニン顆粒が含まれている。そのため神経の部位が黒っぽくあるときは色がかって見える。
3. 神経分泌顆粒 neurosecretory granules:
視床下部（室傍核、視索上核の2つ）にある神経細胞に見られる分泌顆粒である。下垂体後葉ホルモンを Gomori 法などの特殊な染色で染めます。特に顕著に顆粒状に染色されるときそれを Herring 小体と云う。
4. リポフスチン顆粒 lipofuscin granules:
加令に伴い出現頻度が高くなる消耗性色素である。光顕下で黄色がかって見える。

ニュロン細胞体及び樹状突起、軸索、シナプス等の模式図

5. 樹状突起の形態
樹状突起内の構造は細胞体の構造と似似する。従って、小胞体、ニッスル小体、ゴルジ装
6 軸索の構造と機能

普通 1 本が細胞体・時に樹状突起の幹部より出る。径は樹状突起より細く、時には側枝を出す。神経細胞 neurofilaments に富み、軸索流によって軸索内細胞質は流動的である。細胞体から軸索末梢の方へ流れる順行性の軸索には「遠い流れ」と「遅い流れ」がある。前者には 150 - 400mm/day、20-68mm/day、3-20mm/day の 3 種があり、後者には 1.5-4.0mm/day、0.5-1.0mm/day の 2 種の計 5 種の軸索流がある。また、逆行性の軸索流も存在する。これらの細胞質の移動に neurofilaments や microtubules が関与するとされており、細胞小器官例えばミトコンドリア、シナプス小胞の前駆体などが双方向に神経細胞や神経細胞に沿ってモーターワン質によって駆動されて運ばれると考えられている。

軸索は構造の上から次の 4 部に分けることができる。

1 本の軸索丘 axon hillock：
軸索が出る部位の細胞体の一部でニッスル小体が極めて乏しい。
2 本の軸索起始部 initial segment of axon：
軸索の興奮が始まる所として、細胞膜に他の軸索の部分とは異なる所見を打ち構造 undercoating が存在する部位を有する。
3 本の軸索固有部 axon proper：
有髓神経細胞では有胞でつつまれる。
4 本の軸索終末 axonal terminals：
神経終末は鍍銀法や電顕で、最近では化学伝達物質やその代謝酵素の免疫組織化学でも証明される。終末はシナプスを構成し、次のニューロンと連絡する。とくに化学伝達物質 chemical transmitter を介するシナプスが重要である。

シナプスの結合様式には 4 つのタイプが考えられる。

1 軸索・細胞体シナプス axo-somatic synapses：
軸索終末が細胞体にシナプスを形成する。
2 軸索・樹状突起シナプス axo-dendritic synapses：
軸索終末が樹状突起上に終わる。
さらに樹状突起の主幹 shaft に終わるものと樹状突起棘 dendritic spine に終わるものがある。
3 軸索・軸索シナプス axo-axonic synapses：
軸索終末が軸索にシナプスを形成する。
4 樹状突起・樹状突起シナプス dendro-dendritic synapses：樹状突起間にシナプスができる。
7 シナプスの構造と機能

シナプスとは、細胞間のインパルス伝達のために形態的に分化し、機能的に特殊化した構造である。特に、神経伝達物質－受容体システムによる化学的シナプスの理解は、神経伝達機構の理解に重要である。機能的な神経伝達の成立には、次の条件が満たされなければならない。

a. シナプス結合の形成
b. シナプス間隙への神経伝達物質放出
c. 神経伝達物質受容体との結合
d. シナプス間隙からの速やかな神経伝達物質の除去

□1 シナプス前要素 presynapse

シナプス前要素である神経終末部には、多数のシナプス小胞 synaptic vesicle が認められる。アミノ酸・モノアミン・アセチルコリン・神経ペプチドなどの神経伝達物質はここに貯蔵されている。活動電位の到達により神経終末部での Ca⁺⁺濃度の上昇が起こると、開口分泌により伝達物質はシナプス間隙に放出される。電子顕微鏡の観察から、シナプス小胞は明小胞 clear vesicle、小型有芯小胞 small cored vesicle、大型有芯小胞 large cored vesicle に分類される。それぞれのタイプの小胞には異なるカテゴリーの神経伝達物質が含まれていると考えられているが、その形態だけでそこに含まれる神経伝達物質を特定することはできない。現在、神経伝達物質の同定は、神経伝達物質をもしくはその合成酵素に特異的に結合する抗体を用いた免疫組織化学法によりなされている。

シナプス前膜には、時折電子密度の高いファジーな構造が認められ、active zone と呼ばれる。これがシナプス小胞膜とシナプス前膜の融合、およびそれに引き続く神経伝達物質の放出に関係する部位と考えられている。

付図 シナプスの形態と機能
シナプスの形態
形態的特徴から、シナプスは次の2つに分類される。

<table>
<thead>
<tr>
<th></th>
<th>Gray I型シナプス（非対称型）</th>
<th>Gray II型シナプス（対称型）</th>
</tr>
</thead>
<tbody>
<tr>
<td>シナプス小胞</td>
<td>球形小胞（S型小胞）</td>
<td>扁平小胞（F型小胞）</td>
</tr>
<tr>
<td>active zone</td>
<td>顕著</td>
<td>あまり顕著でない</td>
</tr>
<tr>
<td>シナプス後膜肥厚</td>
<td>顕著</td>
<td>あまり顕著でない</td>
</tr>
<tr>
<td>シナプス間隙</td>
<td>広い（30nm）</td>
<td>狭い（20nm）</td>
</tr>
<tr>
<td>シナプスのタイプ</td>
<td>興奮性シナプス？</td>
<td>抑制性シナプス？</td>
</tr>
</tbody>
</table>

シナプス間隙 synaptic cleft
シナプス前膜と後膜の間には、幅20-40nmのシナプス間隙が存在する。神経伝達物質はこの間隙に放出される。シナプス間隙は、その周囲を星状細胞の細胞突起によりシールされた閉鎖系の空間である。星状細胞によるシナプス間隙の閉鎖は、神経伝達物質の拡散を防ぎ、局所における神経伝達物質濃度を高めることに役立つものと考えられる。一方、神経伝達物質が閉鎖したシナプス間隙に長期間に残存することは、シナプス後要素の過剰な過分極や脱分極を招き、また次に到来する活動電位に対する応答性を失わせることなど生体にとって好ましくない。星状細胞の細胞膜やシナプス前膜には、シナプス間隙に漂う神経伝達物質を特異的かつ効率的に汲み出す分子、すなわちトランスポーター transporter が存在している。

シナプス後要素 postsynapse
シナプス後膜は、しばしば電子密度の高いため、一見、細胞膜が肥厚しているように見える。これをシナプス後膜の肥厚 postsynaptic density と呼ぶ。シナプス後膜上には、神経伝達物質と結合しその情報をシナプス後要素の細胞に伝える受容体 receptor が存在する。また、後膜内およびその直下には、神経伝達物質と受容体との結合によりその情報を細胞内に伝える上で重要な酵素や蛋白などの分子が存在する。

受容体は、イオンチャネル型受容体 ionotropic receptor とG蛋白共役型受容体 G protein-coupled receptor とに大別される。イオンチャネル型受容体は、神経伝達物質との結合により瞬間に開き、これを通して細胞内にイオンが流れる。グルタミン酸受容体チャネルやアセチルコリン受容体チャネルのように陽イオン Na⁺、Ca⁺⁺が流入すると脱分極（興奮）を起こし、一方 GABA 受容体チャネルのように陰イオン Cl⁻が流入すると過分極（抑制）を引き起こす。これに対して、G蛋白共役型受容体は代謝型受容体 metabotropic receptor とも呼ばれ、この受容体と神経伝達物質との結合は共役している GTP 結合蛋白 G 蛋白の構造変化を招く。次に GTP 結合蛋白の構造変化は、これと共役しているセカンドメッセージジャーや産生酵素を活性化させる。細胞内におけるセカンドメッセージジャー（cAMP, Ca⁺⁺, イノシトール3リン酸など）濃度の変化は、酵素活性や蛋白の機能状態を変化させる。

![イオンチャネル型](image_url)
![G蛋白共役型](image_url)
<table>
<thead>
<tr>
<th></th>
<th>イオンチャネル型</th>
<th>G蛋白質共役型</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造</td>
<td>数個のサブユニットが合体して、伝達物質との結合により開閉する孔 pore を中央部に形成。効果器の活性化により、セカンドメッシングja - が産生される。</td>
<td>受容体蛋白分子が単量体として存在。受容体は GTP 結合蛋白および効果器と呼ばれる代謝酵素と共役する。</td>
</tr>
<tr>
<td>多様性</td>
<td>サブユニット分子種の構成によりチャネルの機能特性が変化する。</td>
<td>受容体分子のサブタイプにより、共役する GTP 結合蛋白が異なり、産生されるセカンドメッシージャーが異なる。</td>
</tr>
<tr>
<td>反応速度 反応時間</td>
<td>遅い（ミリ秒）</td>
<td>遅い（秒）長い</td>
</tr>
</tbody>
</table>

シナプス伝達特性は、たとえ同種の神経伝達物質であっても受容体のタイプが異なれば大きく異なり、またこれを構成するサブユニットやサブタイプの種類により大きく左右される。つまり、神経伝達の多様性は受容体レベルで作り出されていると言っても過言ではない。

8 グリア細胞 glial cell 神経膠細胞 neuroglia、glia □
中枢神経においてニュ - ロンの間隔は細胞質の成分で埋められており、所謂組織間隙は少なく、細胞間には膠原繊維などの結合組織成分が少ない血管周囲を除いて存在しない。この間隙をグリア細胞 □ - グリア、神経ガ、神経膠細胞 □ - と言う。
神経膠細胞には次の 4 種よりなる。
□1 神経膠細胞の 1 つ ependymal cells : 脳室、中脳管の壁を構成する。
□2 星状膠細胞 astroglia or astrocytes : 血管や軟膜の表面を覆って、グリア境界膜 glia limitans membrane を作る。したがって中枢神経系は星状膠細胞の細胞質に完全に囲まれた空間からなり、その中にニュ - ロンが外界や血管に直接することなく取っている。星状膠細胞の同定法として中間系 filaments の一種であるグリア細線維 glial fibrils を電顕的に証明する事とこの線維に含有する glial fibril acidic protein (GFAP と略す) を免疫組織化学的に証明する事で行われる。脳に外傷や手術激変が加わって、境界膜が損傷されると星状膠細胞内や細胞間水が貯留し、脳浮腫 cerebral edema と言うやかましい問題が生じる。脳浮腫のコントロールは脳神経外科での難問題である。
□3 稀 乏 突起腫細胞 oligodendroglia : 膜鞘形成細胞である。白質以外にもニュ - ロン細胞体に接着している稀突起臓細胞もあるが、膜鞘形成以外の機能は不明である。
□4 小膠細胞 microglia : その性格や機能は良くわかっていない。しかし、脳の免疫反応を担う細胞の可能性が出てきて、注目を浴びている。脳に外傷をつけると小膠細胞様細胞が浸潤してくるために今まで小膠細胞は脳内好食細胞 macrophage であると主張されてきたが(とくに欧米の研究者の間で)。それは血球由来の単球細胞であることが証明されている。
衛星細胞 satellite cell
ニューロンの細胞体に接着しているグリア細胞を衛星細胞と呼ぶことがあり、ニューロンとの間になんらかの機能的な相互作用があると考えられている。星状膠細胞、稀突起膠細胞、小膠細胞とも衛星細胞となりうる。

9 髓鞘 myelin sheath
中枢神経系と末梢神経系の軸索を包む鞘は髓鞘といわれ、共通した構造をもつが、細かい点では差異がみられる。髓鞘をもつ軸索を有髓神経線維 myelinated nerve fibers と言い、又髓鞘をもたないものを無髓神経線維 unmyelinated nerve fibers と言う。一本の神経線維の髓鞘と髓鞘の間をランピ・ル氏絞輪 nodes of Ranvier と言い、中枢神経系では軸索はここでは神経鞘をもたずグリア細胞と接する。時にはシナプスを形成することがある。有髓神経線維ではランピ・ル氏絞輪 nodes of Ranvier の間を跳躍伝導 saltatory conduction するので伝導速度が速い。髓鞘形成細胞は中枢神経系と末梢神経系では異なり、中枢神経系では神経管から、末梢神経系では神経堤から発生する。
1 中枢神経系の髓鞘
稀突起膠細胞によって形成される。1つの細胞から多数の突起が出て各々の突起が髓鞘の各節 [ランピ - ル氏絞輪の間の部分] を形成する。

2 末梢神経系の髓鞘
各シュワン細胞が髓鞘の一節 [ランピ - ル氏絞輪の間の部分] を形成する。シュワン細胞が髓鞘を形成しないで軸索を包んだ線維を無髓神経線維という。さらに、シュワン細胞の周りを多糖類からなる基底膜 basal lamina が包む。基底膜は中枢神経系の髓鞘にはない。
シュミット - シュミット - ランテルマン氏切痕 (Incisure of Schmidt-Lantermann): 髓鞘層板内において、髓鞘形成細胞の細胞質が残存して周期線が形成されていない部位は髓鞘染色などで染色せず裂け目の様に見えるので切痕と言われた。
3. 髓鞘の証明法
1. 光学顕微鏡で観察する為には髓鞘染色法を用いる。
 - ヘマトキシリンを使用する方法: Weigert-Pal 法、八代氏法など古典的な方法である。
 - ルクソール = ファスト青を使用する方法: Kruver-Barrera method は病理学で良く用いられる。
 - オスミウム酸を使用する方法: エボン樹脂の切片にすると美しい髓鞘が観察される。
 - その他の脂肪組織を用いる方法:
 - 免疫組織化学を使用する方法: 髓鞘塩基性蛋白質 myelin basic protein などの抗体を用いる。
2. 電子顕微鏡で観察する。
 - 髓鞘形成細胞の細胞膜が伸展して、軸索を包み込み、細胞膜の外面同志および細胞質面同志が融合して各々周期間線 intraperiod line と周期線 major dense line を形成して、層板状の構造の髓鞘を形成する。ミエリンの化学的構成成分を見ると 60-70％の脂質と 30％程度の蛋白質からなり、脂質の多い事が親水性イオンの通過を妨げ電気的絶縁効果を高めており、また、このことから脂肪染色で良く染ることがなる。蛋白質については中枢神経系のミエリン塩基性蛋白質 myelin basic protein MBP やプロテオリピド蛋白質 proteolipid protein PLP が中枢髓鞘の層板構造に深く関与しており、周期線を形成するうえで MBP、周期間線を形成するうえで PLP が必要であることが判明している。これらの蛋白質については遺伝子レベルでの合成の機構まで判明している。

4. 髓鞘の障害
1. 脱髓 demyelination
 いったん形成された髓鞘がなんらかの病因で脱落する現象を言う。ほとんど原因は不明である。
 - 多発性硬化症 multiple sclerosis
 - 副神経脊髄症 neuromyelitis optica
 - シルダ病 Schilder's disease
 - スモック subacute myeloopticoneuropathy SMON

2. 髓鞘異形成
dysmyelination or leucodystrophy
遺伝的に髓鞘形成が障害される現象を言う。
 髓鞘の構成蛋白質の myelin basic protein MBP や proteolipid protein PLP の発現に異常がある実験動物 マウスやラットが知られている。
 例:
 - shiverer mouse:MBP 遺伝子が欠失しているため周期線がない中枢髓鞘を作る。
 - myelin deficient mouse MLD MBP の合成が極めて強く制限されるため、shiverer mouse と同じ様な髓鞘を形成するが一部周期線が形成される。
この2つのタイプのマウスと同じ症状のヒトの疾患は見つかっていない。
・jimpy mouse: PLP遺伝子に異常があるため正常なPLPが形成されず、周期間線ができる。
このマウスは生後数日で死亡し、ヒトのPelizaeus-Merzbacher病のモデルである。
・twitcher mouse: 全身のgalactosylsphingosineの貯留をきたす。ヒトのKrabbe病globoid cell leukodystrophyのモデルである。発症と共にミエリンの崩壊が出現する。

10 エフォラクトース
刺激を受けて興奮した神経によって、作用させられるものを効果器という。筋と腺がある。筋 muscles：神経線維の終末と筋線維の間で神経接合部が運動終板が形成される。運動伝導路の項参照。
腺 glands：腺周辺に自律神経系（臓性）の神経終末が存在するが、運動終板のようなはっきりした神経接合部を形成しない。

11 受容器 receptorsの分類
神経終末と接し、外部環境あるいは内部環境の情報を受容する装置である。
1外受容器 exteroceptors：皮膚、網膜受容細胞、有毛細胞等を介して外部環境から刺激を受ける。
2内受容器 interoceptors：内臓から刺激を受ける。
3固有受容器 proprioceptors: 筋、関節、腱などの運動器より刺激をうける。

2刺激特異性からの分類
1化学受容器 chemoreceptors：嗅覚、味覚
2機械受容器 mechanoreceptors：触覚、筋繊維、ゴルジ腱器官、聴覚・平衡覚、痛覚
3温度受容器 thermoreceptors：温覚、冷覚
4光受容器 photoreceptors：視覚

3外受容器の例
皮膚にある代表的な受容器と固有受容器の例として筋繊維とゴルジ氏腱器官をここに挙げる。しかしこの皮膚知覚の受容器の同定は方法論的に難しい。
1自由神経終末 free nerve endings：痛覚、温度覚、触覚
2周毛神経終末 peritrichial endings：触覚
3クラウゼ氏終端 Krause's end-bulb：触覚
4マイスナ－氏小体 Meissner's corpuscle：触圧覚
5メルケル氏触板(Merkel's tactile disc：触圧覚
6パチニ－氏小体 Pacinian corpuscle：触圧覚、振動覚
7ルフィニ－氏小体 Ruffini's corpuscle：触覚
2 筋紡錘 muscle spindle
筋紡錘は錘内筋からなり、骨格筋の本体を作る筋を錘外筋と言う。
1 被膜：扁平な細胞と結合組織からなり、錘内筋を包んでいる。
2 錘内筋：1-20 本、平均 6 本ある。錘内筋には二型あり、核袋型 nuclear bag type と核鎖型 nuclear chain type という。
3 神経線維：つぎの 3 種類が入って来る。
 1. 遠心性線維：ガンマ - 線維 γ-fibers と呼ばれる。
 2. 求心性線維：筋に接する終末の形態から、annulospiral ending と flower spray ending をもつ afferent fibers の 2 型に分けられる。
 4 液腔：筋紡錘の内腔を言う。

3 ゴルジ氏腱器官 Golgi’s tendon organ 神経腱器官
筋と腱の移行部および腱膜にあり、張力の知覚に関与する。核に富む膠原線維の小束からなり、結合線維性の被囊をもつ。そこへ太い有髄線維が入り分枝して無髄となり、葉状の終板を作って終わる。
【神経系の発生】

【一般目標】
人体の発生発育過程における中枢神経系の形態分化と機能分化の概要を理解する。又、中枢神経系が損傷をうけたときの組織の反応を理解する。

【行動目標】
1. 腦と脊髄の発生発育段階とそれに伴う形態変化を説明できる。
2. 腦と脊髄の発生と機能分化が説明できる。

1. 受精後の初期発生過程
神経系の発生過程を説明する前に一般的な初期胚の発生過程を説明する。
卵巣と受精：排卵 ovulation は最終月経から 2 週後位に起こる。その直後に卵管内で精子と受精 fertilization して卵割 cleavage が始まる。
卵割と着床：受精卵は卵割を繰り返しながら、卵管の線毛運動により子宮へ送られる。受精後 6 日くらいで胞腫 blastcyst となり、分泌期の子宮粘膜に着床 implantation する

胞腫：胞腫内の細胞塊の胞腫腔に面しているところが胚盤 embryonic disc になり胎児の原基になる。
内胚葉 endoderm と外胚葉 ectoderm の形成：
内腔側に内胚葉が形成され、その背側に羊膜腔 amniotic cavity の発生と共に外胚葉が形成される。
中胚葉 mesoderm の形成：
胚盤の背側（羊膜腔側）に形成された原始線条 primitive streak とヘンセン氏結節 Hensen’s node から外胚葉性の細胞が内胚葉との間に侵入移動して中胚葉（脊索を含む）を形成する。ここまでは受精後 20 日で完了する。
外胚葉、中胚葉及び内胚葉が形成され、胎児へと発育が進む。
2. 神經系の発生
1. 神経板 neural plate の発現:
受精後17日目頃ヘンセン氏結節より頭側の外胚葉正中部が肥厚して形成される。この外側部は外皮になる。

2. 神経溝 neural groove の形成:
神経板の中央が凹凸し、体節が出現在するまでに深くなる。外皮になる外胚葉の部分とは頭部で鋭く分界する。表皮部の外胚葉との境界部に神経堤 neural crest [神経冠ともいう] の原基が発生する。

3. 神経管 neural tube の形成:
受精後22日目頃に神経溝の外側縁が互いに正中で融合して、神経管を形成し、その表面を外皮が覆う。管の前後は開放しており、前神経孔 anterior neuropore と後神経孔 posterior neuropore という。従ってこの時期では神経管腔は羊膜腔に通じる。神経堤も間質内へ落込んで、神経節の原基になる。

4. 神経管の完成:
受精後26日目頃20体節頃に前神経孔が閉鎖し、28日目頃25体節頃に後神経孔が閉鎖して、神経管が完成する。

- 17 -
[注] 神経孔が閉鎖しないと先天性神経奇形児になる。前神経孔が閉じないと髄膜瘤 meningocoele あるいは脳ヘルニア encephalocele になり、後神経孔が閉じないと二分脊椎 spina bifida になる。

5 腦の分化：胎児の屈曲位に一致して曲がり、又、頭部は拡張して
・前脳胞 forebrain vesicle
・中脳胞 midbrain vesicle
・菱脳胞 rhombencephalon vesicle
の三つの脳胞を形成する。又、尾方に伸展しながら脊髄 spinal cord が形成されていく。
結果として 3 腦胞から次の脳が分化する。

0 前脳胞から前脳 telencephalon と間脳 diencephalon が形成される。
1 中脳胞から中脳 mesencephalon,midbrain が形成される。
2 菱脳胞から後脳 metencephalon,hindbrain と後脳 myelencephalon が形成される。
後脳の背側にできる菱脳脳から小脳 cerebellum が形成され、腹側に橋 pons が形成される。
頚脳は延髄 medulla oblongata になる。
3. ニューロンとグリア細胞の発生分化

神経管は最初はマトリックス細胞 matrix cells が多列円柱上皮様に配列して形成される。このマトリックス細胞の核は細胞分裂の周期に合せて核を移動させる。これをエレベータ説、藤田哲也氏による「という説」。細胞分裂は内表面、脳室側で起きる。マトリックス細胞の核は外表面に移動しながらDNAを合成し、再び脳室側に下降してまた細胞分裂を起こす。そのうち神経芽細胞に分化した細胞は外表面に向けて遊走し、二度と分裂サイクルに戻ることはない。

藤田によると神経芽細胞の分化が終了して後に、グリア細胞の分化が始まり、正常の状態にあるグリア細胞は全てマトリックス細胞から発生する考え方を主張している。
一方、欧米の学者は伝統的に神経上皮細胞（マトリックス細胞に相当する）からグリア細胞と神経芽細胞が同時に分化すると言う説を主張しており、おおむね次の様な説を基本においている。
1.Hiss の芽細胞説 Keimzellentheorie 1889：神経管を構成する細胞は神経細胞を作る芽細胞 Keimzellen とグリア細胞を作る海綿芽細胞 Spongioblasten からなる。
2.Bailey and Cushing の説 1926：Hiss の説を発展させ、2 元論を定着させた。脳腫瘍の分類の基になっている。

４．神経管の構造と機能分化
1. 神経管の構造

神経管ははじめ単層の双極性の細胞からなり、分裂増殖しながら神経芽細胞を形成する。神経芽細胞になると分裂は停止し、ニューロンへと形態分化を起こす。神経芽細胞の形成時期は部位によって異なる。この分化は人では延髄が最も早く、次に脊髄、最後は脳半球である。神経管は次の三層より構成される。
・上皮層 ependymal layer：マトリックス細胞の細胞体が有る。
・外套層 mantle layer：神経芽細胞が多くある。
・辺縁層 marginal layer：神経線維からなる。

- 20 -

神経系の発生
2. 神経管の機能的局在

神経管は背側左右の翼板 alar plate と腹側左右の基板 basal plate に分けられ、2 者を分ける溝を境界溝 sulcus limitans という。左右翼板をつなぐ所を蓋板 roof plate、左右基板をつなぐ所を底板 floor plate という。翼板は知覚に関与し、翼板の背側部は体性知覚 somatosen-sory、その腹側部は臓性知覚 viscerosensory に関与する。又、基板は運動性でその背側部は臓性運動 visceromotor、その腹側部は体性運動 somatomotor に関与する。この神経管が変形して脳脊髄に分化するわけだが、脳幹と脊髄ではこのような機能的局在関係は良く保たれるが、間脳、終脳ではその区分は明瞭にできない。

5. 神経堤 neural crest の発生と分化

神経堤は、神経板が凹凸して神経溝を形成する時、神経板と外胚葉の境界部の細胞が内部に陥入して形成される細胞集団である。末梢神経系の構成分を形成し、神経節（知覚性、自律神経系の Q シュワーヌ細胞、軟膜、クモ膜、メラニン細胞など）に分化する。
6. ニューロンの移動と細胞構築形成

中枢神経系ではニューロンは規則正しい構造を持っている。これは発生発育の過程でニューロンが移動してくるべき位置に到達して形成される。従って、病的に移動が障害されると神経の奇形になる。例えば、大脳新皮質のニューロンは規則正しく移動するがそれが損なわれると、白質に停留する灰白質や無回転症、多回転症などの奇形が発生し、神経精神発育障害になる。現在ではMRIなどで生体の状態で無侵襲で検索可能である。

[大脳新皮質の層形成の仕方]

大脳新皮質は6層からなる。その層形成は神経芽細胞がガイドする細胞（藤田説ではマトリックス細胞、欧米ではradial glial fibers）に沿って軟膜方向に移動する。その時、早く分化したものは早く软膜側に達し、ガイドから離れる。次に分化して上行した神経芽細胞は離れてその上に位置する。この様にして古く発生したものほど深層になるように配列する（inside-outの配列という）。これが正確に行われずにそのまま積み重なってしまう（outside-inの配列という）遺伝的な移動障害を持つマウスがあり、リーラー奇形マウス（feeler mouse）と呼ばれている。

正常なマウスの神経芽細胞の移動

リーラー奇形マウスの神経芽細胞の移動

- 22 -
【□】神経系の変性 degeneration と再生 regeneration

【一般目標】
中枢神経系及び末梢神経系が損傷をうけたときの組織の反応を理解する。

【行動目標】
1. 神経回路が中断されたときのニューロンおよび脊髄の変化を説明できる。
2. 末梢神経系の再生過程を説明できる。

神経回路が中断され神経細胞に変化が生じると、これを変性という。変性は細胞体の損傷あるいは細胞死、軸索の切断によっておこることが多い。変性は病理的な変化であるので正常な構造を学ぶことと相反するが、神経回路網での機能発現を理解するうえで大切であるのでここに述べる。変性は次のように分類される。

1 カ - ラ - 変性 Wallerian degeneration と再生
カ - ラ - 変性は神経細胞の細胞体や軸索が損傷をうけた時、そこで軸索終末に向かっておこる変性である。

1 末梢神経系のカ - ラ - 変性
・ 軸索は断続し、食細胞 macrophages に貪食されて消失する。
・ 脊髄も断続し、貪食されて消失する。 [有髄神経線維の場合]
・ シュワン細胞は基底膜と共に残存し増殖する。したがって、切断部分が中枢側と連絡していれば、中枢側の断端より変性側へ軸索がのびて 1 mm の速さ [基底膜の管の中を残存し増殖したシュワン細胞の配列に沿って再生伸展する。したがって機能が回復する可能性を持っている。]
中枢神経系の変性

*軸索は断裂し、貪食されて消失する。
*有髓神経線維の場合、髓鞘は稀突起膠細胞の突起から離れ断裂し、食細胞によって貪食されて消失する。食細胞が小膠細胞であるか血球由来の単球であるか、またその双方が関係するのか未だ明らかでない。
*稀突起膠細胞はそのまま残存するが、シュワン細胞に見られたような変性神経線維に沿った再生という現象はなく、星状膠細胞が増殖し、瘢痕となる gliosis と言う。しかし、残存正常神経線維から軸索が新生する現象は明らかにされているが、機能回復に関与せず、その生理学的意義は明らかにされていない。

末梢神経系での変性は再生し得るが、中枢神経系の変性は再生しない。

アカゲザル錐体路に見られた変性像である。大脳皮質運動領を大きく破壊した。
（電子顕微鏡写真）

- 24 -
3. 神経終末のラ - ラ - 変性
軸索の他部位より早く変性所見が見られ、損傷して数日の内にシナプス終末は変性あるいは接合部位から離散する。食細胞に貪食され消失する。

2. 逆行性変性 retrograde degeneration
逆行性変性は軸索が切断されたとき、その細胞体に近い近位側に発現する変性であるが、常に起こるとは限らない。
1. 神経線維の逆行性変性：著明な形態的変化はない。
2. 神経細胞体の逆行性変性：細胞体にある Nissl 小体が細分される虎斑融解 chromatolysis と呼ばれる著明な逆行性変性を起こす事がある。
3. 二次ラ - ラ - 変性 secondary Wallerian degeneration：著しい逆行性変性の為、細胞体が崩壊・死滅し、その結果、その切断部より近位の軸索と髄鞘に 2 次的に生じたラ - ラ - 変性言う。

3. とび越え変性：transneuronal degeneration
とび越え変性は損傷をうけたニューロンに接続するニューロンに起こる変性を言う。
1. 逆行性のとび越え変性 anterograde transneuronal degeneration：変性したニューロンが投射したニューロンに起こる変性。たとえば、眼球剝出術を受けた人の外側膝状体に変性が生じるような例。
2. 逆行性のとび越え変性 posterograde retrograde transneuronal degeneration：変性したニューロンに投射するニューロンに変性が生じる。たとえば、大脳皮質視覚領域障害が生じた時、外側膝状体に変性が生じるような例。
神経変性のまとめの模式図
4 神経細胞死 neuronal apoptosis
中枢神経系が発生し、形態形成していく過程の大きな出来事は神経芽細胞（あるいは幼若ニューロン）が細胞移動を行って、層構造（大脳皮質、小脳皮質、海馬など）や神経核の特定された部位に位置を占めることと、それらのニューロン間に神経回路網が局所的にあるほ
長投射系伝導路が形成されることである。その中で重要なことは完成された中枢神経系の構築を作る上で、過剰に産生されたニューロンがその回路網から除外されたとき細胞死（自
殺的）apoptosis を起こしたり、過剰の軸索が標的のニューロンに向かって進展し、一部だけ到達し、それ以外は消滅してしまうことである axonal elimination と呼ばれる現象。また、脳の虚血によって、酸素不足で死ぬのではなくて 壊死 necrosis と区別される。細胞内の情報伝達系が働いて自ら細胞死に到る現象が知られている。神経系の形態的・機能的発生過程を考える上で細胞死の現象は無視できず、最近の主要な研究テーマになっている。
<table>
<thead>
<tr>
<th>№</th>
<th>名称</th>
<th>訳</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>脳髄膜</td>
<td>脳・脊髄は骨性腔内にあり、更に髄膜によって保護されている。</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>脳髄膜</td>
<td>meninges encephali</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>脳硬膜</td>
<td>dura mater encephali</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>脳软膜</td>
<td>arachnoidea encephali</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>脳軟膜</td>
<td>pia mater encephali</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>髄膜の間の空隙</td>
<td>硬膜上腔 epidural space：頭蓋骨と硬膜の間の間隙。</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>硬膜下腔 subdural space：硬膜とクモ膜の間の間隙。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>クモ膜下腔 subarachnoideal space：クモ膜と軟膜の間の間隙。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>髄膜下腔</td>
<td>前方をクモ膜下槽 subarachnoideal cisterns と言う。</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>小脳延髄槽</td>
<td>cerebellomedullary cistern：</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>後頭下穿刺で脳髄液を採取する部位として重要である</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>大脳外側窩槽</td>
<td>cistern of lateral cerebral fossa：</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>大脳外側窩槽</td>
<td>大脳外側窩（外側溝のところ）の内側。</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>交叉槽</td>
<td>chiasmatic cistern：視交叉の前方。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>交叉槽</td>
<td>大脳脚の間。</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>解剖学用語</td>
<td>Paris Nomina Anatomica に記載されていないが、次の槽もある。</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>交叉槽</td>
<td>中脳外側面において大大脳靜脈槽と脚間槽を結ぶ。</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>大大脳静脈槽</td>
<td>cistern of great cerebral vein：大大脳静脈の周囲。</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>大大脳静脈槽</td>
<td>cistern of corpus callosum：脳梁の周囲。</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>クモ膜顆粒</td>
<td>arachnoideal granulations：</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>脳髄液が硬膜静脈洞 dural sinuses あるいはクモ膜顆粒小窩にあっては板間静脈 diploic vein に流入する所にある粒状の構造物を言う。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

脳髄膜が硬膜静脈洞 dural sinuses あるいはクモ膜顆粒小窩にあっては板間静脈 diploic vein に流入する所にある粒状の構造物を言う。顆粒内の弁構造が静脈圧と髄液圧の静力学的な圧力差によって開閉して静脈内へ洩流する。
硬膜の特殊な形態として次のものがある（岡崎 701-702 頁）。
・大脳鎬 falx cerebri：左右大脳半球の間の正中位にはまっている。従って、正常の状態では両半球が左右の一方へ変位することはない。
・小脳テント tentorium cerebelli：大脳半球と小脳の間（大脳横裂）に入り込んでいる硬膜。
・小脳鎬 falx cerebelli：小脳の虫部に入り込む浅いヒダ。
・鞍隔膜 diaphragma sellae：トルコ鞍の蓋をして、下垂体と視床下部を境する硬膜。
・硬膜静脈洞 sinus durae matris：硬膜内葉と外葉の間に形成される静脈。
脳室 ventricle
中枢神経系の発生途上で、神経管の管腔が変形し、脳室 腦にあると中心管と脳にあ るを形成する。脳室は脳の各部と関連していて、次の名称がある。
1 中央部 central portion：前頭葉に位置する。
2 中央部 central portion：頸頂葉に位置する。
3 中央部 central portion：第2腰椎に位置する。
4 中央部 central portion：側頭葉に位置する。底面に海馬が膨隆している。
2 第三脳室 third ventricle：

- 29 -
左右の間脳に挟まれて正中ににある。

脳水道 cerebral aqueduct:
中脳の中心灰白質にかこまれる細い管。

第四脳室 fourth ventricle:
橋、延髄の菱形窩が底をつくり、小脳が天井をつくる。
脳室の形態をCTスキャン、MRI（以前は脳室に空気を入れる気脳写が使われた）などの方法により調べ、脳腫瘍などの診断に用いることがしばしばあるから、脳室の形態を理解する事は非常に重要である。

3 脈絡叢と脳脊髄液 [岡崎703-705頁]
脈絡叢 choroid plexus:
3つの脳室には血管に富む脈絡叢が存在する。
1. 側脳室脈絡叢 choroid plexus of lateral ventricle
2. 第三脳室脈絡叢 choroid plexus of third ventricle
3. 第四脳室脈絡叢 choroid plexus of fourth ventricle
血管に富む脈絡叢は脳の外より脳室内に入り込み、脳脊髄液 cerebrospinal fluid Liquorを分泌する。脈絡叢の表面脳室面に面している側には一層の中枢神経系由来の上皮上衣層があり、血管の内皮細胞を包んでいる。

脳脊髄液:
脳脊髄液は脳室、脊髄の中心管、クモ膜下腔を充たす液体で、総量は成人で100-150cc位で、1日400-500ml産生される。脳脊髄液は側脳室、第三脳室、第四脳室の脈絡叢で分泌され、第四脳室正中孔のmedian aperture of fourth ventricle [Magendie孔]と第四脳室外側孔のlateral aperture of fourth ventricle [Luschka孔]よりクモ膜下腔へ入る。これが流入するクモ膜下腔は小脳延髄槽に一致する。脳脊髄液はクモ膜顆粒を通って静脈洞に排出される。したがって、中脳水道等が閉塞すると側脳室と第三脳室で分泌される脳脊髄液が貯留増量し脳室が拡大し、頭蓋内圧亢進症や水頭症hydrocephalusになる。又、脊髄中心管は盲管である。圧は腰椎穿刺で臥位を70-120mm水柱である。
脳脊髄液の成分 [参考資料 □]
比重 1.003-1.008
細胞数成人 0-5 個/mm3 [単核球 □]
 幼児 0-20 個/mm3
総蛋白 10-45mg/dl
כלほとんどがアルブミン □
グロブリン 0-6mg/dl
尿素窒素 5-10mg/dl
クレアチニン 0.4-2.2mg/dl
残余窒素 12-30mg/dl
尿酸 0.3-1.5mg/dl
ブドウ糖 50-85mg/dl
ナトリウム 144mEq/l
クレ - ル 120-130mEq/l
カルシウム 4-7mg/dl
リン 1.2-2.0mg/dl
マグネシウム 1-3mg/dl
カリウム 2.06-3.86mEq/l
コレステロ - ル 0.06-0.5mg/dl
【①】脳・脊髄の血管系

【一般目的】
脳・脊髄の動脈・静脈系を理解し、それに関係する疾患群を分析診断できる能力を涵養する。

【行動目標】
講義実習を通じて次のことができるようになる。
1．内頚動脈と椎骨動脈の頚部と頜蓋内での走行上の特徴を説明できる。
2．脊髄の動脈の分布上の特徴を説明できる。
3．脊髄と脊柱の静脈系を説明できる。
4．大脳動脈輪のできかたとそこから出る主要な動脈を説明できる。
5．脳の動脈の皮質枝と中心枝を説明できる。
6．脳の静脈系と硬膜静脈洞、導出静脈、板間静脈を説明できる。

脳脊髄の機能を支えるエネルギーや代謝系はグルコースの好気的酸化に依存し、これ以外にない。ところが、脳にはグルコース・ケトンやグルコースの貯蔵がほとんどないために、豊富な血流によるグルコース・スと酸素の供給が脳の機能維持に必要不可欠である。この事を利用してグルコース・スと拡張して取込まれても分解されない物質である 2-deoxyglucose を投与して脳がその時点で活発に活動している部位を探し出すことが出来る。

1 脊髄の動脈
脊髄の栄養動脈分布の特徴は、各椎間孔 intervertebral foramen でVF と略される d から入る脊髄枝 spinal branch が分部状に入り、上下枝を出して吻合し前後脊髄動脈と成ることである。約 30 対、60 本の脊髄枝のうち、24 本位が発達している。

次の動脈から形成される。
1 椎間動脈 vertebral a. VA d: 第 6 頚椎の横突孔 transverse foramen から入り、上行する。前・後脊髄動脈 anterior and posterior spinal a. がでる。しかし、下部は下に述べる脊髄枝の上下吻合枝によって前後脊髄動脈は形成されていく。
2 脊髄枝 spinal branches
以下のいわゆる分節動脈 segmental arteries から出て、椎間孔から入る。
1 上行頚動脈 ascending cervical a.
2 深頚動脈 deep cervical a.
3 助間動脈 posterior intercostal a.
4 腰動脈 lumbar a.
5 腸腰動脈 ileolumbar a.
6 外側仙骨動脈 lateral sacral a.
7 正中仙骨動脈 median sacral a.

- 32 -
2 脊髄枝の分枝の仕方
脊髄枝は椎間孔から入って、以下の枝を出す。

1. 脊柱管枝
 - branch of vertebral canal
2. 硬膜枝 meningeal branches
3. 前根動脈 anterior radicalis a.
4. 後根動脈 posterior radicalis a.

・前根動脈と後根動脈：
脊髄枝は椎間孔から入り、前根と後根に伴行して脊髄に達する。前根動脈は頸髄レベルで出る頻度が高く、後根動脈は胸椎レベルで出る頻度が高い。しかし、第 9 胸髄から第 3 腰髄のレベルで大前根動脈 A. radicalis magna 『Artery of Adamkiewicz』という良く発達した脊髄枝が特に左側に発達して出ている。上に述べたように各脊髄の動脈は吻合して前正中裂に位置する前脊髄動脈と後外側溝に位置する後脊髄動脈が構成される。腹部の手術で大前根動脈を出す分節動脈を損うと術後に運動マヒなどの脊髄損傷の後遺症が出る。
前および後髄動脈 anterior and posterior spinal a.

前髄動脈として前及び後髄動脈が挙げられるが、その他に綫走する動脈吻合が髄髄を
取り巻くように形成され（下図参照）。周辺から細い動脈が髄髄内に進入する。
前髄動脈が大きい支配領域を占める。

1 中心動脈 central a. : 前髄動脈から出て □ 頭節 6.3 本平均 □ 前正中裂から髄髄内に入
る。

2 周辺動脈 peripheral a. : 頭髄周囲の吻合枝から髄髄内へ進入する。

3 髄髄と髄髄周辺の静脈

1 前髄靜脈 anterior spinal vein

2 後髄側髄静脈 posterolateral spinal vein

3 後髄静脈 posterior spinal vein

4 前髄静脈 anterior radialis vein

5 後髄静脈 posterior radialis vein : 動脈に伴行した後、椎骨内靜脈叢に入る。

6 内髄骨静脈叢 internal vertebral venous plexus

硬膜内葉と外葉の間（硬膜
外腔）に存在する。大孔を通過
して脳底静脈叢 basilar venous
plexus に連絡する。したがって、
この靜脈叢は仙骨のレベルから
頭蓋腔まで体幹全長にわたって
つながっているから下大静脈の
側副路になりうる。また、骨髄
内面の静脈叢と連絡するから、骨
髄内の腫瘍 (例：肝腫瘍) が
静脈叢を通って髄髄管内へ転移
することはしばしば見られる。

7 椎間静脈 intervertebral vein

8 椎体静脈 basivertebral vein

9 外髄骨静脈叢 external vertebral venous vein を経由して、
体後壁の分節静脈（肋間靜脈など）に注ぐ。
4 腦の動脈

内頸動脈 internal carotid a.と椎骨動脈 vertebral a.の二本によってのみ支配される。脳の血管系の障害、脳出血、脳硬塞、動静脈吻合などは重篤な神経症状を呈するから、臨床医学上重要である。また、生体では脳血管造影法 cerebral angiography で詳細に検討できるが、最近では MRI の画像から脳内の血管成分だけ抽出して血管像を無侵襲かつ 3 次元的に捉えることができる。これらの方法は脳動脈疾患の診断上重要である。

内頸動脈:
走行部位によってつぎのように区分できる。
1 頸部 cervical segment：枝をささない
2 錐体内部 intrapetrosal segment：脳動脈管内を走る。
3 海綿静脈洞内部：intracavernous segment：海綿静脈洞内を内側壁に沿って平行に走る。第 2、3、4 腦神経と関係が深い。ここに損傷が起こると頸動脈・海綿静脈洞瘻 carotid-cavernous fistula CCF が生じる。
4 上前床突起部 supraclinoid segment：海綿静脈洞から出てから（ヒトによっては海綿静脈洞内から）眼動脈 ophthalmic a.を出す。上前床突起の内側を通り、上後方の分枝するまで走る。
* 3 〜 4 を X 線写真の上で「頸動脈サイフォン carotid siphon」という。

大脳動脈輪 cerebral arterial circle of Willis

大脳動脈輪とは内頸動脈と脳底動脈左・右椎骨動脈が吻合して形成される。内頸動脈の枝としての前大脳動脈、中大脳動脈と分枝し、脳底動脈（椎骨動脈から形成される）の終枝として後大脳動脈である。左・右の前大脳動脈が前交通動脈 anterior communicating a.によってつながり、後交通動脈 posterior communicating a.によって中大脳動脈と後大脳動脈がつながって血管輪となる。吻合によって側副循環が形成されるとも考えられるが、臨床的に見て、一側の閉塞による循環障害を完全には代償しない。

大脳半球の動脈は大脳動脈輪から脳の表面を走って脳の各部位へ分布する皮質枝 cortical branches と大脳動脈輪から脳底部を貫いて脳の中心に入り込む中心枝 central branches に分けられる。大脳動脈輪の疾患として有名なのは動脈瘤で、これが破裂するとケモ膜下出血を起こす。
1. 中心枝 central branches：間脳、大脳基底核、内包に分布する。これに4群を分けるが、さらに前・後脳絡巻動脈が加わる。
1. 前内側中心枝 anteromedial group：前大脳動脈、前交通動脈から出る。
2. 後内側中心枝 posteromedial group：後大脳動脈の内で後交通動脈より内側から出る [視床穿通動脈 thalamoperforating a.が含まれる]
3. 後外側中心枝 posterolateral group：後大脳動脈の外側部から出る [視床膝状体動脈 thalamo-geniculate a.が含まれる]
4. 前外側中心枝 anterolateral group：中大脳動脈から出て、線条体枝、レ Nazk 核線条体動脈 lenticulostriate artery あるいは Charcot 氏脳出血動脈などと呼ばれる外側枝 [外側線条体動脈 lateral striate arteriesと前大脳動脈から出る内側線条体動脈 (ホイブナー氏反回動脈 recurrent a. of Heubner)がある。]
5. 前脳版動脈 anterior choroidal a.：
内頸動脈より出られ、後走し、側頭葉前端の内側面に達し、脳室下角に達する。脳室版絡巻、海馬、淡球、内包後脚に分布する。
6. 後脳版絡巻動脈 posterior choroidal arteries：後大脳動脈より出られるが、これに内側枝と外側枝がある。内側枝は松果体にむかい、第三脳室版絡巻、視床に分布する。外側枝は脳室下角にはいり、ここで前脳版絡巻動脈と吻合する。
2. 皮質枝 cortical branches
1. 前大脳動脈 anterior cerebral a. ACA: 眼窩回、直回、嗅球、嗅索、前頭・頭頂葉の内側面と外側面辺緣部を支配する。主分枝として脳梁周囲動脈 pericallosal a. と内側辺縁動脈 callosomarginal a. がある。動脈造影像上、図の様な枝が同定されるがそのパターンは変異が多い。
2. 中大脳動脈 middle cerebral a. MCA: 大脳半球外側面に分布する。眼窩回・外側部・下・中前頭回、中心前回と中心後回・大脑・下頭頂小葉、上・中側頭回、外側後頭回を支配し、動脈造影像上、図の枝が同定される。
3. 後大脳動脈 posterior cerebral a. PCA: 下側頭回、後頭葉、上頭頂小葉を支配し、動脈造影像上、図の様な枝がある。

内頸動脈撮影正面像
- 内頸動脈
- 前大脳動脈
- 中大脳動脈
- ホイプナー反回動脈
- レンズ核線条体動脈
- 内頸動脈海綿静脈洞部（サイホフォン部）
- 眼動脈
- 後交通動脈
- 前脈絡叢動脈

内頸動脈撮影側面像
- 内頸動脈
- 前大脳動脈
- 中大脳動脈
- ホイプナー反回動脈
- レンズ核線条体動脈
- 内頸動脈海綿静脈洞部（サイホフォン部）
- 眼動脈
- 後交通動脈
- 前脈絡叢動脈

前大脳動脈側面像
- 眼窩前頭動脈
- 前頭極動脈
- 前内側頭動脈
- 中内側頭動脈
- 後内側頭動脈
- 旁中心小葉動脈
- 上内側頭動脈
- 下内側頭動脈

中大脳動脈側面像
- 眼窩前頭動脈
- 前前頭動脈
- 中心前溝動脈
- 中心後溝動脈
- 前頭頂動脈
- 後頭頂動脈
- 角回動脈
- 側頭後頭動脈
- 後側頭動脈
- 中側頭動脈
- 前側頭動脈

脳脊髄の血管系
大脳動脈の支配領域

ACA：前大脳動脈
MCA：中大脳動脈
PCA：後大脳動脈
PCoA：後交通動脈

脳底動脈 basilar a. と椎骨動脈 vertebral a.
脳幹への動脈は両側の椎骨動脈から来る。延髄の下面で左右合流し脳底動脈になる。
1 前下小脳動脈 posterior inferior cerebellar a. PICA
椎骨動脈の枝で、小脳半球尾部、小脳虫部、小脳核、第四脳室脈絡巣へ行く。延髄の背外側部を栄養するからこれが閉塞するとワレンベルグ症候群になる。
2 前下小脳動脈 anterior inferior cerebellar a. AICA
脳底動脈の最初の枝で、小脳皮質の前下面、小脳白質、小脳核の一部を栄養している。小さな側枝は脳幹部を栄養する。
3. 迷路動脈 labyrinth a.
内耳に入る。
4. 上小脳動脈 superior cerebellar a. SCA
脳底動脈が左右の後大脳動脈になる直前にでる。小脳の背面、小脳核の一部、橋の吻側、上小脳脚、下丘を栄養する。
5. その他

椎骨動脈撮影正面像 椎骨動脈撮影側面像

- 椎骨動脈
- 脳底動脈
- 頭頂後頭動脈
- 視床膝状体動脈
- 後下小脳動脈
- 前下小脳動脈
- 前類満動脈
- 内側後脈絡巣動脈
- 上小脳動脈
- 後大脳動脈
- 前視床穿通動脈
- 外側後脈絡巣動脈
- 後交通動脈

脳幹の血管の分布の仕方
脳幹を栄養する動脈は周囲より中心に向かって進入する。その進入部位は正中領域、内側領域、外側領域、背側領域に分けられる。正中部の支配は椎骨動脈からの前脳底動脈と橋の部位での脳底動脈がある。そこから外側方に、後下小脳動脈、前下小脳動脈、橋枝、上小脳動脈などが、脳幹を短くなります。背側部まで長い距離を回旋する動脈があり、そこから脳幹の中心に向かって動脈が進入し栄養する。
1. 延髄下部
正中領域：前脳動脈
外側領域：椎骨動脈
背側領域：後下小脳動脈

2. 延髄上部
正中領域：前脳動脈
内側領域：椎骨動脈
外側領域：後下小脳動脈
背側領域：後脳動脈

3. 橋
正中領域：脳底動脈
内側領域：短回旋動脈（脳底動脈）
外側領域：長回旋動脈（脳底動脈）
上小脳動脈

4. 中脳
正中領域：後大脳動脈、後交通動脈
外側領域：短回旋動脈
後大脳動脈、上小脳動脈
背側領域：長回旋動脈（後大脳動脈）

5. 大脳の静脈
大脳の静脈は
・表在大脳静脈 superficial cerebral veins 表在静脈系
・深部大脳静脈 deep cerebral veins 深部静脈系
に分けられる。全て硬膜静脈洞 dural sinus へ橋静脈 bridging veins を介して流入する。

・表在大脳静脈: 外大脳靜脈 external cerebral vein とも言い、上矢状静脈洞を中心に硬膜静脈洞に流入する。脳表面から静脈洞に入るまでを bridging vein という。3 大静脈群としてつ
ぎのものが挙げられる。
1. 表在大脳静脈 superior cerebral veins: 半球外面と内面に分布し 6-15 本あり 上矢状静脈洞、
横静脈洞、内面の一部は下矢状静脈洞に流入する。
2. 表在大脳静脈 inferior cerebral veins: 半球下面と側面腹側部に分布し、頭盖底部の硬膜静脈

- 40 -
洞に流入する：前方は海綿静脈洞、尾方は横静脈洞などに
3) 浅中大脳静脈 superficial middle cerebral veins：外側溝表面に沿って走り、半球外側面に分布する。海綿静脈洞へ流入する。この静脈と他の静脈とを互に吻合する静脈として次の発達した静脈がある。
・上吻合静脈 superior anastomotic vein of Trolard：上大脳静脈と吻合
・下吻合静脈 inferior anastomotic vein of Labbe：下大脳静脈と吻合

2) 深部大脳静脈
　大脳の深部および大脳半球下面の静脈系、脈絡叢の静脈からなり、最終的には大大脳静脈に集り、直静脈洞に入る。
1) 大大脳静脈 great cerebral vein of Galen：
　内大脳靜脈、脳底靜脈、後頭静脈、上下小脳静脈を集める。
2) 内大脳静脈 internal cerebral veins：第三脳室脈絡叢中を走る。
1. 視床線条体静脈 thalamostriate vein 分界条静脈 2
2. 脈絡叢静脈 choroidal vein
3. 透明中隔静脈 septal vein
などが流入する。
3) 脳底静脈 basal vein of Rosenthal：前頭葉の内面に起こる。
1. 前大脳静脈 anterior cerebral veins：前大脳動脈に伴行する。前頭葉の眼窩面や脳梁、帯状回の吻側に分布する。
2. 深中大脳静脈 deep middle cerebral veins：外側溝の深部を走る。
3. 線条体静脈 striate veins
などが流入する。
4) 後頭静脈 occipital vein
6 小脳の靜脈

1. 上小脳靜脈 superior cerebellar veins：前方は直靜脈洞、後方はに注ぐ。
2. 下小脳靜脈 inferior cerebellar veins：內大脳静脈、横静脈洞、上臓体静脈洞、S 状静脈洞、後頭静脈洞に注ぐ。

7 腦幹の静脈

背側は小脳の静脈に注ぐ。腹側は吻側は前部の大脳の静脈系に入り、尾側は延髄の静脈系に入り、脳底靜脈叢に入る。

8 硬膜に分布する動脈

1. 前頭蓋窩：前築骨動脈 anterior ethmoidal a.の枝である前硬膜動脈 anterior meningeal a.が鼻腔に入る前に硬膜へ行く。
2. 中頭蓋窩：顱動脈の枝である中硬膜動脈 middle meningeal a.が棘孔より出る。副硬膜枝が中硬膜動脈から枝分かれて卵円孔から入る。
3. 後頭蓋窩：上行咽頭動脈 ascending pharyngeal a.の枝の後硬膜動脈 posterior meningeal a.は頸静脈孔から硬膜へ分布する。
後頭動脈occipital a.の枝である硬膜枝meningeal branchは乳突孔からはいる。
椎骨動脈から来る硬膜枝meningeal branchは大[後頭]孔よりはいる。

9 脳硬膜静脈洞[岡嶋419-421頁]
脳の静脈は全て硬膜静脈洞に流入し、内頸静脈、導出静脈を通って頭蓋内を出る。
1 上矢状静脈洞superior sagittal sinus：大脳溝と矢状縫合の間にある。新生児では皮膚より
触れ、採血するところになる。
2 下矢状静脈洞inferior sagittal sinus：大脳溝の下縁にある。
3 直静脈洞rectal sinus：小脳テントと大脳溝の結合部にある。
4 横静脈洞transverse sinus：靜脈洞交又から始まり、後頭骨の横洞溝を走り、S状静脈洞に
続く。
5 下鰭静脈洞inferior petrosal sinus：側頭骨鰭骨に沿って走る。
6 上鰭静脈洞superior petrosal sinus：側頭骨鰭骨上縁に沿って走る。
7 海綿静脈洞cavernous sinus：蝶形骨体上縁にあり、内頸動脈や脳神経の一部が貫く。
8 S状静脈洞sigmoid sinus：内頸静脈に続く。
9 静脈洞交又confluence of sinuses：上矢状静脈洞、直静脈洞、後頭静脈洞が合流する。

10 導出静脈emissary veins[岡嶋422頁]
静脈洞から内頸静脈に注いで頭蓋外へ血液はでるが、その他に頭蓋外へでる道として導出
静脈がある。主な導出静脈は以下にあげる。
1 頭頂導出静脈parietal emissary vein：頭頂孔を通る。
2 乳突導出静脈mastoid emissary vein：乳突孔を通る。
3 頭導出静脈condylar emissary vein：顱管を通る。
[□] 大脳半球（終脳）

一般目標
1. 大脳皮質の構造と機能の解剖を理解する。
2. 大脳核の構造と機能を理解する。

行動目標
1. 大脳皮質の神経細胞構造や脳構築を説明できる。
2. 大脳皮質の機能の位置とその機能連絡の概要を説明できる。
3. 脳の区分と名称および各部の位置関係・主たる機能を説明できる。
4. 大脳核の区分、機能、線維連絡を説明できる。
5. 大脳核の障害による症状を説明できる。
C Tスキャン像、MR I像、X線脳血管像が大まかに理解できる。
[但し、脳解の肉眼解剖の実習は解剖学実習で行なう。]

脳は次の区分からなる
① 終脳 telencephalon,cerebral hemisphere
② 間脳 diencephalon,between brain
③ 中脳 mesencephalon,midbrain
④ 橋 pons
⑤ 延髄 medulla oblongata
⑥ 小脳 cerebellum

即ち、脳は前方より、終脳 大脳半球 - 間脳 - 中脳 - 橋 - 延髄と連続し、橋の背側に小脳が付着している事になる。そして延髄が脳に連結する。

又、脳のうちで中脳、橋、延髄を脳幹 brain stem と呼ぶことがある。間脳を含める人もいるが脳幹に類似した神経核と脳神経を出す下位脳と考えると間脳を含めない方がよい。終脳から説明を加える。
1 終脳 telencephalon は大脳半球 hemispherium cerebri の概観 [岡嶋 673 頁] の大脳縦裂 fissura longitudinalis cerebri によって左右の半球に分けられ、大脳横裂 fissura transversa cerebri によって終脳と小脳が分けられる。終脳は次の 3 部からなる。

・外套 pallium
・嗅脳 rhinencephalon
・大脳核 cerebral nuclei

2 外套
脳の表層部を占める。次の 2 部からなる。

・大脳皮質 cerebral cortex = 灰白質 gray matter
・大脳髄質 cerebral medulla = 白質 white matter

[外套と皮質を同義に使用する人もいる]
(1) 大脳皮質の外観

1. 輪状葉 lobus
 大脳半球はおおまかに次のように脳葉に分ける。
 1. 小脳葉 frontal lobe:
 中心溝より前方で、先端部を前頭極 polus frontalis とする。ヒトでは他の脳葉に比べて発達しているのが特徴である。
 2. 中脳葉 parietal lobe:
 中心溝と頭頂後脳溝の間を言う。
 3. 後頭葉 occipital lobe:
 頭頂後脳溝より後部で、後端部を後頭極 polus occipitalis とする。
 4. 桃脳 temporal lobe:
 外側溝より下部で、先端部を側頭極 polus temporalis とする。
 5. 島 insula:
 外側溝の深部 [岡嶋 683 頁] にある皮質を言う。
 6. 聴脳 rhisencephalon:
 聴球、嗅索など。

* 各葉の境界となる溝は脳葉間溝と言い、外側溝、中央溝、頭頂後脳溝は比較的わかりよい。しかし、後頭葉、頭頂葉、側頭葉の合する部分は人により決め方がまちまちである。1つの基準として後頭極より約 4 cm 前方にある後頭前切痕 preoccipital notch と頭頂後脳溝を結ぶ線の中心と、外側溝終止部を結んで境界としている。
* 島は前頭葉、頭頂葉、側頭葉のそれぞれ一部に覆われ [これを弁蓋 operculum と言う]、したがって外側溝をそっと押し分けるとその深部にみることができる。

2. 回 gyri [gyrus] と溝 sulci [sulcus] の脳表面には多くの溝 sulcus とその間に形成される回 gyrus 回転 convolution が存在する。

参考：脳表面の回と溝の同定の仕方：
脳の回と溝の同定は難しいところがあるので以下の手順で行うと比較的容易に同定できる。
脳実習の参考までに記載しておく。

[観察の手順]

クモ膜を血管とともに必要に応じて取り除き、溝を明瞭にする。この時大きい血管の走る位置を覚えておく。大脳半球の回と溝の形態は極めて多様で、個々の脳について殆ど異なると考えてよい。しかし、基本構造は保たれているので、以下の順序に従って同定すると容易である。

* 外側溝を同定する [岡嶋 674-675 頁]：
 外側溝 lateral sulcus [of Sylvius] は大脳半球の外表面にあるもっとも顕著な溝で容易に同定出来る。更に外側溝から前頭葉側へ 2 本の溝の分歧がある。前肢と上行枝と言う。又、外側溝を閉じて [こわさぬよく] [中大脳動脈 middle cerebral artery が島の表面を走っているのを見る。島の表面には [島] [長回] 同 [島] [短回] と [島] [輪状回] がある。外側溝の前肢と言う溝の前部は下前頭回 inferior frontal gyrus の眼窩部 pars orbitalis、前肢と上行枝の間の回は三角部 pars triangularis、上行枝の後部は弁蓋部 pars opercularis と言う。この弁蓋部は Broca 氏運動性言語中枢に相当する位置である。弁蓋部の直後部の回が中心前回である。従って、その直後部の溝は中心溝になる。外側溝の後端は後枝と言う。それをとりかくように存在するのが縦上
回 supramarginal gyrus である。Wernicke 氏感覚性言語中枢に相当する。これは頭頂葉に属する。

中心溝を同定する [岡嶋 674、680 頁]：
側頭葉外側面に外側溝とほぼ平行に走る上側頭溝 superior temporal sulcus がある。この溝の上端を巡るように角回 angular gyrus が存在する。縦上回と角回は合わせて下頭頂小葉 inferior parietal lobule といい、この 2 つの回の上部にある溝を頭頂間溝 interparietal sulcus といっている。従って、頭頂間溝より上部の回を上頭頂小葉 superior parietal lobule と言う。縦上回の前部境界の溝は中心後溝 postcentral sulcus といい、その直前部の回は中心後回 postcentral gyrus と呼ばれる。この回は皮質知覚領域である。中心後回の直前の溝が中心溝 central sulcus of Rolando で、よく発達しており、大脳半球上端より外側溝近くに達する。中心溝の前部は中心前回 precentral gyrus といい、皮質運動領域である。中心前回は中心前溝によって前方を限界されている。中心前回のすぐ前下部に先に述べた弁蓋部 pars opercularis が位置する事から外側溝の同定からも中心溝を決める事が出来る。以上の 2 のやり方で中心溝を同定することが出来る。
前頭葉の溝と回を同定する（岡崎 675-676 頁）：
中心前溝付近より、前方へ向けて縦走する溝があり、上より上顎溝 superior frontal sulcus, 下顎溝 inferior frontal sulcus と言う。下前額溝は先にのべた下顎回・頭頂部、三角部、弁蓋部の上界を作る溝である。上顎溝は大脳縦裂に沿って走るが前方に至るにしたがい、これに近づく。この溝より上部を上顎回 superior frontal sulcus と言い、内面では帯状溝上部まで含まれる。上および下顎溝の間を中前頭回 middle frontal gyrus と言う。その中の溝を中前額溝と呼ぶことがある。

内側面に見られるものを同定する（岡崎 680-684 頁）：
脳梁 corpus callosum を確認する。脳梁は前方より脳梁吻 rostrum of corpus callosum, 脳梁膝 genu, 脳梁幹 trunk, 脳梁膨大 splenium から構成される。脳梁と大脳皮質との間の溝が脳梁溝 sulcus of corpus callosum である。脳梁下にそって、脳梁溝の下方から後方に走る帯状溝 cinguli sulcus がある。帯状溝は脳梁膨大のやや前方で後上方に向き、中心溝の上端の後方に終わる。脳梁溝と帯状溝の間を帯状囲 cinguli gyrus と言う。帯状溝が大脳半球上端に終わるが、その直前部を中心小葉 paracentral lobule といい、中心前回に属する。中心小葉の直後部で、頭頂後頭溝 parietooccipital sulcus 前部までの囲を楔前部 precuneus と言う。楔前部を下から構成する溝が頭頂下溝 subparietal sulcus である。頭頂前頭溝を再確認し、この溝と銳角をもって、交叉し、後頭極へ向かってほぼ水平に走る鳥距溝 calcarine sulcus を観察する。鳥距溝と頭頂後頭溝の間の三角部を楔部 cuneus といい、鳥距溝をはさむ囲を有線領 striate area と呼ぶことがある。こっが皮質視覚領である。
側頭葉と後頭葉の下面の溝、回を同定する（岡嶋 676-680 頁）：

側頭葉の最内側の溝を海馬溝 hippocampal sulcus といい、後方は脳梁溝に続く。この溝の外側にこれと平行に走る側副溝 collateral sulcus がある。側副溝の前端部にある浅い溝が嗅脳溝 rhinal sulcus である。海馬溝と側副溝の間の回を海馬旁回 parahippocampal gyrus と言う。海馬旁回の前端は後方より前方にまで延びる前回 uncus と言う。海馬旁回の後方の続きで鳥距溝と側副溝の間を舌状回 lingual gyrus と言う。海馬溝を押しきくと歯状回 dentate gyrus が見える。側副溝の外側には後頭側頭溝 occipitotemporal sulcus があり、側副溝と後頭側頭溝の間を内側後頭側頭回 medial occipitotemporal gyrus と言う。後頭側頭溝の外側の回は外側後頭側頭回 lateral occipitotemporal gyrus である。上に述べた上側頭溝と後頭側頭溝の間に下側頭溝が縦走するが不規則な溝である。側頭葉の外側溝内に見られる溝と回は横側頭溝 transverse temporal sulci と同名回で Heschl 氏回の名があり、皮質聴覚領である。

前頭葉下面は眼窩面で、嗅球 olfactory bulb、嗅束 olfactory tract が見られる。嗅束がおさまっているところを嗅溝 olfactory sulcus といい、嗅溝の内側の回を直回 rectal gyrus と言う。嗅溝の外側にあるのは眼窩溝 orbital sulcus と眼窩回 orbital gyrus である。

脳弓回 fornicate gyrus：

帯状溝前頭下部、頭頂下溝、鳥距溝前端部、側副溝などでかこまれた回をいう。すなわち帯状回、帯状回転 isthmus of cinguli gyrus (鳥距溝と海馬溝の間)、海馬旁回からなる。
2. 大脳髄質 [白質] の構成

大脳髄質は神経線維よりなる。有髄神経線維が主体をなすので肉眼的に白く見える。
・投射線維 projection fibers：上下行する長い神経線維群を言う。
・交連線維 commissural fibers：左右半球を連絡する神経線維を言う。
・連合線維 association fibers：同側半球内を連絡する神経線維を言う。

1. 投射線維 projection fibers：主たる線維は次のものである。
・放線冠 corona radiata：髄質の神経線維が内包を中心に皮質に方向に扇の様に広がっている所。扇のかなめの部位が内包にあたる。
・視放射 optic radiation：外側膝状体から有線領に向う視覚路の神経線維束。
・聴放射 acoustic radiation：内側膝状体から横側頭回に向う聴覚路の神経線維束。
・内包 internal capsule：終脳と間脳以下の部位とを結ぶ神経線維が通る部位で中脳の大脳脚に続く。
・外包 external capsule：前庭 claustrum とレンズ核の間の白質の薄板。
・最外包 extreme capsule：前庭の外側部の白質の薄板

2. 交連線維 commissural fibers：主たるものは次のものである。
・脳梁 corpus callosum [岡崎 684 頁]：左右脳半球を広く結び白質束。脳梁吻，脳梁膝，脳梁幹，脳梁膨大から構成される。
・前交連 anterior commissure：脳梁吻の下部にある白質束。左右の嗅脳系あるいは海馬旁回などを結ぶ交連線維束である。

3. 連合線維 association fibers：主たるものは次に挙げる。
・弓状線維 arcuate fibers：近隣の回の間を連絡する。
・鈎状束 uncinate fascicle
・上縦束 superior longitudinal fascicle
・下縦束 inferior longitudinal fascicule など。

これらの神経線維束を肉眼的に観察研究することを伝導路学 hodology という。脳に凍結
・解凍の操作を 2、3 回繰返した後ヘラの様なもので鈍的に皮質を剥離することで線維の方向を明確に出す事が出来る。しかし、肉眼的な伝導路の方向が分かるだけで正確な神経回路は証明できない。
3 大脳皮質の細胞構築と配置

大脳皮質は神経細胞構築の上から下記の2皮質に区分される。
・等皮質 isocortex: 6層構造を作る。新皮質 neocortex とも呼ばれる。
・異皮質 allocortex: 6層構造をとらない。旧皮質 paleocortex と前古皮質 archicortex とも呼ばれる。この2つの境界部の皮質を中間皮質 mesocortex と言うことがある。

新皮質の細胞構築 cytoarchitecture: 次の6層から成る。
第1層: 分子層 molecular layer lamina zonalis ▫
第2層: 外顆粒層 external granular layer
第3層: 外錐体層 external pyramidal layer
第4層: 内顆粒層 internal granular layer
第5層: 内錐体層 internal pyramidal layer
第6層: 多形細胞層 multiform layer

この層構造は平面的な6層が積み重なってできているのではなく、6層からなる柱構造 (コラム構造) が単位となって水平的に配列して、全体として6層の大脳皮質を作っている。その柱の中では、投射ニューロンをフィードブックの位置する層が異なり、また、入力を受ける層も求心線維を出している神経核の種類によって異なる。例えば、皮質運動領域 [第4野] において、第2層からのみ皮質脊髄路が投射されるが、視床は主として第1層から投射される。また、視床からの入力線維は第2層に終わるが、対側からの皮質交連線維は第2、6層に終わる。このように階層的な神経回路網の形成が特徴的になっている。
Brodmann areas of Brodmann: 2 areas of Brodmann 6, 50 areas of Brodmann 4, 3 areas of Brodmann 17, and 3 myeloarchitecture.

1. Medullary rays
2. Internal and external band of Baillarger: Strip of Vicq-d’Azyr of Gennari
3. Kaes-Bechterew’s stria
4. Tangential fibers

Nissl and Weigert Staining
4. 古皮質 paleocortex
嗅覚に直接関係し、次の部位からなる。嗅覚の伝導路の頂を参照
1. 嗅葉 olfactory lobe
 1. 嗅球 olfactory bulb
 2. 嗅索 olfactory tract
 3. 嗅三角 olfactory trigone
2. 胼状葉 lobus piriformis
3. 前槅葉 lobus prepiriformis
4. 扁桃体 amygdaroid body
5. 嗅脳系の線維連絡：視床下部の線維連絡と重複する所が多い。
 1. 腦弓 fornix
 2. 乳頭体視床路 mamillothalamic tract
 3. 糸条 stria medullaris
 4. 分界条 stria terminalis
 5. 前交連 anterior commissure

5. 原皮質 archicortex
系統発生的には最も古い部位で、次のものからなる。側脳室周辺に原基が発生し、脳室の
発達と共に前部の内側嗅稜が残り、途中は脳梁の発育と共に退化して遺残として灰白層が脳
梁の背部に接着して残り、脳室が側頭葉にまで伸展したところに海馬が形成された。
1. 内側嗅稜 medial olfactory area
 1. 前有束質 substantia perforans anterior
 2. 條下野 area subcallosa
 3. 終板旁回 paraterminal gyrus
 4. 透明中隔 septum pellucidum
2. 灰白層 indusium griseum : 海馬の遺残である。
3. 海馬 hippocampus: 肉眼的に観察すると次の部位からなる。
 1. 小帯回 fasciolar gyrus: 灰白層の連続である。
 2. 歯状回 dentate gyrus: 小帯回の連続で、海馬裂を隔てると歯のような刻みがある歯状回があ
 3. 海馬足 pes hippocampi
海馬の内部構造は多形細胞層、錐体細胞層、分子層からなる3層構造でU字もしくはV字型
に配列している。その開口部に歯状回の顆粒細胞層が入り込む形をとる。海馬を断面で見
ると層構造は一見均質に見えるが、CA1-4と命名されているように機能分化がある。近年、
記憶や学習の中枢として注目を浴びており、脳研究の良い対象となっている。
4. 帽弓 fornix：海馬から連続する白質で、視床下部の乳頭体に入る。
6. 大脳辺縁系
側脳室をとりまく皮質をいう。自律神経機能や本能行動や感情、感情などに深い関係を持っているといわれている。
次の領域が含まれる。
1 原皮質 arichicortex : 上記の領域
2 帯状回
3 海馬前面
4 扇桃体
5 前頭葉

7. 大脳皮質の機能局在
皮質が損なわれたとき機能が脱落したり、皮質がなんらかの刺激を加えて反応を見る事によってその部位の機能が確かめられている所がある。この時、その部位に機能局在があると言い、次のような所が知られている。
① 運動中枢：随意運動の中枢で、中心前回、中心小葉 Brodmann4 野に1 次中枢があり、体部位局在性顔面野が下部、下肢野が中心小葉1を持って、脳幹、脊髄に投射する。錐体路系の起始部である。6 野とその周辺には皮質下の諸核へ投射線維を出す、いわゆる錐体外路系の中枢がある。前頭野 B 野は眼球運動の中枢である。Penfield は大脳半球内側面を刺激すると発声や頭部を回転させる部位があることを明らかにし、補足野 supplementary areaと命名した。
② 体性知覚第1 次中枢：中心後回、中心小葉 Brodmann3-1-2 野その他にあって、視床（VPM 核、VPL 核）からの投射線維を体部位局在性顔面野が下部、下肢野が上部を持って受ける。味覚中枢は顔面の知覚領域の近くにあると言われる。
③ 視覚第1 次中枢：有線領元 7 野にあって、外側膝状体からの投射線維を受ける。その周囲の 18、19 野は視覚連合野である。
ヒトに特有な言語中枢は大脳半球の一側にのみ存在する。存在する側の大脳半球を優位半球 dominant hemisphere と言う。一般には左側にある 咀き手の対側 に、このように左右の半球の新皮質は機能分化があると言われており、左半球は言語機能、計算等、右半球では空間的操作等が関与する。大脳新皮質に障害があると、失語症 aphasia 意味が分っても話せない、聞いた言葉が理解できないなどの言語障害 に、失行症 apraxia に文字をきちんと書けない、つまりが手にできないなどの行動障害 に、失認症 agnosia 左・右の区別ができない、身体の位置が分からないなどの空間認識に障害 に、前頭葉微候 frontal signs（精神症状、強制把握、尿失禁）Gerstmann 症候群 に手指失認、左右障害、失算など、Korsakoff 症候群 に記憶障害、作話などその他色々の症状を呈する事がある。これらは大脳皮質の局在部位 連合野を含めてと関係すると言われているが、正確に症状と解剖学的部位を対応させる事は難しい。
8 大脳核（大脳基底核）
(1) 大脳核の区分

大脳核 cerebral nuclei (岡嶋 692 頁) は大脳基底核 basal ganglia とも言い、大脳半球白質の雑質の中に埋没している灰白質塊である。運動の調整作用に関与する所で、次のものからなる。
1 尾状核 caudate nucleus
2 被殻 putamen
3 淡蒼球 globus pallidus
4 前障 claustrum
5 扁桃体 amygdaloid body

尾状核と被殻を合わせて線条体 corpus striuatum or striatum [新線条体 neostriatum] という。しかし、線条体に更に淡蒼球を含める人もいるから、線条体の定義を確認してから論文なり教科書を読む必要がある。又、被殻と淡蒼球を合わせてレンズ核 lentiform nucleus という。しかし、被殻と淡蒼球の機能的な特性は異なることに注意が必要である。

これらの神経核は大脳半球の割面を作った時に観察出来る。レンズ状を示すレンズ核が内包の外側にある。尾状核の頭部はレンズ核と融合しているが内包によって分けられるようになり、体部と尾部はさらに側脳室に沿って伸展し、側頭葉の扁桃体に達する。レンズ核の外方に薄い灰白質の前障がある。

（2）大脳核の発生学的な分類
大脳核を発生学的な見地から分類すると次のようになる。
① 原線条体 archistriatum：扁桃体 amygdaloid body を指す。
② 旧線条体 paleostriatum：淡蒼球 globus pallidus を指す。
③ 新線条体 neostriatum：被殻 putamen と尾状核 caudate nucleus を指す。

尾状核と被殻を合わせて線条体 striatum とも言う。しかし、線条体に更に発生的にも機能
的にも異なる淡蒼球を含める人もいるから、線条体の定義を確認して論文なり教科書を読む必要がある。又、被殻と淡蒼球は、互いに機能が異なるが、両者は一体となっているので合わせてレンズ核 lentiform nucleus と言う。

（３）扁桃体
扁桃体は側頭葉の鉤 uncus の内にあり、嗅神経系、視床下部などと連絡する。尾方は尾状核尾に続く。発生的に古い内側核群と、人で良く発達する外側核群に分かれる。扁桃体を両側破壊すると精神や性行動に変化を見る。

扁桃体の線維結合として次のものが挙げられる。

① 嗅球より嗅覚の求心性線維を受ける。
嗅球から外側嗅条を経て扁桃体内側核群へ投射する系である。嗅覚系以外の求心性線維の解剖学的証明は乏しいが、あっても嗅覚とは直接関係がない。
② 遠心性線維として背側と腹側へ向かう線維群にわかれる。
1. 背側へ向かう線維は扁桃体から分界条 stria terminalis を経て視索前部、視床下部前核、中隔野 l核などへ投射する。大脳辺縁系との連絡が考えられる。分界条は尾状核と視床の間で脳室の直下に位置している細い有髄神経線維を含む線維束である。
2. 腹側へ向かう線維としてレンズ核の腹部を内前方へ走り、視索前部、中隔野、視床下部、視床内側核などへ投射する神経線維束がある。この線維系は前交連にも入る。

（４）前額 claustrum
由来は不明であるが、島皮質の深層であるという説が有力である。機能は不明であるが、大脳皮質との線維結合はある。

（５）尾状核 caudate nucleus

尾状核頭 head of caudate nucleus、尾状核体 body of caudate nucleus、尾状核尾 tail of caudate nucleus よりなり、側脳室にそって位置する。尾は扁桃体に続く。

（６）レンズ核 lentiform nucleus

被殻 putamen と淡蒼球 globus pallidus よりなり、白質の薄層で区分される。被殻と尾状核は細胞構築学的には同じである。淡蒼球は系統発生的には古く、下等動物でよく発達している。内側膝板によって内節と外節に分ける。被殻は線条体への入力を受ける核として働き、淡蒼球は線条体の出力線維の起始核として働く。

（７）大脳核の線維結合

大脳核の線維結合は、まず外部より線条体 [尾状核と被殻 l] に求心性線維が入り、線条体より淡蒼球に投射する。その後、淡蒼球より投射線維が出るが、大脳核の遠心性線維の出方の原則である。
1. 大脳核への入力線維
2. 線条体 [尾状核と被殻 l] に入る求心線維：
大脳皮質より：

・ 運動領、運動前野から入力を受ける。
・ 視床中心正中核より：
 中心正中核は小脳の齒状核から入力を受ける。
・ 黒質より：

 ド - パミン線維を受ける。Falck-Hillarp 法 [1960 年代?]が開発されてモノアミン [ド - パ...
ミン、セロトニン、ノルアドレナリン、アドレナリンなど、伝達物質する伝導路の研究が飛躍的に進み、ド・パミンとバ・キソン病との関連が明らかにされ、治療法もつながってきた。現在ではPET（positron emission tomography）によって直接ヒトのバーキンソン氏病で黒質からのドーパミンの入力が低下することが証明されている。

2. 淡赤球に入る求心線維：
・線条体尾状核と被殻より：
 淡赤球への主たる入力線維である。
・視床下核より
・黒質より

2.大脳核の出力線維
1. 線条体尾状核と被殻より出る遠心線維：
・淡赤球へ：
 これが主要な遠心線維である。
・黒質へ：
 黒質と双方向の線維連絡がある。
2. 淡赤球より出る遠心線維：
 これが大脳核から出る主要な投射線維系である。
 大脳核から他の神経核へ出る遠心性線維は、主として淡赤球より出る。視床の外側腹側核VL核に投射し、これにより酸素大脳皮質の運動領へ情報を出力する系が随所に存在する。この線維系には次の4系統がある。
 ・レンズ核束lenticular fasciculeフォレル氏 H2 野：
 淡赤球より視床VL核へ投射する線維を含む。淡赤球より出る、視床下核と不確帯の間を通って視床に入る。

終脳（大脳半球）
・レンズ核ワナ ansa lenticularis:
レンズ核の腹側を回って視床 VL 核へ投射する線維を含む。
・淡蒼球被蓋路 pallidotegmental tract:
内節よりおこり中脳下端まで下行する。黒質、網様体など中脳被蓋に投射する。
4. 淡蒼球視床下核路 pallidosubthalamic tract:
外節より出て視床下核に終わる。視床下束 subthalamic fascicle の構成線維で、この束には他に逆方向の線維も含まれる。

9 前脳基底部
大脳半球前頭葉の内側面と脳の腹側面の部分で、ほぼ前有孔質の部分に相当するところを前脳基底部と総称する。その中で前交通の下部・交通下部を無名質という。無名質内に大型のニュ - ロンからなるマイネルト氏核 nucleus of Meynert があり、この細胞の変性がアルツハイマ - 病に関与するといわれている。
【Ⅱ】間脳

【一般目標】
中枢神経系における間脳の機能的意義を理解するためにその構造を学ぶ。

【行動目標】
1. 間脳の区分とその名称・位置を説明できる。
2. 間脳の各区分と関係する線維結合を機能と関連させて説明できる。
3. 間脳を構成する主要神経核を説明できる。
4. 間脳と内分泌系との関係について説明できる。
5. 内包を通過する神経線維、血管支配について説明できる。

1 間脳の外観 [岡嶋 668-673 頁]:
間脳は大まかに次の 3 部に区分される。
- 視床 thalamus
- 視床上部 epithalamus
- 視床下部 hypothalamus

(1) 背側視床 dorsal thalamus: 狭義の視床。正中面に次のものが観察される。
1 視床間橋 interthalamic adhesion
2 室間孔 interventricular foramen of Monrow
3 後交通 posterior commissure
- 背側視床の後部にある部分を特に言う。
- 外側膝状体 lateral geniculate body
- 内側膝状体 medial geniculate body
- 視床枕 pulvinar などが含まれる。

(2) 視床上部 epithalamus:
"当部分の背側視床の部分に位置する。次のものが観察される。"
1 視床縦条 stria medullaris thalami
2 手網 habenula
3 松果体 pineal body
などが含まれる。

(3) 視床下部 hypothalamus:
「当部分の背側視床の下部にあり視床下溝 hypothalamic sulcus によって視床」
と分けられる。
次のものが観察される。
1 乳頭体 mamillary body
2 "視神経交叉 optic chiasm
3 漏斗 infundibulum
4 灰白隆起 tuber cinereum
5 終板 lamina terminalis
6 視索 optic tract
7 脳弓 fornix
2 視床の内部構造と線維連絡

背側視床 dorsal thalamus と腹側視床 ventral thalamus に分類される。一般に背側視床と言えば背側視床を指す。

<table>
<thead>
<tr>
<th>視床</th>
<th>前2.5</th>
<th>前4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>腹側視床</td>
<td>新aley nucleus</td>
<td>新aley nucleus</td>
</tr>
<tr>
<td>助側視床</td>
<td>中線頂視床</td>
<td>中線頂視床</td>
</tr>
<tr>
<td>助側視床</td>
<td>中線頂視床</td>
<td>中線頂視床</td>
</tr>
<tr>
<td>助側視床</td>
<td>中線頂視床</td>
<td>中線頂視床</td>
</tr>
</tbody>
</table>

2 視床の内部構造と線維連絡

背側視床は肉眼的には白質の薄層である内側および外側視床髓板によって大きく3つの核、即ち視床前核、内側核および外側核に分けられる。しかし、組織学的には研究者によって多くの区分があり混乱が見られる。ここでは解剖学用語 PNA に従って分類する。

1 視床前核 anterior nuclei of thalamus A 核

1. 前背側核 anterodorsal nucleus
2. 前腹側核 anteroventral nucleus
3. 前内側核 anteromedial nucleus

2 視床中側核 medial nuclei of thalamus M 核

3 視床外側核 lateral nuclei of thalami

1. 前外側腹側核 ventral anterolateral nucleus VAL 核 = 前腹側核 VA = 外腹側核 VL
2. 中間腹側核 ventral intermediate nucleus
3. 後内側腹側核 ventral posteromedial nucleus VPM 核
4. 後外側腹側核 ventral posterolateral nucleus VPL 核
5. 前背側核 lateral dorsal nucleus LD 核
6. 後核 視床枕 posterior nucleus pulvinar thalami P 核

4 視床網様核 reticular nucleus of thalamus

5 視床髓板 laminae medullares of thalamus

6 髓板内核 intralaminar nucleus

7 内側膝状体核 nucleus of medial geniculate body MGB 核
8 外側膝状体核 nucleus of lateral geniculate body LGB 核

図に示すように、視床への入力線維と出力線維が描かれている。
背側視床を構成する神経核を特殊視床核 specific thalamic nuclei と非特殊視床核 non-specific thalamic nuclei に分ける事がある。前者は特定の求心インパルス（例えば知覚、視覚、聴覚あるいは運動の情報）を中継して、特定の脳皮質へ投射する核である。後者は求心インパルスを網様体などを介して中継し、脳皮質に全体的に投射する（例えば意識の維持に関与する）。

(2) 視床の特徴
1. 毛細管系 - 一般的体験を導入する視床の核群で、具体的な脳神経に影響される。脳神経核と同一なる、三叉神経の神経核より起こり、脳神経核より起こる視覚の二次線維も含められる。脳皮質核、前側視床核を含む。
2. 脳幹核系と内側視床核系
 各々の核群より下部の温度覚、痛覚、粗大触覚と固有知覚、味覚触覚に関与する二次視床核で、後側視床核、中視床核、前視床核を含む。これらの核は、前側視床核、皮膚知覚と両方関与する核である。
3. VPM 核と VPL 核の 2 核よりで、射出線維は内包皮質核を通り、中心核へ局所所性に終わる。即ち、顔面核は下方、下肢核は上方に終わる。

2. 外側膝状体核：視覚の中継核（詳細は視覚の伝導路の項で説明する）
3. 内側膝状体核：聴覚の中継核（詳細は聴覚の伝導路の項で説明する）
4. 前外側腹視床核
 前視床核 (ventral anterior nucleus, VA 核) と外側腹視床核 (ventral lateral nucleus, VL 核) からなる。小脳の視覚核や前視床核 (VPL 核) に終わる。大脳の運動野 (VL 核) で運動を投射する。大脳核や小脳で処理された運動の情報は、随意運動の第 1 次中核である皮質運動野にフィードバックする中経神経核である。

5. 視床前核の視床連絡：
 視床前核は乳頭視床と視床の連絡を受ける（乳頭視床連 mamillothalamic fascicle of Vicq d'Azyr の）が、視床核へ投射する。
6. 視床内側核の視床連絡：
 前節体核、前頭核、視床下部、他の視床核などから視床核を受け、前頭核へ投射する。重症な人格異常の治療に有効な核である。
7. 腦板内核：
 内側脑板内脳に見られる視床核で、その中で最も大きいのが、中心内側核 medial central nucleus の中心正中核 centromedian nucleus のである。
8. 視床網様核：
 外側視床脳板中の神経細胞集団をいう。その腹側は不確定帯へ続く。

(3) 腹側視床ventral thalamus or subthalamus
背側視床と中脳被蓋の間にはされた狭い部位で、随意運動系の中経核、伝導路が存在する。
この内側前部は視床下部で、外側では内包が大脳脚に移行する。
1. 視床下核 Luys' body
2. zona incerta: 外側視床縦板内にあり、視床縦核の腹側に位置する。
3. フォレル氏野核 nuclei of tegmental fields Forel

2. の部の白質 線維束として、次のが挙げられる。
1. フォレル氏 H 野 Forel's field H:
 赤核前野の線維群の総称で、赤核の頭を包む帽子 Haube（ドイツ語の帽子）の意で H が
 つけられている。
2. フォレル氏 H1 野 Forel's field H1 視床縦 thalamic fascicle:
 不確帯の背側を走る線維束である。つぎの 2 路からなる。
1. 淡蒼球視床路 pallidothalamic fibers:
 淡蒼球から視床前外側腹側核へ投射する線維束で、レンズ核ワナとレンズ核束 H2 野から
 なる。
2. 齒状核視床路 dentatothalamic fibers:
 小脳齒状核から上小脳脚交叉を通過し視床の前外側腹側核、中心正中核などに終わる線維
 束からなる。さらに前外側腹側核から中心前回に投射があり、運動の神経回路網に関与する。
3. フォレル氏 H2 野 Forel's field H2 レンズ核束 fasciculus lenticularis
 淡蒼球内節よりで、内包の腹側を通し、不確帯の腹方を走り、視床下核の前部を、一部
 は背側を通し、レンズ核ワナの線維と一緒になりフォレル氏 H 野を作る。さらに不確帯の
 背方にある視床束 フォレル H1 野 に入れて視床へ達する。
4. レンズ核ワナ ansa lenticularis:
 淡蒼球内節より出て、淡蒼球の腹側を走り視床下部に線維を送る。フォレル H 野と H1 野
 を構成し、視床に達する。

- 63 -
3 視床上部の構造と線維連絡

次のものが主な構成要素である。
1 松果体 pineal body：主として神経膠細胞型の細胞よりなる。メラトニンを分泌し、体内時計（体内リズム）に関与している。視床縦条、手綱核 habenular nucleus より線維を受ける。爬虫類以下の下等な動物の松果体は頭蓋の直下にあり、視覚器の機能を持つといわれる。
2 手綱 habenula
3 手綱連 conmissura habenularum
4 手綱三角 trigonum habenulae
5 手綱核 habenular nucleus：

大きい外側手綱核と小さい内側手綱核が手綱三角内にある。視床縦条より線維を受け、中脳の脚間核へ線維を送る。反屈束 retroflexus fascicle of Meynert という。
6 視床縦条 stria medullaris of thalamus：

これは中隔野 septal area で、視床下部、視床前核などから出る線維からなる。

4 視床下部の内部構造と線維連絡

1 視床下部の内部構造：

視床下部は体温調節、食欲調節、性行動など自律神経系の中枢として重要な機能を持つことが知られているが、その生理学的な機能は解剖学的な神経核の分布と一致させることは難しい。視床下部の神経核は前頭断面から見ると第三脳室側から室周層、内側核群、外側核群があり、脳弓の線維束が内側核群と外側核群に分けている。ここでは視床下部に見られる主たる神経核と線維連絡を要約する。

2 視床下部のおもな神経核

1 室間核 paraventricular nucleus：

第三脳室壁に近接してあり、大きい細胞よりなる細長い集団である。オキシトシン oxytocin を分泌する。

2 視索上核 supraoptic nucleus：

視索の腹内側、背内側、背外側に三つの集団としてある。神経分泌として抗利尿ホルモン antidiuretic hormone, vasopressin を分泌する。

3 弓状核 acuate nucleus は漏斗核 infundibular nucleus と隆起核 nuclei tuberis：

- 64 -
第三脳室壁の脳室傾斜部にある。これらの核および近傍の核より隆起下垂体路を出す。下垂体前葉の放出因子を分泌するニューロン群を含む。

4.乳頭体核 mammillary nucleus：乳頭体内にある。

ヘブリコニクスの核経路を示す。脳を構成する核は海馬を経て大脳皮質の側頭極へ終わる線維が混在する。脳を手術などで両側を障害すると記憶力が低下すると言う。

乳頭視床束 mammillothalamic fascicle of Vicq d’Azyr：

乳頭体から出て視床前核に終わる。視床前核からは大脳辺縁系の帯状回に射出する。

3.乳頭視床束 fasciculus mammillotegmentalis：

乳頭視床束と共にでて、その後分かれて後走する。中脳の背側および腹側被蓋核に終わる。

室周線維系 periventricular fiber system：

脳室に沿って走る線維系で、薄い髄鞘をもつ有髓神経線維と無髓神経線維からなる。背側縦束の核群を出した下行線維系で視床内側核へ走ったり、脳室壁周辺を下行して中脳の中心灰白質へ向かい、中脳被蓋やもと下部の帯状体に接する。延髄では舌下神経核と迷走神経核の間を下行している。迷走神経背侧核などとのつながりが想定されている。

5.視床下部下垂体系 hypothalamohypophyseal system：

視床下部と下垂体後葉を結ぶ神経線維：

室旁核、視索上核から直接後葉へ投射する。神経分泌系 neurosecretion を形成する。各々oxytocin およびvasopressin の血圧を上昇させる、抗利尿作用を持つ力を分泌する。

2.視床下部と下垂体前葉を結ぶ神経線維：

神経系の直接の線維結合はなくて、内側核と前葉の間に下垂体門脈系という静脈系の結合があって、この血管系を介して前葉を支配する。前葉の ACTH、TSH、FSH、LH などのホルモンの分泌は、視床下部底部の神経細胞より分泌される放出因子 RF のrelease factors が血流を介して前葉に働き、影響されている。

6.内側前脳束 medial forebrain bundle：

外側核より中脳被蓋へ下行線維をおくる。又、中隔野、嗅脳、前頭葉底部と視床下部外側核を重なり中脳被蓋を結ぶ。

7.乳頭体脚 pedunculus corporis mammillaris：

中脳の高さで背側および腹側被蓋核由来で内側毛帯を通って乳頭体核へ入る。

8.分界条 stria terminalis：尾状核と視床の間に位置し、扁桃体におこる視索前域野が視床
下部前核におわる。
9 pallidohypothalamic tract:
大脳基底核より視床下部の腹内側核へ。その他、レンズ核ワナ、視床下核などからの線維をうける。

図

5 内包
大脳半球内を通過する投射線維は間脳のレベルでは大部分が内包を通る。内包は内側の視床および尾状核と外側のレンズ核の間を通過する線維集団で、水平断では曲部が内側を向く「く」の字型を示す。従って、前脚 anterior limb、膝 genu、後脚 posterior limb の 3 部に区分される。また、視床と皮質を結ぶ線維群を特に視床脚と言う。脳出血などで内包が障害される症例が良くあるから、その位置、構成線維を理解する事は重要である。

① 前脚：尾状核とレンズ核の間にあり、次のような線維束がある。
1 前視床脚 anterior thalamic peduncle:
 視床内側核、視床前核と前頭葉を結ぶ。
2 前頭橋路 frontopontine tract:
 前頭葉から橋核へ投射する線維が通過する。

② 髄：屈曲部で、次のような線維束がある。
1 皮質核路 corticonuclear tract:
 皮質運動核から脳幹の神経核へ投射する線維が通過する。
2 皮質網様体路 corticoreticular tract:
 大脳皮質から脳幹網様体へ投射する線維が通過する。

③ 後脚：視床とレンズ核の間にある。次のような線維束が走る。
1 皮質脊髄路 corticospinal tract:
 皮質運動核から脊髄に投射する線維が通過する。
2 皮質赤核路 corticorubral tract:
 皮質運動核から中脳赤核に投射する線維が通過する。
3 上視床脚 superior thalamic peduncle:

- 66 -
視床腹側核群と前頭葉・頭頂葉を結ぶ。一般体性感覚の線維が通過する。

4 レンズ後部 pars retrolentiformis:
1. 後視床脚 posterior thalamic peduncle：
2. 視放線 optic radiation：
 外側膝状体と後頭葉の視覚領域有線層を結ぶ。
3. 頭頂葉 forepontine tract：
 頭頂葉から橋核へ投射する線維が通過する。
4. 後頭橋路 occipitopontine tract：
 後頭葉から橋核へ投射する線維が通過する。
5. 皮質被蓋路 corticopontine tract：
 視覚領域から上丘へ投射する線維が通過する。

5 レンズ下部 pars sublentiformis:
1. 下視床脚 inferior thalamic peduncle：
 視床と側頭葉を結ぶ。
2. 聴放線 acoustic radiation：
 内側膝状体と横側頭回を結ぶ。
3. 側頭橋路 temporo-pontine tract：
 側頭葉から橋核へ投射する線維が通過する。

一般には上記のように内包内的伝導路の通過位置が言われているが、皮質核路と皮質脊髄路が両者を合せて錐体路というが通る部位については色々議論がある。しかし、少なくともヒトの錐体路が病理学的な所見から前脚にないことは間違いいない。

図4 内包の動脈
脳出血、脳硬塞の好発部位であり、内包の障害によりしばしば病側に対して反対側の片麻痺をおこす。従って血管支配を知ることは重要である。

・中大脳動脈の線条体枝 ramus striatī Charcot 氏出血動脈：
 中大脳動脈前外側部の中心枝で前脚および後脚に分布。外側線条体動脈とも言う。
・前大脳動脈の前内側部の中心枝：
 前脚の前内側部に分布。
・内頸動脈からの直入の枝：
 内包膝に分布。
・前脈絡巣動脈 anterior choroideal a.：
 後脚の腹側部とレンズ後部の全域を支配する。
〔一般目標〕
1. 脳幹（中脳、橋、延髄）の形態と各部位の名称を理解する。
2. 外部の構造と内部の構造及びその機能を関連させて理解する。
3. 脳幹の画像と関連させて理解する。

〔行動目標〕
1. 中脳の構造を説明できる。
2. 橋の構造を説明できる。
3. 延髄の構造を説明できる。
4. 菱形窩の構造を内部構造と関連させて説明できる。

1. 脳幹の背側部の外観
（1）中脳の背側 [岡嶋 665-668 頁]
1) 中脳蓋 mesencephalic tectum
・上丘 superior collicule
・下丘 inferior collicule からなる。
2) 上丘腕 brachium colliculi superioris:
上丘と外側膝状体を結ぶ線維束から構成される。
3) 下丘腕 brachium colliculi inferioris:
下丘と内側膝状体を結ぶ線維束から構成される。
4) 前庭神経 trochlear nerve:
下丘の尾側から出る。脳幹の背側から出る唯一の脳神経である。
5) 上脳帆 velum medullare superius
6) 小脳脚 superior cerebellar peduncle:
小脳を切断したときに観察される。

（2）橋と延髄の背側
橋と延髄は第4脳室を形成するので一覧にして説明する。小脳を上・中・下小脳脚で切り
離し、後方の第4脳室脈絡組織を切断すると以下のものが観察できる。
1) 菱形窩 fossa rhomboidea [岡嶋 648-654 頁]:
第四脳室底に相当する。橋と延髄の境界はほぼ第四脳室黒条に一致する。
菱形窩は次の構造物で菱形に囲まれている。
1) 上脳帆 velum medullare superius
2) 上、中、下小脳脚 superior, middle and inferior cerebellar peduncles
3) 第四脳室ヒモ tenia ventriculi quarti である。

2) 菱形窩内に観察されるもの:
1) 正中溝 median sulcus:
正中部にある溝。
2) 内側隆起 medial eminence:
正中溝の両側の細長い隆起で、その外側が境界溝になる。
3) 境界溝 sulcus limitans
下窓 inferior fovea: 境界溝の下部に位置する陥凹部。
・上窩 superior fovea：境界溝の上部に位置する陥凹部。青斑がある。
4.顔面神経丘 facial collicle：
内側隆起の上部[橋の部]の高まりでその直下は外転神経核があるが、この神経核を顔面神経根が取囲んで走るのでこの名称がある。
5.舌下神経三角 hypoglossal trigone：
その下に舌下神経核がある。
6. 迷走神経三角 trigone of vagus nerve：
下窩に位置する。迷走神経背側核が有る。
7. 前庭神経野 vestibular area：
前庭神経核がある。菱形窩の両側の陥凹部。
8. 青斑 locus ceruleus：
上窩に位置する。その下に青斑核がある。ニューロンの細胞体がメラニンを含むために青く見える。
9. 第四脳室外側陥凹 lateral recess of fourth ventricle：
菱形窩の外側角に位置する。
10. lateral aperture of fourth ventricle
 階凹の先端部の開口でクモ膜下腔に通じる。
11. median aperture of fourth ventricle
 門の直上部の開口でクモ膜下腔に通じる。
12. calamus scriptorius
 菱形窩の下部先端を言う。
13. obex
 後正中溝の上端部の小板状構造物で神経線維束である。
14. medullary striae of fourth ventricle
 橋と延髄の境界に一致して横走する白質の線条構造物。弓状核から小脳へ向かう線維からなる。

3 縦髄下部 [岡崎 648 頁]
 縦髄下部は脳室に関していないので closed medulla とも言い脊髄の続きである。次の様な溝、その間にある結節がある。内部構造との関連が大切である。
 1. 后 中間溝 posterior median sulcus
 2. 後外側溝 posterior lateral sulcus
 3. 後中間溝 posterior intermediate sulcus
 4. 脊束結節 gracilis tubercle:
 後 中間溝と後 中間溝の間にあるふくらみである。その中には薄束核 gracilis nucleus がある。
 5. 楕状束結節 cuneate tubercle:
 後中間溝と後外側溝の間にあるふくらみである。その中には楔状束核 cuneate nucleus がある。
 6. 灰白結節 tuberculum cinereum:
 後外側溝の外側のふくらみである。三叉神経脊髄核 trigeminal nucleus of spinal tract がある。脊髄の後角に続く。
 7. 側索 funiculus lateralis:
 脊髄の側索に続く。

2 脳幹の腹側部の外観
 (1) 中脳 mesencephalon
1. 大脳脚 crus cerebri [狭義 -]
 広義の大脳脚 cerebral peduncle と狭義の大脳脚があり、広義の大脳脚は被蓋と狭義の大脳脚を指して言う。
2. 間 腫隔interpseuduncular fossa:
 左・右大脳脚の間のくぼみ。動眼神経が
3. 後有孔質 posterior perforated substance
4. 動眼神経 oculomotor nerve:
 脳脚間窩からでる。

一般に大脳脚と言うと狭義の大脳脚を意味するが、peduncle と言う用語がよく使われる。放線冠を形成した神経線維が扇のかなめにあたる内包を通じた後、中脳腹側に白質塊として大脳脚を形成する。大脳脚の神経線維束は橋腹側部にある緑橋線維に連続し、延髄では椎体に続く。大脳脚の間を脚間窩といい、この底部は多数の細小血管で貫かれるため小さい孔
を有し、そのため後有孔質と呼ばれる。動眼神経は橋の吻合より脚間窩に於る。

(2) 橋 pons 岡嶋 657 頁「
橋腹側部は大脳脚の直接の続きであるが、その表面は小脳へ行く横走線維束 transverse fibers of pons のため横縦の凹凸が見える。次のものが存在する。
1 脳底溝 basilar sulcus：脳底動脈 basilar artery がある。
2 中小脳脚 middle cerebellar peduncle
3 三叉神経 trigeminal nerve：橋の外側部にある太い神経根である。

(3) 延髄 medulla oblongata 岡嶋 648-649 頁「
1 前 中裂 anterior median fissure
2 錐体 pyramis：
橋腹側部の延長である。錐体路 pyramidal tract が通る。
3 オリ - プ olive：
オリ - プ核がある。
4 錐体交叉 pyramidal decussation：
前 中裂を交叉する線維束として観察される。延髄の下端でここから脊髄に移行する。
5 前外側溝 anterior lateral sulcus：
オリ - プと錐体の間の溝で、舌下神経根がある。
【①】脳幹の脳神経と脳神経核

（一般目標）
1. 中脳、橋、延髄に見られる脳神経核とそれに関与する伝導路および線維連絡を機能を含めて理解する。
2. 脳神経核の配列を発生と関連させて理解する。
（行動目標）
1. 脳神経と脳神経核の位置を説明できる。
2. 脳神経の機能と神経核、及び機能に関係する線維連絡を説明できる。
3. 脳神経核に生じる病変の際出現する神経症状を説明できる。

脳神経 cranial nerves は脳に出入りする末梢神経で 12 対ある。第一脳神経の嗅神経は終脳に求心性一次中継核があり、第二脳神経の視神経は間脳に求心性一次中継核がある。その他の脳神経は中脳以下の聴神経に求心性及び遠心性一次中継核（脳神経核）がある。脳神経核の位置、機能を理解することが、脳神経の障害による神経症状を理解する上で重要である。

1. 脳神経核の位置
脳神経核は神経核の機能分化的項で述べた原則に従って配列する。脳神経は 7 つのタイプからなるが、その位置には規則性がある。7 つのタイプは以下の通りである。

• ① 体性遠心性神経核 somatic efferent SE は：
 頭顔部の骨格筋で筋節を支配
 (動眼神経核、滑車神経核、外転神経核、舌下神経核）

• ② 特殊顔性遠心性神経核 special visceral efferent SVE は：
 頭顔部の横紋筋で鰐弓を支配
 (三叉神経運動核、顕面神経核、疑核）

• ③ 一般顔性遠心性神経核 general visceral efferent GVE は：
 平滑筋、心筋、腺を支配
 (副神経副核、上頸神経、迷走神経神経核）、下頸神経核）

• ④ 一般顔性求心性神経核 general visceral afferent GVA は：
 内臓の知覚支配
 (迷走神経背側知覚核）

• ⑤ 特殊顔性求心性神経核 special visceral afferent SVA は：
 嗅覚、味覚のみ
 (嗅球、孤束核）

• ⑥ 特殊体性求心性神経核 special somatic afferent SSA は：
 視覚、聴覚、平衡覚のみ
 (外側膝状核、前庭神経核、蝸牛神経核）

• ⑦ 一般体性求心性神経核 general somatic afferent GSA は：
 痛覚、温度覚、触覚、深部覚などの体性知覚支配
 (三叉神経脊髄核、三叉神経主知覚核、三叉神経中脳路核）

但し、細胞移動や下小脳脚の出現のため若干のずれがある。
脳神経の支配関係は鰭弓と筋節の発生と関係が深い。
第1鰭弓は三叉神経、第2鰭弓は顔面神経、第3鰭弓は舌咽神経、第4鰭弓は迷走神経、第6鰭弓は副神経に支配される（第5鰭弓は退化する）。これらから出て横紋筋を支配する神経は特殊腺性遠心性線維である。一方、眼前筋節は動眼神経、滑車神経、外転神経に支配され、後頭筋節は舌下神経に支配される。従って、これらの神経は体性遠心性神経である。
2 動眼神経 oculomotor nerve と関係する神経核:

動眼神経は中脳上丘の高さで大脳脚間から出る。この神経は次の 3 つの特性を持つ線維が含まれる。

・体性遠心性線維
・一般脇性遠心性線維
・一般体性求心性線維

① 体性遠心性線維

外眼筋群の内側直筋、下斜筋、下直筋、上直筋、上眼瞼挙筋を支配し、動眼神経核より出る。動眼神経核は中脳の高さで脳白質の脳側で、内側縦束の中側にある。5 つの筋を支配するが、逆性変性法と逆性 HRP 薬識法によって神経核の中には支配筋にある細区分が説明されている。動眼神経核に来る入力線維として次のものが挙げられる。

1. 皮質核路より: 眼球の随意運動の投射線維である。大脳皮質前頭野と野からでた線維は網様体を介して動眼神経核に終わる。

2. 内側縦束より: 外転神経核との連絡線維はこの伝導路を通る。外方注視の両眼の共同運動に重要である（外転神経の項を参照）。

・上丘より介在ニューロンを介して
・小脳の基底核より
・その他

② 一般脇性遠心性線維

動眼神経副核（自律性 accessory nucleus of oculomotor nerve Edinger-Westphal nucleus）より起始する。動眼神経核に混在し、脚間窩を出して、動眼神経下枝より毛様体神経節に至る。副核は動眼神経核の背前方に位置する。視覚前域 prefrontal area より対光反射の情報を受ける。

③ 一般体性求心性線維
外眼筋の筋紡錘から来る線維で三叉神経中脳路核に達する。三叉神経中脳路核は中心灰白質と被蓋の境界部位にあり、その細胞体は脊髄神経節の円形の大型の細胞体を持つ。

瞳孔反射 pupillary reflex:
瞳孔が縮瞳する反射には
・対光反射
・輻轍反射
の2つがある。
1. 対光反射 light reflex：次の2つがある
 1. 直接瞳孔反射 direct pupillary reflex：
 瞳孔に光を入れるとその瞳孔が縮瞳する。
 2. 共感性瞳孔反射 consensual pupillary reflex：
 瞳孔に光を入れると反対側の瞳孔が縮瞳する。
2. 輻轍反射 convergence reflex：
 輻轍運動で遠くから近くに視点を移す運動すると縮瞳する。遠くから近くを見る視覚情報が視覚器から視覚前域に入り、動眼神経副核 [自律神経] を経由して縮瞳する。同時にペルリア核を介して両側の動眼神経の内側直筋を支配する神経細胞群に情報が伝わり、両眼が輻轍運動をする。
 * 瞳孔反射の異常として Argyll-Robertson pupil がある。対光反射がなくなるが輻轍反射は残る。神経梅毒に見られる。即ち対光反射と輻轍反射の神経回路が異なることを意味する。

3. 滑車神経 trochlear nerve と関係する神経核：
 脳神経の滑車神経の根は滑車神経核を出て脳側へ走り交叉して中脳下丘の尾側より中枢神経系外へでる。滑車神経は次の線維から構成される。
 - 本体全性線維
 - 一般本体性線維
 - 1 (本体全性線維
滑車神経核から出る線維で、上斜筋を支配する。
滑車神経核 nucleus of trochlear nerve は内側縦束の中に埋められた形で存在する大型細胞
よりなる細胞集団である。滑車神経核への入力線維としては、次のものが挙げられる。
1 皮質核路より：
大脳皮質前頭眼野より投射し直接終わる。眼球の随意運動に関与する。
2 内側縦束より：
前庭神経核と連絡する。
* 一般体性求心性線維
上斜筋の筋膜錐からのインパルスを伝え、三叉神経中脳路核に入る。

4 三叉神経 trigeminal nerve と関係する神経核
橋を貫く三叉神経には次の性質の線維が含まれる。
* 一般体性求心性線維
* 特殊膜性遠心性線維
* 一般体性求心性線維
知覚の種類によって神経核が異なるといわれる。
* 三叉神経脊髄路核：温度覚、痛覚、粗大な触覚など
* 三叉神経主知覚核：圧覚、識別知覚 (意識に上る) など
* 三叉神経中脳路核：筋の固有受容器からの知覚
1 三叉神経脊髄路核
 三叉神経節より出た中枢側の線維は橋より入り、三叉神経脊髄路を下行し、その内側にある核に漸次終止する。第二頸髄まで達し、頸髄では終帯を下行し、後角の膠様質が核に相当する。
 三叉神経の3大枝が体部位局在性をもって脊髄路核に終わるパターンについてはヒトでは臨床症状と病理解剖所見から次のように推定されている2説がある。
 1.顔面中心部からの知覚線維は脊髄路核の吻側に終り、同心円状に周辺部ほど尾側に終る。例えば顔面中心部の鼻尖には眼神経が、鼻翼と上唇部には上頸神経が、下唇部には下頸神経がいているが、これは脊髄路核の吻側に投射する（下図参照）。
 2.下頸神経由来線維は背側を下行して延髄路に終わり、上頸神経由来線維は中間部を下行して中間部に終わる。眼神経由来の線維は腹側を下行して頸髄路に終わる（前頁右側参照）。

2 三叉神経主知覚核
 この核は三叉神経根の外側にあり、終止様式に局在性があるといわれる。
 ・下頸神経由来：腹側部に終る。
 ・上頸神経由来：中間部に終る。
 ・眼神経由来：背側部に終る。

3 三叉神経中脳路核
 この核は第四脳室上部と中脳水道のまわりの中心灰白質の外側縁近くにあり、細長い細胞集団を構成する。三叉神経運動核の高さより中脳のレベルまで伸びており、大きい単極性ニューロンより長い。三叉神経節のニューロンと全く別のもので、細胞体が中脳内に移動した形態と考えられる特殊なニューロンである。咬筋や外眼筋の筋維持よりインパルスを受ける。又、歯や歯根膜、硬蓋、関節包などからの圧覚、運動覚に関与する。

4 三叉神経運動核
 大型の下位運動ニューロンが主な構成ニューロンである神経核で三叉神経根の外側に位置する。ここより出る神経線維は知覚根の内側で三叉神経節の下を通過する運動根（Radix moto-ria）または小部portio minorともいわれる1を形成し、下顎神経に合流して咀嚼筋と口蓋帆張筋、鼓膜張筋を支配する。
・三叉神経運動核への入力線維
1. 皮質核路の線維が直接あるいは網様体にあるニュ−ロンを介して終わる（随意運動）。
2. 両側性に三叉神経の知覚核の二次線維がくる。

5. 外転神経 abducens nerve と関係する神経核
外転神経は橋・延髄境界部、正中部付近から出る。この神経には次の線維が含まれる。
・体性遠心性線維
・一般体性求心性線維
① 体性遠心性線維
外側直筋 lateral rectus muscle を支配する神経で、外転神経核より出る。
外転神経核は菱形窩にある顔面神経丘 facial collicle の下にあり、大型運動ニュ−ロンよりなる。この核には大脳皮質の前頭眼野からでた皮質核路が介在ニュ−ロン（網様体）を介して終わり、眼球の随意運動に関与する。外方注視運動の際、内側総束と外方注視中枢 conjugate lateral gaze center を介して外転神経核は動眼神経核と神経連絡をもって、内側直筋・動眼神経支配と外側直筋・外転神経支配の協調運動を行う。内側総束を中心とした系統が損なわれると複視や水平性の眼球振盪 nystagmus と言う眼球異常運動を起こす事がある。外方注視中枢は正中橋網様体 paramedian pontine reticular formation PPRF にある。外転神経核は内側総束を介して前庭神経核と連絡しており、頭部の回転運動と眼球運動に関与している。
② 一般体性求心性線維
外側直筋の筋紡錘に由来し、三叉神経中脳路核へ中継されると言われる。
外側注視の神経回路

核間性眼筋麻痺 internuclear ophthalmoplegia は内側縦束の障害として発生する。
内側縦束の一側障害は両側の MLF 障害の例
・左側内側直筋の脱配
・外方注視時、右眼は外転位、左眼は正中位をとる。
・内方注視に関して、輻軸運動は正常である。
・右眼は単眼性眼振 monoocular nystagmus を示す。
・瞳孔反射も正常である。
内側縦束の両側性障害は両側 MLF は近接するから両側性の事が多い
・外方注視時、内転すべき筋は正中位にあり、他の眼は単眼性眼振になる。
・他の眼球運動は正常に行える。
・瞳孔反射も正常である。
・多発性硬化症 multiple sclerosis に多い。

6 顔面神経 facial nerve と関係する神経核
顔面神経は橋・延髄境界部の外侧より脳幹を出る。この神経には次の 4 つの性質をもつ線維
が含まれる。
・特殊膚性遠心性線維
・特殊膚性求心性線維
・一般膚性遠心性線維
・一般体性求心性線維
顔面神経の構成

・顔面神経核 facial nucleus よりでる。
顔面神経核 facial nucleus は 4mm の長い細胞集団で被蓋の腹外側部にあり、三叉神経脊髄路核の腹内側にある。又、延髄の疑核の吻側延長線上にあり、その位置に類似性があることは両者とも特殊性遠心性線維を出していることと一致する。顔面神経核よりでた顔面神経根は腹方には向かわず、一旦上方へ走り、外軸神経核の内方から前方をまわって「顔面神経根膝と言う」から腹外方に走り、三叉神経核群の内側を通って橋の尾端よりでる。支配する表情筋によって神経核のニューロン群は亜核に分けられ、顔面上部の筋は脇側核群、顔面下部の筋は背側核群に支配される。
・顔面神経核への入力線維
1 大脳皮質運動領域からの投射線維：皮質核路の線維で表情筋の随意運動に関係する。両側性に直接終わるものと、網様体の介在ニューロンを介して間接的に終わるものがある。顔面の下半分の筋（例えば口輪筋）は片側支配で、上半分の筋（例えば前頭筋）は両側支配である。このため中枢性の顔面麻痺では患側も正常側も顔のしみが起こるが、口許にはマヒの症状がする。末梢性のマヒでは両側とも患側にマヒがくる点で相違がある。
2 三叉神経脊髄路核からの二次線維：
次の様な三叉神経・顔面神経反射 trigemino facial reflex から線維結合が考えられている。
・角膜反射 corneal reflex
角膜を柔らかい綿で軽くふやすと目を閉じる 眼輪筋が働く正常反射
・吸収反射 sucking reflex
口唇を擦るとじん吸い吸くような運動をする 成人にあると病的反射
3 赤核より来る線維：
交叉性である。赤核の障害により顔面表情が仮面様になるという臨床症状から推定される。
4 聴覚路の二次又は三次線維：
アブミ骨筋によるアブミ骨の振動の調整に関与する。聴覚過敏を抑える。
5 腦床や淡蘭球が関与する投射線維：
解剖学的には証明できないが、無意志下でも顔の表情がコントロールされていることから線維結合が想定される。

2 一般性連心性線維
大脳神経 greater petrosal nerve と鼓索神経 chorda tympani に含まれる。この神経線維は上唾液核 superior salivatory nucleus より出る。この核は明瞭な細胞集団は作らず、網様体内に混在する。

3 特殊連心性線維
鼓索神経に含まれ舌の前 3 分の 2 の味覚に関与する。膝神経節にある細胞体より出て、中枢へ向かう線維は中間神経として、顔面神経と内耳神経の間より脳幹に入り、孤束核に入り、孤束核上部に終わる。孤束核より出る二次線維は三叉神経毛細帯を通る（味覚の伝導路の項を参照）。

4 一般性求心性線維
この線維は一般的ではないが三叉神経を切除しても顔面の深部感覚が残る症例があることからその存在が推定されている。耳介の知覚の一部を支配するという記載もある。膝神経節に神経細胞体があり、三叉神経脊髄路核に終わる。

7 前庭神経 vestibular nerve と関係する神経核
前庭神経は特殊性求心性線維からなり、半規管、卵形囊、球形囊にある受容器よりインパルスを受けるが、神経節は内耳道にある。その中枢側の線維は橋の尾端、外側より脳幹に入り、菱形窩の前庭神経野の直下にある前庭神経核に終わる。前庭神経核は次の 4 核から成る。
- 内側核 medial nucleus of Schwalbe
- 外側核 lateral nucleus of Deiters: 巨大な細胞からなる。
- 上核 superior nucleus of Bechterew
- 下核 inferior nucleus of Roller: 下行枝の髄鞘が核内に多く見られる。
前庭神経は上行枝と下行枝に分かれ、上行枝は上核と内側核の外側部より、外側核に終わり、下行枝は下核に達し、内側核へ側枝を出す。又、前庭神経核は体の平衡、姿勢の維持などに関係するから他の中枢からも線維を受ける。

1 前庭神経核へ入力線維：
1 前庭神経
2 前庭小脳（片葉・小節）から上・下核、内側核へプルキンエ細胞の投射を受ける
3 前庭前葉細胞部から前庭外側核へプルキンエ細胞の投射を受ける
4 前庭核から両側の下核、外側核へ投射する
5 Cajal 間質核から同側内側核へ投射する
6 左・右連性の結合線維がある。
7 蝋亜より脊髄前庭路の線維を受ける。
 などが挙げられる。

2 前庭神経核からの出力投射線維
1 小脳へ:
 内側核と下核より片葉小節へ。
2 背髄眼:
 前庭核より前庭神経路として前角へ投射する。
3 結合核へ:
4 内側核へ:
 全4核より脳幹を上行、内側核より脳幹前縦を下行する。上行する内側縦束は前
庭機能と眼球運動を結びつける伝導路である。

めまいなどを意識する大脳皮質への投射系については不明である。前庭神経核から投射を
受ける独立した視床核はへの投射はないが、内側縦束を上行してきた線維を受ける細胞が体
性感覚を受ける細胞と混在して存在すると言う説や、下後腹側核 inferior posteroventral
nucleus [VIP] に投射して頭頂間溝の部位に投射する説などがある。また、聴覚核 [側頭葉] の
やや前方を刺激すると側頭葉癇癇を起こし、回転性のめまいが生じることから、ここに投射
するとも言われる。

8 蝋牛神経 cochlear nerve と関係する神経核
 蝋牛神経は特殊体性求心性線維からなる。内耳のラセン神経 [側頭骨เหตุผล牛軸ラセン管内に
 ある] から出た下向きの線維は構の尾端・外側にある聴結節背側から薬牛神経核に入れる。薬
 牛神経核は下小脳脚の外側面にあり、2つの核よりなる。
1 蝋牛神経背側核 dorsal cochlear nucleus
 聴結節を作る。
2 蝋牛神経腹側核 ventral cochlear nucleus
 上記の核より大きい。多形の細胞からなり、音階に応じた順で亜核が配列する。薬牛頂 (低
 い周波数を感受する）は背側核の腹側部と腹側核に、薬牛底（高い周波数を感受する）は背
 側核の背側部に終るという。
3 聴条 stria acustica
 これら核より出た二次線維は主として交又し、聴条 stria acustica と呼ばれる線維束を形成す
 る。次のような3つの聴条を形成する（聴覚路の項参照）。
 ・腹側聴条 ventral acoustic stria
 腹側核からでて台体を作る。
 ・背側聴条 [モナコフ氏 dorsal acoustic stria of Monakow]
 背側核から出て前庭神経内側核の外側を通して、中縦核または外側毛帯に入る。
 ・中間聴条 intermediate acoustic stria
 台体を作る。
4 台体 trapezoid body
 この聴条の交叉線維は台体 trapezoid body と呼ばれる線維束を作る。この台体核や外側
 毛帯の中に聴覚伝導路の次のような中縦核がある。
 ・上オリ - ブ核 superior olivary nucleus

- 82 -
9 舌咽神経 glossopharyngeal nerve と関係する神経核
舌咽神経は延髄オリーブ背側より出る。次の5つの種類の神経線維からなる。
・一般膚性求心性線維
・特殊膚性求心性線維
・一般体性求心性線維
・一般膚性遠心性線維
・特殊膚性遠心性線維
1 一般膚性求心性線維
舌や耳管の粘膜の知覚に関与する。下神経節に求心性神経細胞がある。迷走神経背側知覚核 dorsal sensory nucleus of vagal nerve にその中枢核が終わると考えられる。
2 特殊膚性求心性線維
舌の後3分の1の味覚に関与する。下神経節に求心性神経細胞がある。孤束核の上部にその中枢核が終わる。
3 一般体性求心性線維
耳介を支配すると言われている小さい神経線維である。上神経節に知覚神経細胞がある。その中枢核は三叉神経脊髄路核に終わると考えられる。
4 一般膚性遠心性線維
下唾液核 inferior salivatory nucleus に起始し、小腸体神経を経由して下神経節に終わる。
耳下腺の分泌を促進する。下唾液核は靭帯体内に散在性に分布する神経細胞から成り、他の神経核のように明確には周囲から区別ができない。
5 特殊膵性遠心性線維
疑核の上部より出る小さな神経線維で、茎突突頭筋、上咽頭収縮筋などを支配する。

疑核 nucleus ambiguus:
三叉神経脊髄路核とオリ・プ核の中間の網様体の中にある散在性の大型細胞よりなる運動核である。毛帯交叉の下端より第4脳室底よりの髄中にある、喉頭、咽頭の筋を支配する。副神経・喉頭筋支配、舌咽神経・咽頭筋支配、迷走神経・喉頭筋、喉頭筋支配に含まれる特殊膵性遠心性線維はこの神経核から出る。時にメラニン色素を含有する。

・疑核への入力線維:
1) 両側性に皮質運動領から来る皮質核路より線維を受けて随意運動に及ぼされる。
2) 喉頭・咽頭の粘膜の知覚線維を中継した舌咽神経、迷走神経および三叉神経の知覚神経核からの二次線維を受る（例えば、咳嗽反射を起こす）。
3) 咽頭・喉頭筋より来る知覚線維（舌咽・迷走神経）を直接受けて咽頭・喉頭筋の反射運動に関与する（例えば、嚥下運動など）。

10 迷走神経 vagus nerve と関係する神経核
迷走神経は舌咽神経の尾側、オリ・プの背側から出る。次の5つの機能をもつ神経線維からなり、それに関与する神経核は各々別個に分れている。

・一般体性求心性線維
・一般膵性求心性線維
・特殊膵性求心性線維
・一般膵性遠心性線維
・特殊膵性遠心性線維

1) 一般体性求心性線維
上神経節より出る、迷走神経耳介枝 auricular branch of vagus nerve のArnold のことを構成する小さな神経で、耳介の極く一部の皮膚知覚に関与する。三叉神経脊髄路核に終わる。

2) 一般膵性求心性線維
下神経節より出る。咽頭、喉頭、食道、胸部臓器、腹部臓器の粘膜より来る刺激を迷走神経背側知覚核 dorsal sensory nucleus of vagus nerve に伝達する。嘔吐反射、咳嗽反射、嘔吐反射など様々な内臓反射の求心性線維として重要である。

- 特殊臓器間性線維

下神経節にある神経細胞より出る神経線維で、喉頭蓋などの味蕾より来る刺激 [味覚] を孤束核 solitary nucleus に伝達する。

孤束と孤束核 solitary tract and solitary nucleus:
1 孤束:
 孤束上部は迷走神経、舌咽神経、顔面神経の味覚性神経が下げる神経線維束で、下部は迷走神経由来の一般姿勢の知覚線維が下げる。
2 孤束核:
 - 内側核と外側核に分けることができる。
 - 内側核: 迷走神経背側知覚核とされるト方では運動核よりわずか下方へと、迷走神経交連核になる。
 - 外側核: 孤束に密接しており、味覚に関係する中緑核である。上方では大きく橋下端に達し、顔面神経と舌咽神経の味覚神経がいる。一般に孤束核と言えば外側核をさす。

- 一般姿勢性遠心性線維

迷走神経背側運動核 dorsal motor nucleus of vagus nerve にある神経細胞より出る節前線維で、胸・腹部臓器の腺、心筋、平滑筋を支配する副交感神経節に終わる。腹部臓器では横行結腸まで達する。迷走神経背側運動核は舌下神経核の外側で、菱形窩 fossa rhomboidea の迷走神経三角に相当する所にあり、舌下神経核を少し越えて頭尾方向に伸展する。迷走神経や舌咽神経の知覚核からの二次線維や内臓中枢からの下げる線維を受ける。内臓器官・平滑筋、心筋、腺 [対] に対する反射作用に関与する。

- 特殊臓器間性線維

喉頭・咽頭の唾液由来の横紋筋を支配する。疑核の神経線維より出る。

11 舌咽神経と迷走神経を中心とした内臓反射

舌咽神経あるいは迷走神経由来の一般姿勢性知覚を受けた迷走神経背側知覚核は 2 次線維を出し、他の臓器運動神経核や網様体に投射する。網様体からさらに脊髄へ連絡して様々な反射活動を喚起。経験的な活動や病的状態から推定された線維連絡で動物実験でその反射弧を直接証明することは難しい。

- 舌下神経核との連絡によって唾下運動と舌の運動が反射的に協調する。
- 唾液腺核との連絡によって内臓器官からの求心性の情報によって唾液の分泌が反射的に起こる。例えば悪心や嘔吐の時に良く唾液が出る。
- 嘔吐や喉頭が刺激された時疑核との連絡によって喉頭反射、咳嗽反射が起こる。
- 迷走神経背側運動核との連絡によって咳嗽反射や嘔吐反射が起こる。嘔吐反射では網様体を介して横隔神経核 [顔面] が脊髄前角にも伝えられる (網様体脊髄路を介する) と、嘔吐の時、脊髄からの横隔神経の刺激で横隔膜、胸腔からの助間神経の刺激で腹膜が収縮して腹部を高める。
- 呼吸の支配は迷走神経背側知覚核からその周辺の網様体に中継され [生理学上いう呼吸中枢] 網様体脊髄路として脊髄に達し、脊髄前角の運動細胞が呼吸筋 [横隔膜、肋間筋などの横紋筋] を支配する。

- 頭動脈洞反射は頭動脈洞圧変容器の情報が舌咽神経 [頭動脈洞枝] を介して脳幹に入り、
迷走神経背側運動核に終わる。そこから出た節前線維が迷走神経を通って右心房の神経節に達し、洞房・房室結節を調節して心筋の運動を支配する。頚動脈洞圧が高まると徐脈と血圧低下が生じる。

精神的な影響で様々な内臓に反射運動が生じる事は日常生活でよく経験する。この事は大脳と脳幹にある迷走神経背側運動核の間に線維連絡があることを予想させる。間脳の視床下部より迷走神経背側運動核に終る下行線維が混在する伝導路がシュッツ氏脇側緑束 dorsal longitudinal fascicle of Schutz である。脇側緑束で脳室壁の直下を下行し、延髄では舌下神経核の背外側に位置し、この反射に関与すると考えられている。

1.2 副神経 accessory nerve と関係する神経核
副神経は延髄根と脊髄根よりなる。延髄根はオリーブの背側、迷走神経の尾側から出る。次の線維から構成される。
・特殊性高性線維
・体性高性線維

1延髄根 medullary root:
特殊性高性線維で頭顱部の鰭弓由来の横紋筋を支配する。起始神経核は疑核 nucl.ambiguous 下部にあり、神経線維は迷走神経の尾方より外に出て、内枝 internal branch として迷走神経と一緒にになる。反回神経下喉頭神経に混じって喉頭筋（甲状顎状筋以外の）を支配する。

2脊髄根 spinal root:
体性高性線維の線維と考えられ、第5・6頚髄から椎体交叉に至るまでの前角よりおこり、前根と後根の間より脊髄を出、脊柱管を上行して大後頭孔より頭蓋内を走り延髄根に合する。頚静脈孔を出た後、外枝 external branch となる。僧帽筋や胸鎖乳突筋を支配する。

1.3 舌下神経 hypoglossal nerve と関係する神経核
舌下神経はオリーブと椎体の間からでる。次の線維から構成される。
・体性高性線維
・一般性高性線維

1体性高性線維:
舌下神経核 hypoglossal nucleus の神経細胞よりでる主たる神経線維で舌筋を支配する。舌下神経線維は核の腹方に集まり、内側毛帯の外方を下行して、椎体とオリーブの間より延髄をいで、舌下神経管を通過して頭蓋外を出る。
舌下神経核 hypoglossal nucleus は約18mm 長の細胞集団で、大型のニューロンよりなる。正中に近く第4脳室底の近くにあり、オリーブ核の下端の位置から第4脳室側条まで伸びる。
・舌下神経核への入力線維:
1随意運動に深く関与する大脳皮質運動領 Brodmann area 4から来る皮質核路の投射線維を受ける。髄板から線維が入る。
2その他、網様体、延髄、舌咽神経、三叉神経などより二次線維を受ける（内顱と舌の相関的な反射の存在から想定される）。

2一般性高性線維:
舌筋の筋紡錘からの知覚線維があるからこの線維が混在するはずである。しかし、未梢に置ける神経節の位置は不明である。
舌下神経の検査法:
舌下神経マヒがある患者に対して、舌を前へ大きく出させると、マヒ側に曲る。
嘔吐反射：
胃や腹膜からの求心刺激が迷走神経を介して迷走神経背側知覚核に入る。その情報は網様体を介して横隔神経核（顚髄）や胸髄前角にも伝えられる（網様体脊髄路を介する）。嘔吐の時、顚髄からでた横隔神経の刺激で横隔膜、胸髄からでたの肋間神経の刺激で腹筋が収縮して腹圧を高める。また、迷走神経運動核へ情報が入ると胃の平滑筋の収縮を促進する。
中脳の構造と線維連絡

1 中脳の内視
中脳は次の4部からなる。
・脳橋 medulla oblongata：上部に被盖と下部に基底核を有し、脊髄の延長部に相当する。
・中脳 mesencephalon：前頭には被蓋と後頭部に基底核を有し、中脳の基底部に相当する。
・橋部 peduncle：前頭部には被蓋と後頭部に基底核を有し、橋部の基底部に相当する。
・中脑水道 cerebral aqueduct：前頭部には被蓋と後頭部に基底核を有し、橋部の基底部に相当する。

中脳の構造と線維連絡

1 中脳の内視
中脳は次の4部からなる。
・大脳脚 crus cerebri：内包からの投射線維の通過する神経束で、中脳核を有する。
・被盖 tegmentum：発生学的には神経管から分化発生してきた部位で、中脳核と中脳
糖様体、赤核、黒質などが存在する。
・被盖 tectum mesencephali、又は蓋板 lamina tecti：次の2部からなる
・上丘 superior collicle：視覚路からの投射をうける。ヒトでは視覚と頭部の反射運動に関係
する。下等な鳥類、爬虫類などでは視神経線維の多くは上丘に投射する。
・下丘 inferior collicle：聴覚路の中継核である。

2 中脳脚 crus cerebri
3 中脳核 mesencephalic nucleus
4 中脳水道 cerebral aqueduct
2 上丘の高さの構造
脳神経核としては動眼神経核、動眼神経副核（自律神経）がある。

1. 赤核 red nucleus
上丘の高さより、間脳後端にかけて位置する卵円形の赤味を帯びた核である。そのため上小脳より来る線維で包まれている。また、赤核を動眼神経核が貫いているので赤核のあるところが障害されると動眼神経麻痺を伴うBenedikt氏障害という。頭体外路系の中継核として重要である。

比較解剖学的研究では、赤核は大細胞部と小細胞部から構成され、前者は赤核脊髄路を、後者は赤核オリ-ブ路（中心被蓋路内を下行する）の投射線維を担うといわれている。ヒトでは小細胞部が主体であるのでオリ-ブ核とのつながりが重要になる。

1. 赤核へ来る入力線維
 1. 大脳皮質より
 中心前回より交叉せず全域に終る。
 2. 小脳核より
 上小脳脚交叉で交叉して来る。
 ・柵状核より赤核尾方 3 分の 2 の所へ。
 ・歯状核より赤核吻側の所へ。

2. 赤核より出る線維
 1. 赤核オリ-ブ路 rubroolivary tract
 中心被蓋路内を通る。ヒトで良く発達している。同側性にオリ-ブ核に達する。
 2. 赤核脊髄路
 rubrospinal tract of Monakow
 ヒトでは発達していない。
 3. 腹側被蓋交叉
 ventral tegmental decussation
 赤核からで交叉する線維からなる。赤核脊髄路はここで交叉する。その他、この交叉線維は小脳核、顔面神経核、延髄の外側網様核などに投射する。

中脳の構造と線維連絡
2 黒質 substantia nigra:
大脳脚のすぐ脇側にあり、メラニン色素を含む細胞から構成され、肉眼的にも割面で黒く
見える。上丘から下丘の高さまで中脳全域に分布する。次の二部より成る。
1 糖密部 pars compacta:
細胞体の多い所で脇側部に位置する。
2 糖状部 pars reticularis:
細胞体の少ない所で大脳脚に近い脛側部に位置する。
黒質のニュ - ロンはド - バミンを含み、この部の障害はバ - キンソン氏病、ハンチトン
舞踏病をおく。
黒質を中心とした線維連絡として次ものが挙げられる。
1. 線条体黒質線維 striatonigral fibers:
主な黒質入力線維で大脳核線条体より投射を受ける。
2. 黒質線条体線維 nigrostriate fibers:
逆に線条体は投射する線維で、ド - バミンを伝達物質とする。
3. 黒質視床線維 nigrothalamic fibers:
視床の運動性中轍核である前脛側核及、外脛側核に投射する。

3 中脳網様体 midbrain reticular formation:
橋網様体ほど発達していない。赤核もその一つと考えられるが、一般にはその背外側に分
布する細胞群をいう。中脳網様体の障害は重篤な意識障害を生じる。

4 腳間核 nucl.interpeduncularis:
脚間窩の背側にある正中部の細胞集団で、手網核より線維を受ける。反屈束 retrolflexus
fascicle of Meynert という。

5 腳側被盖核 dorsal tegmental nucleus:
滑車神経核の背側にあり、視床下部や脳野の中脳野などへ連絡する。

6 上丘 superior collicle
上丘は層構造を呈する。表層より大まかに次のような層がある。
1 脳状層 stratum zonale: 大脳皮質から来た線維の極く一部が終わる。
2 灰白層 stratum cinereum:
上丘脛を通って来た視神経線維層からの線維及び皮質視蓋路の線維が終わる。
3 視神経線維層 stratum opticum:
視神経から来る神経線維層。
4 毛帯層 stratum lemnisci 及び深層:
白質層と灰白質層で交互に数層にわられる。脳底視蓋路、三叉神経脊髄路核の二次線維 三
叉神経毛帯の線維 し 外側毛帯や下丘からの線維が灰白質層に終わる。視蓋脊髄路や視蓋網
様体路 し 視蓋延髄路 の線維が出てる。

5 上丘を中心とした線維連絡
1. 上丘に入る線維として次のものが挙げられる。
・網膜より 両側性、大部分は対側より し 来る視神経線維。
・大脳視覚領より 両側より し
・下丘より
・脊髄より[脊髄視路] spinotectal tract
2.上丘を出る線維として次のものが挙げられる。
　深層の細胞より出る。
・視蓋脊髄路 tectospinal tr.
　頚髄のレベルまで投射する。光刺激と頚部の反射運動に関係する。
・視蓋網様体路 tectoreticular tr.
・視蓋核路 tectobulbar tr.
・視蓋橋核路 tectopontine tr.
・視蓋視床路 tectothalamic tr.
　これらの伝導路の交叉線維が背側被蓋交叉 dorsal tegmental decussation を形成する。

3 下丘の高さの構造：
下丘の高さに見られる主たる構造物を挙げる。脳神経としては滑車神経核がある。

① 内側縦束 medial longitudinal fascicle
　前庭神経核などから上行する神経線維束で上丘の高さまで達する。
② 上小脳脚交叉 decussation of superior cerebellar peduncle：
　小脳核より出て赤核や視床 [肢外側核] に達する線維は上小脳脚より出て交叉する。
③ 中心被蓋路 tr tegmentalis centralis：
　上丘の高さより起こる。
④ 内側毛帯 medial lemniscus：
　後索核をでた線維束で間脳まで達する。上小脳脚交叉が中央にあるため側方へ押しやられる。
　さらに上部では赤核の外方に位置する。
⑤ 外側毛帯 lemniscus lateralis：
　聴覚路で下丘へ入る。
⑥ 下丘 inferior collicle：
　境のはっきりした灰白質の塊で、その周辺は有髄神経の層よりなり、これを鬮包という。
　これは外側毛帯の続きである。ここにも聴覚における周波数性局在がある。

中脳の構造と線維連絡

- 91 -
4 大脳脚 cerebral crus or peduncle:

中背からの連続で、上丘、下丘のレベルでみられ、橋腹側部、延髄締体へ続く。締体路、皮質橋路（前頭橋核路、側頭橋核路、頭頂橋核路、後頭橋路など）など系統発生的に見て新しい下行伝導路が通る。大脳脚内で各伝導路について決まった局在性があるという説もあるが異論がある。

中脳レベルの障害で生じる症候群の例として次のようなものが挙げられる。
1 ベネデクト症候群 Benedikt’s syndrome：

赤核部の障害によって赤核を貫く同側の動眼神経に麻痺が生じ、対側性の不随運動が生じる。大脳脚は正常である。
2 ウェーバー症候群 Weber’s syndrome：

大脳脚の破壊により、四肢、顔面、舌などの対側の片麻痺と同側の大脳脚を貫く動眼神経に麻痺が来る。
3 パリノ症候群 Parinaud’s syndrome：

松果体の腫瘍などで中脳蓋（四丘体）が圧迫されて生じる症状で共同性垂直性偏視麻痺がある。

5 中枢灰白質

中脳水道の周囲にある灰白質で、有髄神経線維が極めて少ないので周囲と明白に区別がつく。
橋の内部構造と線維連絡

[一般目標]
橋に見られる神経核（脳神経以外の）と伝導路および線維連絡を理解する。

[行動目標]
1. 橋腹側部と橋背部の内部構造の特徴を説明できる。
2. 橋を通過する長伝導路を説明できる。
3. 腦神経以外の神経核について、その部位、線維連絡、機能的特徴など説明できる。
4. この部の病変の際出現する神経症状を説明できる。

1 橋の内景
橋は横断面で見ると次の二部に分けられる。
・橋背部 dorsal part of pons（橋被蓋 tegmentum of pons とも言う）
・橋腹側部 ventral part of pons（橋底部 base of pons とも言う）
橋背部は発生的にて神経管から直接分化変形した部位である。橋腹側部はそれに新しく付加された部位と考えることができ、大脳脚からの続きである縦橋線維、後脳と脳の翼板から細胞移動で形成された橋核および橋核から出る横橋線維からなる。境界は内側毛帯の位置になる。

[1] 橋背部
外転神経、顔面神経、三叉神経、前庭神経、蝸牛神経に関係する神経核がある（「脳神経と脳神経核」の項を参照）。その他の構造は以下のものである。

1 橋網様体 pontine reticular formation

2 橋背部の主な神経線維束
1. 内側縦束 medial longitudinal fascicle
2. 背側縦束 dorsal longitudinal fascicle
3. 脊髄毛帯 spinal lemniscus
4. 外側毛帯 lateral lemniscus
1. 基底核 pontine nuclei
2. 東神経線維 transverse pontine fibers

2 橋脳幹（橋脳幹の神経核）
類性神経核上端の高さにて前庭の巨大細胞網様核に接する。

・下脳萎様核 caudal pontine reticular nucleus
・上脳萎様核 oral pontine reticular nucleus

この2核よりなるが2者の境界の区分は困難である。橋脳萎様核の下部と下脳萎様核より
出る前庭前索を下行する橋内脳幹体前庭路がある。両側の前角内側および一部前角交連
を通って対側の前角内側に終止する。

3 橋脳幹の神経線維束
1. 内側毛戸 medial lemniscus

延髄後索核より出る視床に達する線維束である。橋脳幹の腹側に水平に広がる線維束とし
て走る。延髄と通過する位置が変化することに注意する。
2. 三叉神経の二次知覚線維束であるが明確には同定できない。ヒトでは内側毛戸の内側部の
背方（背側路）内側毛戸の最外側（外側路）および網様体内侧路を通るという（欠略）
3. 脳幹毛戸 spinal lemniscus:

脳幹視床路のことで、外側脳幹視床路は外側毛戸の外側、前脳幹視床路は内側毛戸の外側
部を上行するが脳幹部での位置は明確に同定することは難しい。
4. 三叉神経核から出た聴覚の二次線維が内側毛戸付近で交叉する線維束を台形体といい、そ
こから上行して下丘に達するまでの経路を外側毛戸という。内側毛戸の外側方に位置する。
5. 中心被絡 central tegmental tract

赤核オリ・ブ核を含む伝導路である。
6. 内側縦束 medial longitudinal fascicle

第四脳室底に近く、また、正中縦線に近いところを縦走する線維束で上行枝と下行枝より
なる。

・上行枝は前庭神経核より出て外眼筋支支配神経核他へ終わる。
・下行枝は前庭神経内側核より出して、脊髄前索を下行して内臓運動核や自律神経系の細胞に
終わる。又、下行枝には上丘、橋脳幹体より下行する線維が含まれる。

7. 側縦束 ユッツ氏縦束 dorsal longitudinal fascicle of Schutz

橋では第四脳室底を走る。視床下部と迷走神経背側核を結ぶ神経線維がある。
4 橋腹側部の神経核
橋腹部には橋核 pontine nuclei が散在する。この核は大脳皮質より下行する皮質橋路の線維を受け、反対側の小脳に向かって二次線維を出す。これを横橋線維 transverse pontine fibers といい、中小脳脚の大部分を構成する。大脳皮質と小脳を結ぶ重要な中継核である。

5 橋腹側部の縦走線維束
縦橋線維 longitudinal pontine fibers といい、大脳脚より下行する錐体路、皮質橋路からなる。延髄錐体に向うが皮質橋路は橋核に終る。
【□□□】延髄の内部構造と線維連絡

【一般目標】
延髄の内部構造を理解し、延髄の病巣により発現する神経症状を把握する。

【行動目標】
1. 延髄の外観と内部構造の関係を説明できる。
2. 延髄の内部構造の特徴を発生分化の上から説明できる。
3. 脳神経以外の神経核について、その部位、線維連絡、機能的特徴など説明できる。

1. 延髄の内景の概略
延髄は発生でみられた神経管の基本構造を保つが、延髄ではその構造が脳神経核の発達などで修飾され複雑な様相を示す。

■1 延髄下部：
中心管が存在し、第4脳室に達していないからclosed medulla と呼ばれることがある。神経管の基本構造は残っているものの、次の構造物が発達して延髄とはやや異なる形態となる。
・後索核とその二次線維の内側毛帯（知覚の伝導路の項を参照）：
・錐体および錐体交叉（運動の伝導路の項を参照）：
・網様体：
・脳神経核の舌下神経核や迷走神経背側核などの尾端部が出現：
延髄後角に相当するものは三叉神経髄髄路核である。基板由来の舌下神経核は中心管周囲の中心灰白質腹側にあり、外方へ向かって迷走神経背側核がなりむ [巻末の切片の写真を参照]

■2 延髄中央部
蓋板が開いて中心管が広がり第4脳室を形成するのでopen medullaと呼ばれることがある。
したがって翼板に位置する脳神経核は側方に展開する。（「脳神経と脳神経核の項を参照）
これらの脳神経核に加えて次の構造物が存在するため、神経管の基本構造とは極めて異なった形態になる。
・オリーブ核 olivary nucleus とそこから小脳へ行く線維

延髄の内部構造と線維連絡
2 後索核 nuclei of posterior funiculi

後索核は薄束核 gracilis nucleus と楔状束核 cuneate nucleus からなる。脊髄後索の薄束と楔状束を上行する後根線維の終端核で、薄束核は下半身より、楔状束核は上半身から来る線維が終止する。後索では下方から上行するものほど内側に、上方から上行するものほど外側に位置する（前末延髄の写真を参照）。

薄束核は楔状束核よりも下位に出現し、楔状束核は薄束核より上部にまで伸展している。薄束核と楔状束核から出る線維（二次線維）は内弓状線維 internal arcuate fibers と言い、腹内方に走って交叉し、毛帯交叉 decussation of lemniscus を形成する。交叉した後、内側毛帯 medial lemniscus と呼ばれる線維束を形成して、脳幹を上行し、視床の後外側腹側核 VPL 核に終わる。内側毛帯は延髄、橋、中脳を上行する際、その位置を変化させるから注意を要する。

この系統内側毛帯系は、受容器、脊髄神経節後根、後索、薄束と楔状束、後索核内弓状線維、毛帯交叉、内側毛帯、視床 VPL 核、上視床脚放線冠、大脳知覚領域から成り、分別触覚、深部覚を支配する重要な系統である（知覚伝導路の項参照）。

3 副楔状束核 accessory cuneate nucleus = 外側楔状束核 lateral cuneate nucleus に

脳のクラ - ク氏背核に相同のもので、上肢および頸部の筋からの情報をうける（クラ - ク氏背核是第 8 腰髄から第 2 腰髄の間にあるので上肢や頸部にはほとんど関与しない）。後根より入った線維は楔状束を上行して、同側の副楔状束核に終止する。

この核の細胞はクラ - ク氏背核の神経細胞に類似する。この核より出た線維は同側の下小脳脚を通って小脳に入る。後楔髄小脳路と同じ性格をもつ。
4 網様体 reticular formation
網様体は中脳、橋、延髄など脳幹にあり、有髄神経線維の網目に包まれて神経細胞が散在する構造を示す。脊髄の上位中枢として、脳と脊髄のあいだの中継機構として働く。睡眠や覚醒、呼吸運動などの生命の基本現象に重要な意味をもつ。したがって系統的に古く、下等動物では大きい部分を占める。一般に内側3分の2の網様体は長い上行・下行投射線維を出し、外側3分の1は外部より情報を受け中継する。次に諸核は延髄網様体の主な神経核である。
1 外側網様核 lateral reticular nucleus:
脅髄から大量の線維 [脊髄網様体路、脅髄視床路の側枝] が終わり、小脳に中継する。
2 小細胞性網様核 parvocellular reticular nucleus:
脳幹の内側にあり、知覚核から側枝を受けける。
3 巨大細胞性網様核 gigantocellular reticular nucleus:
大脳皮質から両側に皮質網様体路の線維をうける。又、脅髄から線維も受ける。上行および下行投射路を出す。上行路は大部分非交叉性の線維で視床基板内核に終わる。中心被蓋路を通る。下行路は網様體脅髄路を出す。
4 旁正中網様核 paramedian reticular nucleus:
小脳と相互的な線維連絡をもつ。
5 線維核 raphe nuclei:
延髄、橋、中脳の正中線部に存在する細胞群の総称である。セロトニン含有ニュ - ロンとして知られており、終脳、間脳、脳幹、脅髄に広く投射する。

5 下オリ - ブ核群 inferior olivary complex
延髄腹側のふくらみであるオリ - ブ内に位置し、次に諸核より成る。
1 オリ - ブ核 olivary nucleus
2 内側副オリ - ブ核 medial accessory olivary nucleus
3 背側副オリ - ブ核 dorsal accessory olivary nucleus
オリ - ブ核はオリ - ブ内に位置し、開口部を内側にもつシワの多い袋状の細胞集団である。この核の開口部から出た線維は下小脳脚を通って対側の小脳全野に分布する。延髄を横走し交又するこの線維を内弓状線維 internal arcuate fibers と呼ぶことがある。副オリ - ブ核およびオリ - ブ核の最内側部は系統発生的に古く小脳虫部に投射し、それに対してオリ - ブ核外側部は小脳半球 [新小脳] に投射する。
オリ - ブ核に入る線維:
オリ - ブ核を包む有髄神経線維はこの核へ入る線維よりなる。その入力線維には次のものが挙げられる。
1 皮質オリ - ブ核路 cortico-olivary tract：鋸体路に伴行し、両側性にオリ - ブ核に終わる。
2 中心被蓋路 central tegmental tract：赤核や中脳の中心灰白質よりおこり、非交叉性にオリ - ブ核に終わる。
3 脅髄オリ - ブ核路 spinoo-olivary tract：前索を上行して、副オリ - ブ核へ終わる。
6 弓状核 arcuate nuclei

延髄側体の内に見られる小さい核で、小脳へ投射する線維を出す。発生上、橋核やオリーブ核に類似した神経核で、大脳皮質より投射を受ける。弓状核より起始した神経線維は、交叉して正中部を上行して第4脳室底にそって外方に走り第4脳室側条 medullary striae of fourth ventricle を形成して、小脳片葉に終わる。また、交叉して延髄の腹側より背側面にそって走り小脳に入る線維を外弓状線維 external arcuate fibers という。
（・）小脳の構造と線維連絡

【一般目標】
小脳の構造を機能と関連させて理解し、小脳疾患に発現する異常神経症状を解釈できる
【行動目標】
1. 小脳の各部位の名称を説明できる。
2. 小脳の神経細胞構築の特徴を説明できる。
3. 小脳を中心とする線維結合を説明できる。
4. 小脳の機能を線維結合と関連させて概略を説明できる。

1 小脳の外観 [岡崎 659-664 頁]
2 小脳皮質 cerebellar cortex [岡崎 660-661 頁]
小脳は外側部の小脳半球 cerebellar hemisphere と中央部の虫部 vermis に分けられる。さらに小脳皮質は小脳溝 cerebellar fissures によって細かい小脳回 cerebellar folia が形成され、ヒダの多い外観を呈する。この細かいヒダのために小脳皮質の 85%は表から見ず、また表面の面積は大脳皮質のそれの 3/4 に当ると言われている。小脳半球と虫部の皮質は小脳溝によって形態の上で下記のように区分され、各々対応する。虫部の正中断面ではその形態は常に一定であるので、各部位を分ける溝を確認し、半球表面に向かって追って行くと小脳半球の区分も容易に同定できる。
小脳小舌 ligula cerebelli
小脳中心小葉 central lobule
山頂 culmen
山腹 decline
虫部葉 folium vermis
culmen quadirangular lobule
horizontal fissure
tuber vermis
tuber vermis inferior semilunar lobule
tuber vermis biventer lobule
pyramis vermis
primary fissure
equilateral fissure
second fissure
posterolateral fissure
nodulus flocculus
cerebellar medulla
white matter
corpus medullare
arbor vitae cerebelli
laminae albae
小脳の構造と線維連絡

- 101 -
小脳核 nuclei cerebelli 岡嶋 664 頁 ー:
小脳核の中に埋没している。前頭断面から次の 4 核を外側から観察できる。小脳核は小脳から出る出力線維を出す神経細胞群として重要である。系統発生的に見て、新しい順に外側より配列する。
1 齢状核 dentate nucleus
2 齢状核 emboliform nucleus
3 球状核 globose nucleus
4 室頂核 fastigial nucleus
小脳核を外側核 lateral nucleus、栓状核と球状核を中位核 interpositus nucleus、室頂核を内側核 medial nucleus と言う事がある。アメリカの医学生はこの配列を内側から順に文字を取って "Fatty Girls Eat Doughnuts." と覚える。

小脳脚 cerebellar peduncles 岡嶋 661-664 頁 ー
次の 3 つの小脳脚がある。小脳を中心として神経回路の項でその線維構成を学ぶ。
1 下小脳脚 inferior cerebellar peduncle:
核状体 restiform body 又は脊髄小脳脚 crus medullocerebellare とも言う。脊髄・延髄と小脳を結ぶ。欧米の教科書では restiform body と言う用語は良く使われる。
2 中小脳脚 middle cerebellar peduncle:
橋腕 pontine brachium 又は橋小脳脚 crus pontocerebellare とも言われた。橋核からの神経線維からなる。欧米の教科書では pontine brachium と言う用語は良く使われる。
3 上小脳脚 superior cerebellar peduncle:
結合腕 conjunctive brachium 又は小脳大脳脚 crus cerebellocerebrale とも言う。主として小脳と中脳・間脳を結ぶ。欧米の教科書では conjunctive brachium と言う用語は良く使われる。

2 小脳の区分
小脳は正中部の虫部と両側の小脳半球に分けられるが、表面から見て、区分を決める際立った境界はない。従って、次の点からの区分が考えられる。
図 folium、溝 fissula による区分：
先に述べたように虫部の正中断面から区分できる。
機能から見た区分:
解剖学用語にない分類である。系統発生的に見て古い順に並べると次のようになる。この配列は小脳皮質から投射される小脳核の配列と関連する。
- 片葉小節葉 flocculonodular lobe:
 室頂核と前庭神経核に関係が深い。
- 正中虫部 median vermal area:
 室頂核と関係が深い。
- 虫部中隔 paravermal area:
 中位核（球状核と楕状核）と関係が深い。
- 外側部 lateral area:
 主として歯状核と関係が深い。

発生から見た区分
小脳を次の様に分類することがある。
- 原小脳 archicerebellum:
 小脳下部にある虫部と小節と片葉が相当し、系統発生的に古い部分で前庭神経系と関係が深い。
- 旧小脳 paleocerebellum:
 次に古い部位で、虫部繊体と虫部中隔と第一裂の前方に相当し、脊髄と関係が深い。
- 新小脳 neocerebellum:
 小脳半球の大部分と残りの虫部が相当し、特に大脳皮質、橋と関係が深く発達している。

3 小脳皮質の細胞構築
小脳皮質は神経細胞の配列から次の3層が区別される。
- 分子層 molecular layer
- プルキンジェ細胞層 Purkinje cell layer
- 顆粒細胞層 granule cell layer

1 分子層は次のものから構成されている。
1 プルキンジェ細胞の樹状突起 dendrites of Purkinje cells
2 星状細胞 stellate cells
3 ベルマン細胞の軸索で平行線維 parallel fibers という。
4 登上線維 climbing fibers: オリ - ブ核、青斑核、縦線核からの軸索で分子層のプルキンジェ細胞の樹状突起に直接終末を形成する。プルキンジェ細胞の回反側枝も含まれる。
5 ベルマン細胞 Bergmann cells の突起、稀突起細胞、小膠細胞
 その他

プルキンジェ細胞層は次のものから構成されている。
1 プルキンジェ細胞の細胞体
2 篮細胞の軸索
3 ベルマン細胞 Bergmann cells の細胞体、稀突起細胞、小膠細胞
 その他

- 103 -
3 顆粒細胞層は次のものから構成されている。
1 顆粒細胞 granule cells の細胞体と樹状突起
2 ゴルジ細胞 Golgi cells の細胞体と樹状突起
3 苔状線維 mossy fibers とその終末 小脳糸球体 cerebellar glomerulus - 小脳皮質の顆粒細胞に連絡する入力線維の総称である。この線維が小脳への主要入力線維である。
4 グリア細胞 glial cells：パ - グマン細胞以外のグリア細胞である。

4 小脳皮質の線維結合
小脳のプルキンエ細胞を中心に神経回路網が形成される。
1 小脳皮質に入る求心線維：脳幹から 2 種類の線維が入ってくる。
・苔状線維 mossy fibers：顆粒細胞の樹状突起に終わる。
・登上線維 climbing fibers：分子層に入りプルキンエ細胞の樹状突起に終わる。
2 小脳皮質内ニューロン：
・星状細胞：分子層にあり、軸索はプルキンエ細胞の樹状突起に終わる。
・籠細胞：分子層にあり、軸索が籠状にプルキンエ細胞の細胞体を取り巻く。
・ゴルジ細胞：顆粒細胞層にある。軸索は小脳糸球体を作る。

5 苔状線維 mossy fibers と顆粒細胞 granule cells：
小脳脚を通じて脳幹、脊髄から小脳皮質に達し、顆粒細胞層の終末。顆粒細胞層の顆粒細胞の樹状突起と興奮性シナプスを作る。顆粒細胞の樹状突起の先端部は鳥の足のような分枝をしていて苔状線維の大きく膨らんだ終末をつかむようにシナプスを作り、さらにその周りをゴルジ細胞からの抑制性の終末で囲まれていて、複雑なシナプス複合体を形成する。これは小脳糸球体と呼ばれる。顆粒細胞の 1 本の軸索は分子層に上行し、分子層で T 字形に分枝して平行線維になり、プルキンエ細胞の樹状突起にグルタミン酸を伝達物質とする興奮性の終
末を形成する。これがプルキンエ細胞に対する主たる入力線維でプルキンエ細胞のシナプスの90％以上を占めるという。プルキンエ細胞の樹状突起は脳の矢状断面に平行に扇を広げたように伸展するのに対して、平行線維はこれを横切るように前頭断面に平行に走る特徴を持つ。苔状線維として入ってくる線維には次のもののが挙げられる。
1. 前庭小脳路 vestibulocerebellar fibers
2. 後脛核小脳路 posterior spinocerebellar fibers
 前脛核小脳路 anterior spinocerebellar fibers
 横状束核小脳路 cuneocerebellar fibers
3. 橋小脳路 pontocerebellar fibers
4. その他：
 網様体小脳路 reticulospinal fibers
 三叉神経小脳路 trigemino-cerebellar fibers
 視蓋小脳路 tectocerebellar fibers

6. 登上線維 climbing fibers とプルキンエ細胞：
 顆粒細胞層を通じて、直接、分子層のプルキンエ細胞樹状突起に終る興奮性線維である。平行線維からプルキンエ細胞へ入る情報を制御する上で登上線維は重要な役割を果たす。登上線維として入ってくる線維として次のものが挙げられる。
1. オリ - ブプ小脳線 olivocerebellar fibers:
 主たる登上線維で1個のプルキンエ細胞に対してオリ - ブ核のニューロンからの1本の登上線維が線維結合するといわれている。
2. 橋核からの線維：セロトニン含有線維である。
3. 赤斑核からの線維：ノルアドレナリン含有線維である。
7 小脳皮質を出る出力線維:
小脳皮質からの出力線維はプルキンエ細胞の軸索である。これは原則として小脳核に投射し、小脳核のニュ - ロンの軸索が小脳から脳幹へ出る。プルキンエ細胞の軸索が直接小脳を出るのは前庭神経核への投射線維だけである。
1 小脳核へ投射する線維：小脳半球のプルキンエ細胞からは外側部は歯状核へ、脳部上正中核からは球状核、柱状核へ、虫部、片葉小節核からは室頂核へ投射する。
プルキンエ細胞は小脳核に対して抑制性の伝達物質GABAを出す。小脳核への興奮性の入力としては橋核などからのぎ状線維の側枝が重要になる。
2 前庭神経核へ投射する線維：片葉小節核、小脳前葉および後葉の虫部から出る線維の中で、前庭核を介さないで直接出る線維があり、同側性に前庭神経核に終る。
3 小脳核から出る線維
・ 前庭神経核へ投射する。
・ 綱様体へ投射する。
・ 赤核へ投射する。
・ 視床VL核へ投射する。
・ その他

8 小脳を中心とした神経回路
01 前庭神経系に関連して（苔状線維系）
前庭器受容器i前庭神経i前庭神経核i下小脳脚iその中でも傍索状体juxtarestiform body別名IAK inner Abteilung des Kleinhirnstielを通るi片葉小節（一部室頂核を経由i前庭神経核i前庭脳橋路i脳橋下位運動ニュ-ロンi骨格筋
内側縦束i外眼筋神経核

02 脳幹小脳系に関連して（苔状線維系）
筋紡錘i脳幹神経i後索iクラク氏脳幹核i又は副模状束核i後脳幹小脳路i又は模状束小脳核路i小脳皮質i虫部、旧小脳i室頂核i鈎状束i交叉iまたは傍索状体i非交叉i前庭神経核・綱様体核・骨格筋

03 橋核に関連して（苔状線維系）
大脳皮質i橋核i中小脳脚i交叉性i小脳皮質i半球外側部i歯状核
大脳皮質運動野i視床外側腹側核iVL核i上小脳脚i
オリ・ブ核その他i赤核

04 オリ・ブ核に関連して（登上線維系）
大脳皮質・赤核・脳幹iオリ・ブ核i下小脳脚i交叉性i小脳皮質i全域iのプルキンエ細胞の樹状突起i平緩線維からの入力を制御する
9 小脳の機能異常
（1）精緻な運動ができないこと、協調運動の異常がある。例えば次の様な症状が出る。
1)拮抗運動反復機能障害 adiadochokinesis or dysdiadochokinesis：手の回外回内運動を速くリズミカルに繰返して行えない。
2)測定障害 dysmetria：指鼻試験 I自分の指先を鼻尖へ持ってくる運動 IIや踵膝試験 I踵を対側の膝蓋へ持ってくる運動 IIなどが巧く出来ない。
3)大字症 macrographia：だんだん書く字が大きくなる。
4)跳ね返り現象 rebound phenomenon：患者に検者の力に抗して脳を曲げるようにさせて急に離すと、腕の力にプレキが効かず、自分の胸を強く打つ。
（2）筋緊張の減退 hypotonia：例えば、患者が腰を回転させると上肢が大きく振れる。踵踏の姿勢を取らずと踵が挙らず、足底の面積が広まる、など。
（3）企図振戦 intention tremor：指が目標へ近付くにつれて震え[振戦]が大きくなる。ものが上手に取れない。
（4）運動失調 ataxia：例えば歩行に際して病側へ傾く。
（5）構音障害：断続：断続性言語 scanning speech：発声がゆっくりで、よくんでおり、個々の音節もまちまちの強さで発音される[を呈す。
（6）眼振：眼球振揺 nystagmus：眼球運動をさせると注視方向性に眼球がピクピクと揺れる[眼振]が生じる。など。
[図]脊髄

[一般目標]
脊髄が正常人体の駆動、四肢の運動・知覚を支配している仕組みを理解し、脊髄疾患の時に出現する症状を考察するに必要な基礎知識を会得する。

[行動目標]
1. 脊髄が脊柱管内に入っている状態を説明できる。
2. 脊髄横断面の基本構造とその髄節の高さによる相違を説明できる。
3. 脊髄の神経核について説明できる。
4. 反射弧の構成について説明できる。
5. 主な伝導路の脊髄内の位置を説明できる。
6. 体幹四肢の知覚異常、運動障害の原因を説明できる

1 脊髄の外観
脊髄は脊柱内に位置する細長い円柱状の器官で延髄より続く。脊髄の尾端は脊髄円錐cornus medullarisでその先端は脊髄円錐は第1 - 2腰椎の高さで終わる。脊髄円錐先端から終末filum terminaleが伸び骨の後面に終わる。それを馬尾cauda equinaが取り囲む。
脊髄の髄節は胎生3ヶ月までは脊椎の分節と同じレベルで成長するが、それ以後脊髄の発育は遅れ新生児で第3腰椎下端、成人では第1-2腰椎位となる。そのために第3腰神経以下の各脊髄神経根が該当する椎骨の椎間孔まで下降するため馬尾が形成される。脊髄円錐より下部は中枢神経系の脊髄が無いので、腰椎穿刺を行う場所として臨床上重要な場所である。小児は位置が低いため注意を要する。

腰椎穿刺の図
点線：ヤコビー線Jacoby

脊髄は全体として円柱状の単純な形態をしているが、2ヶ所の膨大部がある。上部を頚膨大cervical enlargement、下部を腰膨大lumbar enlargementという。脊髄には縦走する（前）正中裂anterior median fissure、（後）正中溝posterior median sulcus、後中間溝posterior intermediate sulcus（頚髄から腰髄にかけてあり、薄束と楔束の境界となる）、前外側溝anterolateral sulcus（前根が出る）、後外側溝posterolateral sulcus（後根に入る）がある。

2 脊髄の横断面より見た内景[岡嶋638-639頁]

脊髄は次の部分より構成される。
1. 白質white matter：白質は主として上下行する軸索およびそれを包む髄鞘からなり、その間を神経細胞や血管が占める。次の3部位に区分される。
 - 前索anterior funiculus
 - 側索lateral funiculus
 - 後索posterior funiculus：後索は上半身では内側の薄束fasciculus gracilisと外側の楔束fasciculus cuneatusに分れる。前者は下半身、後者は上半身からの知覚伝導路内側帯系-深部覚、識別触覚が通る。
2. 白質連通white commissure（白前交連とも言う）：左右を結ぶ横走維維よりなる。
2 灰白質 gray matter: 灰白質はニューロンの細胞体や樹状突起が存在する所であるが、連絡用の神経線維 [軸索と錐鞘] も当然構成にあずかる。その他灰白質同様神経繊細胞、血管も含まれる。次の 4 部よりなる。
1 前角 [柱] anterior horn [anterior column]
2 後角 [柱] posterior horn [posterior column]
3 横角 [柱] lateral horn [lateral column]

前角（柱）は、平面的に見れば「前角」であり、立体的に上下のつながりで見れば「前柱」である。したがってこの 2 つは同義的に使われる。
中間部 [中間質とも言う] [pars intermedia]: 次の 2 部からなる。

中間質中心部 central intermediate substance: 中心管の周囲。
中間質外側部 lateral intermediate substance からなる。脳室の側角のある部位。

3 中心管 central canal: 腦室の続きであるがヒトでは明確な腔は観察できない。

4 後正中隔 posterior median septum

3 脊髄の部位による差
基本的な構造は各レベルで差異はないが、次のような各髄節の特色に応じて差が生じる。

639 頁

1 頚膨大と腰膨大の存在:
前者は上肢を支配する部位で、第 3 頚椎 - 第 2 腸椎 [第 6 腰髄で最も大きいレベルにあり、後者は下肢を支配する部位で、第 9 腰椎始まり第 12 腸椎レベルで最も太く [第 4 腰髄レベルに相当] 脊髄円錐へ移行する。膨大部では四肢の筋を支配する前角の外側部が大きくなる。また、白質は原則として上部脊髄の方が面積は広い。

2 側角の存在部位:
第 8 頚髄から第 2 腰髄位まで

3 椎髄核 [Clarke 氏背髄とも言う] の存在部位:
第 8 頚髄から第 2 - 3 腰髄位の間の後角底に位置する。

4 紐様体の存在部位: 上部頚髄のみで第 1、2 頚髄で発達する。
4 脊髄を構成するニュ- ロン群
次のようないびであるにゾ分類する事が出来る。

1. 根細胞 root cells：
前根と後根を構成する軸索を出すニュ- ロンを言う。即ち、ニュ- ロンの細胞体は前角および側角 [前根] 脊髄神経節 [後根] にある。

2. 柱細胞 column cells：
灰白質内に細胞体があって、突起が中枢神経内に留るものをいい、次の 4 種がある。

1. 細胞 tract cells：
上行投射路を形成する細胞
例：Clarke 氏背核の細胞 - 後脊髄小脳路を形成する。
後柱後縁細胞 - 外側脊髄視床路を形成する。

2. 内在細胞 internuncial cells：
灰白質内にあって、そこにあられるニュ- ロン間を結ぶ。ゴルジ C 型細胞に相当する。たとえば Renshaw cells など。

3. 交通細胞 commissural cells：
左右の灰白質の細胞を結ぶ。

4. 連合細胞 association cells：
同側の髄管間のニュ- ロンを結び、その軸索は固有束 fasciculi proprii を形成する。

5 灰白質を構成する神経核

1. 前角
前角は大型運動ニュ- ロンの分布様式より、研究者によって色々な分類が試みられているが、その一例を示す。又、髄管の高さでも異なる事に注意しなければならない。

1. 内側核群 medial nuclear group：躯幹筋を支配する。
1. 前内側核 anteromedial nuclear group
2. 後内側核 posteromedial nuclear group

2. 吻側核群 lateral nuclear group：四肢の支配に関与するところで発達する。よく発達する第 8 頚髄では次のように分けられる。躯幹に近い四肢は後側核の中でも内側にあり、外方に向かうにつれて遠位の筋を支配する細胞群がある。

1. 前外側核 anterolateral group
2. 後外側核 posterolateral group
3. 後後外側核 posterior retrolateral group：四肢の最遠位筋 [指] を支配する。

4. 前核 anterior group
5. 中心核 central group
2 后角
後角はつぎのように区分される。
1 鈴帯 zona terminalis
2 後縁核 posteromarginal nucleus ドー 海綿質 substantia spongiosa ド
3 膠樣質 substantia gelatinosa
2 2 3 後角尖と言う。
4 後柱固有核 nucl. proprius of posterior horn は有験神経線維が多いから均質な膠樣質とは明瞭な境界が観察できる。
その他後柱には
・クラ - ク氏核 は胸髄核又は背核 throracic ð dorsal nucleus of Clarke: 第 8 頚髄から第 3 腰髄に存在する。
・網様体 formatio reticularis: 第 1 - 2 頚髄でよく発達している。

3 側角
第 8 頚髄から第 2、3 腰髄に存在する。交感神経の節前線維をだす中間質外側核 intermediolateral nucleus がある。仙髄自律神経核 sacral autonomic nuclei は第 2 - 4 仙髄の中で間部外側にある細胞群で副交感神経節前線維を出すが側角とは言わない。

4 Rexed 氏の層区分:
脊髄灰白質の細胞構築は層構造 lamination を示すという。Rexed は灰白質を層状に - の層の 1 0 層に分類できたとした。ヒト脊髄では層構造は明瞭ではないが幼若な動物で良く判る。後角側より層が伴る。この区分は現在、実験神経学の上でよく用いられる。
- 層: 後縁核 海綿質 に一致する。
- 層: 膠樣質と後柱固有核の一部に一致する。
- 層: 後角根、網様体に一致する。
- 層: 後角底に一致する。
- 層: 中間質外側部のウラ - ク氏背核、中間外側核、中間内
側核 に一致する。
- 層: 前角の運動ニュ - ロン群の間の部分に一致する。
- 層: 前角の運動ニュ - ロン群に一致する。
- 層: 中間質中心部に一致する。

6 脊髄の神経線維
脊髄の長軸に沿って縦走する線維は白質を占め、そこに出入りする横走する線維が灰白質に主として見られる。
1 縦走線維
1) 上・下行投影線維 ascending and descending projection fibers
2) 節節間連合線維 intersegmental association fibers と固有束 fasciculi proprii を形成
2 横走線維
1) 後根線維 dorsal root fibers: 後根から入る線維束で、内側部 medial division と外側部 lateral division にわけられ、前者は太い線維群で後索を上行する線維を含むも触覚など、後者は細い線維群で痛覚などをからなる。
7 反射弧 reflex arc
受容器で受けた興奮が脊髄に伝えられ、そのまま前角に到達して、周囲の細胞に作用を及ぼすものを反射といい、その回路を反射弧という。反射弧が形成される脊髄内の範囲から次の 2 つに分けられる。
① 鍼節内反射弧 segmental reflex arc
② 鍼節間反射弧 intersegmental reflex arc
反射弧の構成：
1 受容器 receptor 2 求心性ニューロン afferent neuron
3 間在ニューロン internuncial neuron 4 遠心性ニューロン efferent neuron
5 効果器 effector
② 間在ニューロンは鍼節細胞であったり、鍼節間反射弧のときは連合細胞であったりする。又、鍼節間反射の時は求心性ニューロンの後根線維が脊髄白質を上下行して他の鍼節に入る。例えば、膝蓋腱反射のような伸展反射では、伸縮（大腿四頭筋）が反射的に収縮するに対しで屈筋は鍼節間の反射弧を通して下位の鍼節からの支配で弛緩するように働く。

8 伝導路
・後索、側索、前索の三部を上下行する長い投射路があり、伝導路と呼ぶ。伝導路の名称は起始核を先に、終止核をその後に続けて書くことで表現する。一般には特定部位を通過するが、明確に区切られるものではない。
① 後索
1 薄束 fasciculus gracilis Goll
2 楼状束 fasciculus cuneatus Burdach
② コンマ束、中隔線束 comma and septomarginal tract
② 側索
3 后脊髓小脳路 posterior spinocerebellar tract
4 前脊髓小脳路 anterior spinocerebellar tract
5 外側皮質脊髄路 lateral corticospinal tract
6 赤核脊髄路 rubrospinal tract
7 外側脊髄視床路 lateral spinothalamic tract
8 脊髄視蓋路 spinoptectal tract
9 脊髄網様体路 spinoreticular tract
10 前索 前索
11 外側前庭脊髄路 lateral vestibulospinal tract
12 脊髄前庭路 spinovestibular tract
13 外側網様体脊髄路 lateral reticulospinal tract
14 内側網様体脊髄路 medial reticulospinal tract
15 視蓋脊髄路 tectospinal tract
16 脊髄オリーブ路 spinoolivary tract
17 前脊髄視床路 anterior spinothalamic tract
18 内側縦束 medial longitudinal fascicle
19 固有束 fasciculi proprii
114

[]伝導路[]運動路

【一般目標】
人の正常な随意運動機能あるいは病的状態下で出現する異常運動を理解するために、
運動に関係する伝導路を把握する。

【行動目標】
1. 錐体路の起始部位から終止部位にいたる伝導路の走行位置を説明できる。
2. 錐体外路系に関係する神経核、線維連絡を説明できる。
3. 錐体路系や錐体外路系が障害された時、出現する異常運動の概略を説明できる。
4. 脊髄と筋肉との線維連絡が説明できる。

1 運動路の構成
随意運動は次の4系統より構成される。
① 下位運動ニューロンから筋肉へ：
② 大脳皮質から下位運動ニューロンへ
③ 皮質下中枢から下位運動ニューロンへ：
④ 脊髄神経後根から下位運動ニューロンへ：
⑤ 下位運動ニューロンに直接投射しない制御神経回路：
⑥ ③ ④は一般に錐体外路系 extrapyramidal system と呼ばれてきた。

extrapyramidal system
2 下位運動ニューロン lower motor neurons から筋へ：
末梢神経系を介して下位運動ニューロンが筋肉を直接支配する最終的な神経回路（common final pathway）である。
① 下位運動ニューロンの入力系
①脳皮質より：
大脳皮質第1次運動を中心前野 area 4から射出する、いわゆる錐体路系の線維が直接あるいは近傍の介在ニューロンを介して射出する。
②脳下核より：
いわゆる錐体外路系からの線維が直接下位運動ニューロンに射出するか、あるいは介在ニューロンを介して射出する。例えば、網様体脊髄路、前庭脊髄路などが挙げられる。
③後根知覚線維を受ける：
後根から入る線維（筋紡錘からの情報を伝える）が直接シナプスを作って射出する。後根を障害されると随意運動は円滑にできない。
④脊髄内介在ニューロンより：
代表的なのがRenshaw cellである。

図1 神経筋接合 neuromuscular junction へ運動終板 motor end plateへ
下位運動ニューロンからの情報は神経筋接合部を通じて随意筋に伝えられる。
下位運動ニューロンの終末は筋細胞の1つずつにシナプスと相異なる構造をもつ接合部を形成する。シナプス小胞からアセチルコリン acetylcholineがコリン性が伝達物質として放出され、筋細胞の表面にあらアセチルコリン受容体がそれを受け、イオンの流れが生じ、筋細胞内でのカルシウムイオンの活動で筋の収縮が起こる。この機構を制御することで筋弛緩剤が使われる。アセチルコリンの発見につながったのは南米の原住民が狩猟に使った毒矢の成分のクラレ curareである。クラレはアセチルコリンの受容体に対する親和性が高く、拮抗して受容体に結合することで筋の収縮を抑制する。また、ポツリヌス菌の毒素はアセチルコリンの遊離障害を引き起こし、筋の収縮機能を障害する。重症筋無力症myastenia gravisではアセチルコリン受容体に対して自己抗体が出来て受容体の機能を落とすことで、神経からの伝達が阻害され、筋弛緩が生じる。

伝導路（運動路）
3 大脳皮質から下位運動ニュ-ロンへ：
錐体路 pyramidal tract と直接的に動きを動かすsystem とも言うと、と言われている伝導路である。大脳皮質に発し、内包、大脳脚、橋脚側部、延髄錐体を通じて脊髄へ達して下位運動ニュ-ロンを支配する長下行路である。延髄錐体を通ることからその名称がある。錐体路は皮質脊髄路 corticospinal tract 皮質核路 corticonuclear tract を含めるとも言う、次の 3 系統が含まれる。

・皮質・運動細胞路 cortico-motor neuron pathway：
大脳皮質の第 5 層のニュ-ロンの軸索が脳幹及び脊髄の下位運動ニュ-ロンに終わる伝導路である。

・皮質・感覚細胞路 cortico-sensory neuron pathway：
大脳皮質の第 5 層のニュ-ロンの軸索が知覚性一次中継核（後索核、三叉神経脊髄路核、脊髄後角など）に終わる伝導路である。

・皮質・網様体路 cortico-reticular pathway
大脳皮質の第 5 層のニュ-ロンの軸索が脳幹網様体に終わる伝導路である。

しかし、行動の上から理解しうるのは皮質運動細胞路であるので、錐体路といえば一般には皮質・運動細胞路を意味する。

① 皮質・運動細胞路（狭義の錐体路）
① 皮質脊髄路
1. 起始域と起始細胞：
中心前回野のベッツ氏細胞 Betz cells 及びその他の第 5 層の細胞から起始する。起始域には体部位局所性があり、下肢は中心前回や下部、上肢は中心前回中央、顔頸部は同下部から起始する。
2.走行：
終脳で放線冠を通じた線維は間脳のレベルでは内包の後脚、中脳では大脳脚、橋では橋腹側部、延髄では延髄亀体を通り、延髄と脊髄の間にある亀体交叉 pyramidal decussation で不完全交叉する。これらの亀体路線維は体部位倒性に決まった部位を走ると言われているが、個人差が多くこの考えは疑問視されている。
延髄亀体で神経線維を算定すると、髄鞘染色や鍍銅法で数えると、ヒトでは1側100万本位あり、小径 Ø-4 Ø径 Ø9%、中径 Ø-10 Ø径 Ø%、大径 Ø-22 Ø径 Øは2%弱、無髄は全体の 39%を占めるという。しかし、電子顕微鏡で数えると小径のもの無髄の線維がさらに多く確認され、アカゲサルでは一侧100万本と推定され、光学顕微鏡で算定された数の2倍である。
亀体交叉では 80-90%の線維が交叉し、体の上部を支配する線維ほど高位で交叉する。交叉線維は側索の後部に入り、外側皮質脊髄路・亀体側索路 lateral corticospinal pyramidal tract となる。10-20%の非交叉の線維は前索に入り、前皮質脊髄路・亀体前索路 anterior corticospinal pyramidal tract を形成する。脊髄上部までで消失する線維束で、人によって発達に差がある。非交叉性で側索前部に入れる線維が少数ながらあり、前外側亀体路 anterolateral pyramidal tract 言う。
3.脊髄内終止:
直接前角下位運動ニューロンにシナプスを作って終止するものと介在ニューロンを介して間接的に前角運動ニューロンを支配するものの2通りがある。前者ではサル、ヒトの、しかも手足の指の運動を支配するものに限られる。锥体路線維の大部分は後者の例で間接的に下位運動ニューロンを支配する。
前皮質脊髄路は脊髄で白交通を通って交叉する。又、交叉せず同側性に終わるものもある。前外側锥体路は同側性に終わる。

2.皮質核路・皮質延髄路
皮質延髄路に混在して下行し、途中で脳神経運動核に入る。脳神経が支配する横紋筋を支配する経路となる。脳神経核としては筋節から発生する横紋筋を支配する動眼神経核、滑車神経核、外転神経核、舌下神経核があり、鰭弓から発生する横紋筋を支配する三叉神経運動核、顔面神経核、疑核がある。
1.直接下位運動ニューロンに終止するものとして三叉神経運動核、顔面神経核、舌下神経核などに終わる線維があるが、大部分は介在ニューロンを介して終わる。
2.大脳半球から両側性の支配を受けるものと片側性支配を受けるものがある。例えば、顔面の上部の表情筋は両側性支配をうけ、下部は片側支配をうける。口蓋筋、咽頭筋、喉頭筋は通常両側性の支配である。
3.皮質脊髄路と共に下行する線維束の他に迷行束 aberrant fiber と呼ばれ、途中で内側毛細胞内に入れて下行し、脳神経核に終わる線維束がある。
2 皮質・感覚細胞路：
大脳皮質知覚領域（プロ - ドマン氏 3-1-2 野、5 野、7 野など）より起こり、体性知覚の中継核（叉神経脊髄路核、後索核、脊髄後柱固有核など）へ終わる。

3 皮質・網様体路：
大脳皮質運動領域、運動前野、知覚領域などより起こり、錐体路中を下行して、色々のレベルの網様体の主として内側部に終わる。

4 錐体外路系：
随意運動は大脳皮質からの直接の経路である錐体路系を通じて行なわれると考えがちであるが、さらにいわゆる錐体外路系が深く関与する。また、連続する随意運動のパターンは特に意識しなくてもスムーズに行われることにも錐体外路系の機能による。従って、下位運動ニューロンは間接的にせよ錐体路以外の下行路の支配を受けることにより、円滑な随意運動を行っている。

下位運動ニューロンを支配する伝導路として次のものが挙げられる。
a) 網様体脊髄路 reticulospinal tract
b) 前庭脊髄路 vestibulospinal tract
c) 椎蓋脊髄路 tectospinal tract
d) 内側縱束 medial longitudinal fascicle
e) 赤核脊髄路 rubrospinal tract（ヒト以外の動物で発達する）

このような下位運動ニューロンに対する投射路 Indirectly activating pathways と呼ばれる。入る前の上位中樞では、大脳皮質をはじめとして皮質下核、脳幹の神経核、小脳などを中心に制御神経回路が構成されている。その中で大脳核は主に遲い安定した運動の実行に関与するのに対して小脳は速い運動の遂行と姿勢の調和に関与すると言われている。大脳皮質運動領域のニューロンに対するこれらのフィードバックの経路として外側腹側核 VL 核が重要である。

これらの機能に関与する神経核として以下の部位が挙げられる（各項での線維連絡を参照する）。
1) 大脳皮質：area 4,6,8 など
2) 大脳核：線条体、淡赤球
3）間脳：視床、前外側帯腹核、視床下部、視床下核など
4) 中脳：赤核、黒質、中脳被蓋の諸核
5) 橋：橋核、網様体
6) 延髄：オリブ核、網様体、前庭神経核、弓状核
7) 小脳：

5 随意運動の障害
a) 錐体路障害 upper motor neuron syndrome
錐体路がその途中で障害を受けると次のような症状を起こす。しかし、錐体路のみ単独で障害されることはないので、その症状の組合わせは多様である。
1) 腱反射亢進
2) 腱力低下
3) 腱反射低下
4) 腱反射消失
5 屈曲反射亢進
6 病的反射 Babinski 反射の出現

2 運動麻痺の例
運動路の障害によって随意運動の麻痺が生じる。麻痺はその現われ方によって単麻痺、片
麻痺、対麻痺、交代性麻痺などがある。下に挙げた例について、出現する病変部をあげて理
由を考えよう。これには椎体路の全走行を検討してその中段部位を想定しながら麻痺を考え
る。さらに脳幹の各レベルでの断面像を考慮に入れて、運動性脳神経核の位置とその神経根
が脳外へ出る位置および椎体路の通過位置との関係から麻痺を検討する必要がある。
1 単麻痺 monoplegia:
顔面、上肢、下肢などが単独で運動麻痺を起こすものをいう。
2 片麻痺 hemiplegia:
身体の一側が顔面、上下肢全部麻痺をするものをいう。
3 対麻痺 paraplegia:
身体両側上・下肢が麻痺する場合をいう。
4 上交代性片麻痺 Weber hemiplegia alternans oculomotoria:
片麻痺とその反対側に動眼神経麻痺を伴う。

上交代性麻痺
障害部位

5 下交代性片麻痺 Millard-Gubler hemiplegia alternans facialis:
片麻痺と反対側の顔面神経麻痺のある場合。
6 舌下神経性交代性片麻痺 Jackson hemiplegia alternans hypoglossica:
一側の片麻痺と他側の舌下神経麻痺を生じる。
7 交又性麻痺 hemiplegia cruciata:
一側では下肢の麻痺、他側では上肢の麻痺が生じている。
8 Benedikt 氏症候群 Benedikt syndrome:
4 の上交代性片麻痺に、舞踏病様運動や振戦などを伴う。

3 不隨運動症状の例
長伝導路が障害されるより、中継核内での障害例えば伝達物質の代謝、産生能の低下や恐
らくは受容体の障害などによって生じることが予想される。
1 舞踏病 chorea: 黒質線条体系の障害で生じる。
2 アテト - ケンゾン氏病 Parkinsonism: 線条体の障害で生じる。
3 アテト - ゼ athetosis: 新線条体の障害で生じる。
4 パリスムスとヘミパリスムス ballism and hemiballism: 視床下核の障害で生じる。
5 小脳失調症: 小脳の頂を参照
伝導路·（知覚路）

1 体性知覚系の伝導路の構成

痛覚、温度覚、触覚、深部覚（運動核）などを体性知覚という。次の4つから構成される。

1 受容器 receptors
2 ニュ・ロン・：

細胞体は神経節→三叉神経節、上神経節、脊髄神経節にある。
3 ニュ・ロン・：

細胞体は脊髄、脳幹の知覚核（後角、後索核）にある。
4 ニュ・ロン・：

細胞体は視床中継核（VPM 核、VPL 核）にある。軸索は大脳皮質知覚頸中心後回 Area

1 伝導路（知覚路）

1 三叉神経の伝導路：三叉神経節に一次ニュ・ロンがある。橋中央から脳幹に入り、知覚の種類によって、中継核が異なる。

2 第一次中継核と二次伝導路：

1 三叉神経脊髄路核：橋から顔面神経にかけてあり、橋から入った三叉神経中樞核は三叉神経脊髄路を形成して三叉神経脊髄路核に終わる（橋の三叉神経の項を参照）。この神経核にある二次ニュ・ロンが二次伝導路（三叉神経毛帯という）を形成する線維を出す。痛覚、温度覚などに関与する。

2 三叉神経主知覚核：橋にあり、二次ニュ・ロンが三叉神経毛帯へ線維を出す。部分触覚に関与する。

3 三叉神経毛帯：二次ニュ・ロンの上行路で、視床の後内側腹側核に達する。この伝導路は明確に定定できない。三叉神経毛帯背側路、腹側路および外側路があると記載されているが（久留による）、いずれも内側毛帯の中かその附近を上行している。

4 第二次中継核（視床後内側腹側核） VPM 核：二次ニュ・ロンがあり、内包を通って大脳皮質知覚頸へ線維を出す。

5 中心後回下部：大脳皮質知覚頸で内包後脚を通って来る線維を受ける。体部位局在が決っている。
3 顔面以外の部位の体性知覚伝導路
顔面以外の部位の体性知覚伝導路は脊髄神経より始まる。一次ニューロンは脊髄神経節にあり、中枢側の線維は後根より脊髄に入る。脊髄毛細系と内側毛細系の2系統があるがその機能は異なっている。
1 脊髄毛細系:
1) 脊髄神経節ニューロン: この中枢枝が後根から後角に入りそこで二次ニューロンに連絡する。
2) 二次ニューロンから出た線維:これに脊髄毛細と言うので構成される伝導路は知覚の種類によって次の2系統になる。
 ∙ 後縁核に二次ニューロンがある。痛覚、温度覚に関与する。
 ∙ 前縁核に二次ニューロンがある。痛覚、温度覚に関与する。
2) 脊髄神経節ニューロン:この中枢枝が後根から後角に入りそこで二次ニューロンに連絡する。
 各々上行する際、下部から上行するものほど外側に位置し、従って頚部からの上行線維は最内側に位置する。
3) 脊髄後外側核(VPL 核): 脊髄毛細は脊髄の VPL 核に終る。ここにある三次ニューロンからの線維が内包後脚の上
 視床神経に到達し、知覚発達する。
4) 大脳皮質中心後回: この回の中央から上部は下半身より、下部は上半身より来た情報を受ける。

伝導路(知覚路)
内側毛帯系
分別触覚、深部覚に関与する
1. 後索:
後根から入った脊髄神経節の中枢枝の神経線維は後索を上行する。
・薄束：下半身に由来する線維が上行する。
・楔状束：上半身に由来する線維が上行する。
後索正中部に近いほど尾側からの線維が上行する。従って、後角に近い外側部は上部頸神経からの中樞枝が上行する。
2. 後索核（薄束核と楔状束核）:
薄束、楔状束を上行して来た神経が延髄のこの核で終わり、二次ニューロンにかわる。
3. 毛帯交叉（内弓状線維）:
後索核の二次ニューロンの神経線維はここで交叉する。
4. 内側毛帯:
二次ニューロン上行線維からなり、視床の後外側腹側核に達する。
5. 視床の後外側腹側核（VPL 核）:
三次ニューロンがあり、その投射線維は知覚領域へ達する。
6. 大脳皮質中心後回:
中央から上部は下半身、下部は上半身が関与する。
4 知覚解離の成立機転
脊髄における上行系には機能と部位が異なる2系統があるため、障害部位によって色々な症状を呈する。

1. Brown-Sequard氏 知覚解離 Sensory dissociation:
脊髄左右半切断の時に生じる症状。

2. 脊髓空洞症 Byringomyelia の知覚解離:
中心管の所に空洞が出来て、左右の連絡が遮断された時の症状。

3. 柄体障害 Tabes dorsalis の知覚解離:
後索が選択的に障害されて生じる症状。

4. 前脊髄動脈障害:
前索と側索前部が障害されて生じる症状。
【伝導路 □ 味覚と嗅覚 □】

【一般目標】
味覚と嗅覚の伝導路および大脳辺縁系を理解する。

【行動目標】
1. 味覚の伝導路を未梢から中枢神経系に至るまで説明できる。
2. 嗅覚の伝導路を説明できる。
3. 辺縁系、原皮質、古皮質、新皮質を説明できる。

1 味覚の伝導路
口内神経：味蕾の感受器で舌乳頭とくに葉状乳頭、有郭乳頭も多い。
1-1 感覚細胞 sensory cells：味毛 taste hairs を有する。
2-1 支持細胞 supporting cells：味細胞を包むように位置する。
3-1 基底細胞 basal cells：感覚細胞と味細胞を補充する幹細胞である。
4-1 神経線維 nerve cells などから成る。

2 神経支配
1 神経
・顔面神経：舌の前 2/3 は鼓索神経支配
・舌咽神経：舌の後 1/3 は舌枝支配
・迷走神経：喉頭蓋は上喉頭神経内枝支配
各々脳幹に入ってから孤束核に入るまで下行する線維束を孤束といい、それが終止する神経核を孤束核と言う。
2 中緑核
・孤束核：一次ニューロンの中緑核である。
3 二次伝導路：孤束核より出る。内側毛細およびその付近を通ると言われる。
4 後内側腹側核（視床）：孤束核より出た神経線維はここに終わる。
大脳皮質における味覚中枢：顔面の知覚領域の付近にある。

2 味覚の伝導路

味覚に関係する脳の一部は系統発生的には古い系で、嗅粘膜からの興奮は視床を経由することなく直接脳に入る。ヒトでは味覚そのものが脳の伝導路系の発育は悪い。脳干は笑いに対する内臓、体性反射にも関与しており、その伝導路を含む。とくに大脳辺縁系といわれる部位は味覚そのものには関与せず、自律機能の中枢として興味がある。

1 味覚系の構成

1 嗅粘膜
1. 嗅細胞 olfactory cells：双極性知覚ニューロンでニューロン自体が受容器を兼ねている。
2. 支持細胞 supporting cells
3. 基底細胞 basal cellsからなる。

2 味覚 lobe：つきの3部からなる。
1. 嗅球 olfactory bulb
2. 嗅索 olfactory tract
3. 嗅三角 olfactory trigone
4. 外側嗅条 stria olfactoria lateralis
5. 月 uncus

伝導路 (味覚と嗅覚)
2 嗅覚の経路

嗅粘膜にある嗅細胞から出た軸索は篩板を通じて嗅球に入り、嗅球内の僧帽細胞 mitral cells の樹状突起と複雑なシナプス (嗅球体 olfactory glomerulus と呼ばれ、その他のニューロンも糸球体形成に関与している) を形成する。僧帽細胞の軸索は嗅索を通過し嗅三角から外側嗅条を経由して鈎 uncs にある一次嗅覚野に終わる。一次嗅覚野は梨状葉前野と扁桃体周囲野である。

鈎は海馬傍回 parahippocampal gyrus の前部に位置し、その内部にその表層は梨状葉で深部に扁桃体 amygdaloid body がある。側頭葉の鈎に脳腫瘍が発生した時、鈎発作 uncinate fit いわれる幻臭を起こすことがあり、この部位を嗅覚中枢とする根拠になった。
[一般目標]
視覚と聴覚・平衡覚に関与する伝導路を把握し視覚障害と聴覚障害の成り立ちが理解できる。
平衡覚をとれを中心とした反射を理解できる。

[行動目標]
1. 視覚路の経路を説明できる。
2. 視覚に関する反射弧を説明できる。
3. 視覚の中継核、中枢を説明できる。
4. 聴覚の伝導路を理解する。

1 視覚に関する伝導路の構成
以下のものから構成される。
1. 眼球 eyeball
2. 視神経 optic nerve
3. 視神経交叉 optic chiasm
4. 視索 optic tract
5. 外側膝状体 lateral geniculate body
6. 視放線 optic radiation
7. 腦皮質有線領 area striata of cerebral cortex
8. 他
 1. 視蓋前域 pretectal area：対光反射に関係する。
 2. 上丘 superior collicle：視覚と運動の反射に関係する。

2 視覚の伝導路
模式的にまとめれば次の様になる。
網膜・視神経・視[神経]交叉・外側膝状体・視放線・大脳皮質有線領 17 野
1. 視神経と視（神経）交叉：
網膜の視神経線維層からの神経線維は視神経の中では網膜と部位局在性を保っているといわれる。また、視神経交叉では半交叉を行い、結果として左視野に関係する視神経線維①は右半分の網膜から出た線維①は右脳に投射し、左視野ではその逆になる。

2. 外側膝状体：
視床後部に属し、次の二核より成る。
1. 腹側核：腹側視床の一部で視覚に関与しない。
2. 背側核：視神経は背側核へ投射する。背側核は6層からなり、腹側より第1層、第2層は巨大細胞性であり、第3層から第6層は小型および中型細胞性で各層の間に有様神経層が介在する。第1、4、6、層は交叉性の線維をうけ、第2、3、5層は同側性の線維をうける。
視野の1点を両眼視した時、それに対応する各層のニューロンは互いに隣接し、6層の上に1線になって配列するといわれる。

2. 視覚伝導路の投射の仕方
網膜の上方2分の1は外側膝状体の内側部に投射して、さらに鳥いずれの上部①、7野の上層①に投射する。又、網膜の下2分の1は外側膝状体の外側部に投射して、さらに鳥いずれの下部に投射する。したがって、視覚伝導路の遮断部位と視野の欠損の間に深い関係がある。
① 黄斑回遊 sparing of macula：視覚の伝導路が遮断されて半盲になった時でも、黄斑部の視野の欠損がないことがあり、これを黄斑回遊という。その理由は明確にはされていないが、網膜黄斑部中央からは両側後頭葉へ投射されることで説明されている。

伝導路①（視覚路と聴覚路）
３ 聴覚に関する伝導路の構成
次を経路を取る。
空気の振動

外耳 ⪯耳介・外耳道・鼓膜 ⫸
中耳 ⪯鼓膜 ⫸耳小骨 ⫸ツチ骨 ⫸キツネ骨 ⫸アブミ骨 = 骨の振動 ⫸前庭窩 ⫸
内耳 ⪯外リンパ・液体の振動 ⫸蝸牛管 ⫸内リンパの振動 ⫸ラセン器 ⫸受容器 ⫸
ラセン神経節 ⫸spiral ganglion ⫸内耳神経 ⫸acoustic n. ⫸蝸牛神経 ⫸cochlear n. ⫸
蝸牛神経核 nucl.n.cochlearis ⫸背側核と腹側核があり、後者の方が発達している ⫸
聴器 ⫸stria acustica ⫸背側聴器、中間聴器と腹側聴器がある ⫸
台形体 ⫸trapezoid body ⫸外側帯 ⫸lemniscus lateralis ⫸
下丘 ⫸inferior collicule ⫸下丘腕 ⫸brachium colliculi inferior ⫸
内側膝状体 ⫸視床 ⫸medial geniculate body ⫸聴放線 ⫸acoustic radiation ⫸
大脳皮質聽覚顔：横側頭回

蝸牛神経核から出た二次線維は両側性に上行する。その途中で台形体核、外側帯核、上
オリ-ブ核などの中間核が存在し複雑な伝導系を形成している。従って、脳幹の障害から聴
力障害を証明することは難しい。橋の蝸牛神経核の項、中脳の下丘の項を参照する ⫸
【実習内容】

【脳の外観】脳全体の把握と脳神経と血管系の同定
【脳の外観】脳各部の同定と終脳の溝、回の同定
【脳の外観】脳干の観察：脳幹の概観する
【小脳の観察】小脳の観察：小脳の概観する
【脳の外観】脳幹と脳幹の横断切片の観察：内部構造の概観、伝導路、神経核の同定

【脳の外観】脳神経と血管系
ここでは大脳全体の外観の側面及び底面をスケッチし、大脳動脈を(ウイリス氏動脈)を中心に脳底の動脈と脳底の脳神経を12対記入する。
脳全体を次の項に従って観察する。
1．脳幹膜
ここではクモ膜と軟膜が観察される。クモ膜下腔及びそのなかで脳に陥凹部があるために広くなっているクモ膜下槽を観察する。
クモ膜下槽には次のものがある。
・小脳延髄槽、大脳外側槽、交叉槽、脚間槽、大大脳静脈槽、迂回槽、脳梁槽
2．脳の外観
終脳、間脳、中脳、橋、延髄を確認する。
3．血管
1．動脈
脳は内頸動脈と椎骨動脈の二対の動脈によって栄養される。次の血管を同定する
1．大脳半球を栄養する動脈を観察する。
内頸動脈の枝として：前大脳動脈、中大脳動脈、前交通動脈、後交通動脈
脳底動脈（椎骨動脈由来）の枝として：後大脳動脈
2．小脳を栄養する動脈を観察する。
脳底動脈と椎骨動脈の枝として：前下小脳動脈、後下小脳動脈、上小脳動脈
3．脳幹を栄養する脳底動脈、椎骨動脈およびその枝の橋枝、迷路動脈などを調べる。

脳の動脈は血管撮影によるレントゲン写真で、生体で良く観察されており、臨床上重要な意味をもっている。各自に脳血管造影フィルムを貸与するから参考にする。上の主幹動脈が
同定出来ること。

2）静脈
脳の静脈系は硬膜静脈洞へ流入するから、脳の表面に断端を見る。詳しくは講義で学ぶ。

4）脳神経
脳神経12対を観察する。
・嗅神経：観察できないが嗅球に入ることを理解する。
・視神経：交叉している。
・動眼神経：大脳脚間よりでる。後大脳動脈と上小脳動脈の間を通ることに注意する。
・滑車神経：中脳の脳側よりて側方より出て来る細い条状の神経
・三叉神経：橋を貫く太い神経
・外転神経：橋後端にある。
・顔面神経：橋後端外側にある。
・内耳神経：顔面神経の外側
・舌咽神経：数根をもって延髄のオリ - プ背側よりでる。
・迷走神経：13-20条の根をもって、オリ - プ背側より出る。
・副神経：延髄根と背髄根があり、延髄根は3-6本の根をなしてオリ - プ背側よりでる。脊髄根は頚神経の前、後根の間を上行して前者と合して幹を作る。
・舌下神経：錐体とオリ - プの間より10-15 本の根をなしてでる。

図　脳の外観：脳各部の同定
正中断してある脳について次の各部を内側面と外側面から観察し、スケッチする。以下に述べる脳の溝と回も記入しなさい。
大脳・大脳半球・小脳、間脳、中脳、橋、延髄を切断した内側面より観察する。
配付された MRI の写真・またはテレビで示説するから、その大まかな所見を把握できること。

次の各部を詳細に見る。
1．大脳半球の脳葉を同定する。
・前頭葉：中心溝より前部
・頭頂葉：中心溝と頭頂後頭溝の間
・後頭葉：頭頂後頭溝より後部
・側頭葉：外側溝より下部
・島：外側溝の深部
・嗅脳：嗅球、嗅索など。
2．次の大脳半球の脳回、脳溝を同定する。
・外側溝 前枝と上行枝、後枝 線上回、中心溝
・上側頭溝、角回 線上回と角回は合わせて、下側頭小葉という
・頭頂間溝、上側頭小葉、中心後溝、中心後回、中心前回、
・下前頭溝、上前頭溝、上前頭回、下前頭回 前頭回、三角部、上行枝、弁蓋部
・帯状回、中前頭回、中前頭溝
・脳梁 腦梁吻、脳梁膝、脳梁幹、脳梁膨大 腦梁溝

脳解剖学実習 133
・帯状溝、帯状回、帯状回篭
・中心傍小葉、鳥距溝 [有線類] 頭頂後頭溝、楔部、楔前部
・海馬溝、側副溝、海馬旁回、舌状回、歯状回、後頭側頭溝
・内側後頭側頭回、外側後頭側頭回
・脇側頭溝 [ヘッシュル氏回] 嗅球、嗅索

3. 脳
半球の内側面より視床、視床下部（乳頭体、視 [神経] 交叉、漏斗、灰白隆起、終板、視索）視床上部（視床縦条、手網、松果体）、脳弓、後交通、視床間橋、室間孔を観察する。

4. 中脳、橋と延髄
大脳脚、中脳盖（上丘と下丘）、滑車神経、上緑帆および橋と延髄の縦断面を見る。

5. 脳室と脈絡亜
側脳室、第三脳室、中脳水道、第四脳室を観察する。第三脳室脈絡亜と第四脳室脈絡亜を観察し、その脳室内に侵入する場所を確認する。

[□] 終脳水平断面
すでに水平断してある標本を観察する。まず水平断した高さを確認後、断面を観察し、スケッチした上、下記の項を同定しなさい。
1. 同定するもの
・脳梁、脳弓、脳室と第三脳室、尾状核、被殻、淡蒼球、視床、前障、島、内包 [前脚、膝、後脚] 外包、最外包、大脳縦裂
2. 配付した [] 頃はテレビで示説した [M R I] 像または [C T] 像の水平断面で同じものを同定しなさい。

[□] 脳幹の観察
すでに切り出してある中脳、橋、延髄からなるブロックを観察し、スケッチした上下記の項を同定しなさい。
1. 背側面
□ 中脳
・中脳蓋 [上丘、下丘] 上丘脳、下丘脳
・滑車神経、上緑帆、上小脳脚
上丘と外側膝状体、下丘と内側膝状体を結ぶ線維束によって形成されるのが上丘脳と下丘脳である。間脳から切り離されているため理解しにくいかもしれない。
□ 廻形窩
次の部位を同定しなさい。
・正中溝、内側隆起、顔面神経丘、第四脳室緯条、舌下神経三角、迷走神経三角、前庭神経野・青斑、第四脳室外側陰凹、第四脳室外側口、第四脳室正中、筆尖、第四脳室ヒモ
・環、境界溝、下窩と上窩
□ 廻脳下部
次のものを同定する。延髄下部は脊髄の続きずあり、まず溝を同定し、その間にある結節を観察する。内部構造との関連が大切である。
・ [前] 正中溝、後外側溝、後中間溝
・薄東と薄東結節、楔状東と楔状東結節、灰白結節
・側索
2. 腹側面
脳神経を再確認する。

① 中脳
・大脳脚、脚間窩、後有孔質
② 橋
・脳底溝、中小脳脚
③ 延髄
橋腹側部の直接の続きは锥体とオリ-ブである。次のものを同定する。
・前正中裂、锥体、オリ-ブ、锥体交叉、前外側溝

【】小脳の観察
小脳矢状断面と小脳表面の溝と回をスケッチし、各部位を同定しなさい。

1. 小脳半球と虫部を観察する。要領は虫部をさきに同定してそれに対応する半球部を同定する。『小脳の構造と線維連絡』の項を参照すること。

【】小脳核の観察は省略するが、示説で確認すること

【】脊髄と脳幹の横断切片の観察
人脳の 20 厚横断パラフィン切片でルクソ・ル・ファスト青とヘマトキシリン・エオジンによる3重染色をほどこした標本である。ルクソ・ル・ファスト青色によって髄鞘が、ヘマトキシリン・エオジン染色によって神経細胞体（その集団を神経核という）が染め出される。髄構築と細胞構築を同時に観察出来る。
プリントの図を参照してスケッチし、出来るだけ部位を同定してその名称を記入しなさい。また、その記入した部位の機能も簡単に記入しなさい。
観察する切片の部位:
1. 脊髄（頸膨大部、胸髄、腰膨大部の3部位）
2. 延髄（中心管がまだある部位。鋸体交叉、毛帯交叉の高さでの2部位）
3. 延髄（第4脳室がある部位）
4. 橋中央部
5. 橋上部
6. 中脳下部（下丘の部位）
7. 中脳上部（上丘の部位）