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§1 Introduction We consider the following semilinear elliptic

boundary value problem,

4 v + f(v) = 0 in
(1.1)

v - 9 on aQ

av

where 2 is a bounded domain in R" with smooth boundary 92 and

n 2

v denotes the unit outer normal vector on 32 . 4 = g > is
j=1 axj

the Laplace operator and f is a real valued smooth function on R.

The structure of the solutions of (1.1) and their stability
largely depend upon the geometricél property of the domain £ and
we may consider that the structure usually varies continuously under
the smooth deformation of 2 . Our subject in this paper is to.
consider the behavior of the solutions and their struéture when the
domain &£ singularly perturbs. The domain which we deal with is
exhibited in Figure 1 and it is decomposed as follows
Q(¢) = by Y D, VQ(f) where Dy and D, are mutually disjoint
and Q(¢) 4is a moving part which approaches a segment as ¢ L O

Therefore the volume of Q(¢) decreases to zero as ¢ L O

Figure 2



Then can we say that the influence of Q(¢) over (1.1) for Q = Q(¢)
vanishes as { L O i.e. that the structure of the solutions of

(1.1) for Q = Q(¢) ( for small ¢ > 0 ) is equivalent to that of

[}

(1.1) for @ =10, = D, U Dé ( Figure 2 )?

0 1

In fact, Vegas [22], Hale and Vegas [10] have considered (1.1) for
£f = £(i,u) =‘Aﬁ - uP on the same domain as that in Figure 1 and
analyzed the bifurcation phenomenon for the bifurcation parameter ¢
( when 1 > 0 is a sufficiently small constant ). Their bifurcation

~diagram in the case that p 1is an odd natural number and the domain

Q(¢) is symmetric, is in Figure 3.

Figure 3 (Bifurcation Diagram )
In their situation, when ¢ 1is véry small ( i;e. 0 < ¢ < CZ in
Figure 3 ) there are exactly nine solutions and each of them takes
values near one of the values { 0, 11/(p—1)’ _21/(p-1) } in Dy
(i=1, 2 ) and its behavior on Q(¢) is automatically determined
by the behavior on D1 and D2 . Thus the structure of the solutions

for Q(¢) (0 < ¢ < CZ ) is equivalent to that for Q = QO

( non-connected open set ). Remark that (1.1) for Q = QO has

éxactly nine solutions, each of which is equal to one of the wvalues
{ 0, 11/(p—1)’ _21/(p-1) } in D; for each i for sufficiently
small 1 > O . In this case, 2({) can be regarded as a perturbation

from QO. Nevertheless,in this paper, we conclude that it is more



natural to regard Q(() as a perturbation rather from the set

Qe =D, VYV D, U L ( exhibited in Figure 4 ) where L = n Q(¢)

1 2
¢>0
than from QO = D1 u D2 if we consider the domain perturbation up
to the structure of the solutions of (1.1) for Q = Q(¢)
L
D, |
Figure 4
In the situation of Hale-Vegas [10] and Vegas [22], we remark that
%g is small around the solutions from the smallness of 1 > 0 and

this may ensure the uniqueness of the behavior of the solution v
on Q(¢) when v is Specified to take values near a; in Di

(i =1, 2 ) where f(ai) = 0 and f'(ai) < 0 , but the solution is
rather free on Q({) for general f

We consider a family of functions { VC }C>O such that VC is an
arbitrary solution of (1.1) for Q = Q(¢) and

lim "VC - a; | > = 0 holds for i =1, 2 where a; is any

point satisfying f(ai) =0 and f'(a.) < 0 and we prove that for

i
any sequence of positive values { Cm };=1 such that 1lim Cm =0 ,
m—eo

} and a solution V
m ‘m=1

< {¢

there exist a subsequence { = o }m=l

of the two point boundary value problem of the ordinary differential

equation (1.2),



(1.2)

V(z) = a; z € Di n L (i=1,2)

such that V.. is asymptotically near to V in Q(xm) in the
m

sense of "uniform convergence' and near to a. In Q(zx

1

) N D. .
(

In this case, the stability of. \ in (1.1) for Q2 = Q ”h)
coincides with the stability of g in (1.2) for large m .
Conversely, we take an appropriate nonlinear term £ for which
(1.2) has two stablersolutiohs V(O) < V(Z) and another unstable
(1)

solution V between them, in the case that aI = aZ = bl and

f(bl) = 0 and f'(bl) < 0 , and we construct three distinct

solutions VéO) < vél) < V(Z) of (1.1) for Q = Q(¢) small ¢ >0

such that véi) behaves like V(1) in Q(¢) ( i = 0,1,2 ) and takes
values near b1 in. D1 u D2 and véo) and véz)v_are stabie and

V§l> is unstable for small ¢ > O . Therefore we see that the
behavior of the solution Ve on Q(¢) which is almost governed by
the equation (1.2) on L , plays an important role to determine the
stability of VC even if ¢ > 0 is small. From~theée facts, we
conclude that we should regard () as a perturbation from

Q, =D, UD, UL .

The- boundary value problem (1.1) is 'a stationary problem of the

following parabolic boundary value problem,

W2 4u o+ £u) in (0,%) x @
t
(1.3)
Ju  _ -
7 = 0 ‘ on (0,=) x aQ
Definition O. A solution of (1.3) which is independent of the

variable t 1is said to be an equilibrium solution.



We recall the definition of the stability of an equilibriﬁm~
solution.

Definition 1. The equilibrium solution v of (1.3) is said to
be stable if given any ¢ > 0 , there existsa 6 > 0 , such that

lu(t,-) = v() |
L (RQ)

satisfying | v - w |

O

HA

¢ (0<t<=) forany we C’(R)

A

o

L (Q)
with the intial condition wu(0,x) = w(x) . We say that w is

6 , where u is a solution of (1.3)

unstable if v 1is not stable.
For details, see Matano [15].

It has been observed by several authors that the stability and
the structuré of the equilibrium solutions are closely related to
the geometry of the domain 2 . It is.known that an& non-constant
equilibrium solution must be unstable if Q is a bounded convex
domain in R™ . ( See N.Chafee [4] forn = 1 and see H.Matano [15]
and Casten-Holland [3] for general n .) More generally, the same
result holds in the case that Q 1is a Riemannian manifold with
non—negative Ricci curvature and 92 has non-positive definite
second fundamental form with respect to the unit outer normal vector
y on 42 ( S.Jimbo [11] ). On the other hand, Matano [15] has
constructed a non-constant stable equilibrium solutionbon the same
type of domain as Q{{) in Figure 1 . We shall refine his result in
Section 2. On the other hand, there are several results as for the
reaction-diffusion system. See K.Kishimoto and H.F.Weinberger [137],

H.Matano and M.Mimura [17].



The contents of this paper are as follows.

In Section 2, first we will set a perturbing domain

N

Q(f)= v Di u Q&) under a rather weak condition ( so it may be a
i=1

very wild perturbation )'and for small ¢ > 0 , we will construct a
stable equilibrium solution Ve of (1.3) for Q = Q(&) which :takes
Qalueé near a. iﬁ Di ( 1 <1igN ) whére a; is an arbitrary
zero point of f such that f'(ai) <‘O .

In Seétion 3, we will establish the domain Q({) 4in Figure 1
concretely ( for the delicate argument ) and analyze the behavior:on
Q(¢) of the solution of (1.1) for Q= Q({) which takes values near
a; in Di ( f(ai) =0 , f*(ai)k< 0 ) and we prove that Ve is
asymptotically near to some solution of the ordinary differential
equation (1.2) up to the stability.

In Section 4, we will choose an appropriate f ( é1_= as 1

0) 2)

in this case ) so that (1.2) has two stable solutions V( < V(
and —another unstable solution V(l) such that WV(O) < V(l)‘< V(Z)

For the domain Q(f) 4in Section 3 and these f and V(O) ,'V(l)

and V(Z) » we shall construct three distinct solutions véo) , vél)
and véz) such that vél) behaves like V(1) in Q(¢) and takes
values near bl in D, Vv D2 for each 1 (0 < i g2 ) and

véo) and véz) are stable and vél) is unstable for small ¢ > 0.

All the functions that we consider in this paper are real valued.



§2 Existence of Stable Solutions.

Let D1 ,D2 e, DN be bounded domains in R" (n > 2 ) such
that eachA Dj has a smooth bdundary aDj and Di n Dj = ¢ »holds
for any i and j with i > j . From now on we establish the

situation.

(II-1) Let {Q(C)}C>O be a family of bounded domains in R" which
satisfies the following conditions (1) and (2) ;

N
.Y, D,

(1) Each Q(¢) has a smooth boundary and Q(Cl) > Q(CZ) > .Y Dy

holds for any 551 and ¢, such that &y >¢, >0 .
N

(2) lim Vol(Q(¢) - ' Di) = 0
-0 i=1

(II-2) Let f be a real valued smooth function on R ‘such that

i

the set I { EeR | £(&) =0, £'(&) < o,} is not empty.

Under the above conditions (II-1) and (II-2), we will cbnsider
the equilibrium solutions of the following seémilinear diffusion

equation (2.1).

%%~ = 4u + f(u) - in (0,=) x Q(¢) ,
(2.1)
M= o0 on (0,=) x 32(¢)

We present our first result concerning the existence of stable
equilibrium solution which approaches the constant function on each

D. when ¢ - O
i



N
i }i=1
contained in the set [] = { Ee R| f£(&) =0, £'(&) <0 } and

Theorem 1. For any sequence of values { a which is

for small { > O, the boundary value problem (2.1) has at least.

one stable equilibrium solution VC which satisfies the following

condition (2.2),

1im | v, - a, | = 0 (1<i<N)
| £-0 S S =
(2.2)
lim v = a, in Cm(D.ZnS) for any 7 > 0 ,
£50 ¢ i i
(1 <1ic<N)
where we have defined Di(n) = { X € Di] dis(x,2(n)- Di) > 7 }

for any 17 > 0.

Remark. Hale and Vegas [10] have proved a similar result to

our Theorem 1 ( also the uniqueness ) under some asumption

concerning. the bound of %% with the aid of the Implicit Function

Theorem. But we do not impose any assumption concerning the bound of
'%g and therefore we cannot apply the Implicit Function Theorem,
because, as we will prove in Section 4, we can not expect the
uniqueness of Ve which satisfies (2.2) in general. We apply the

result of Matano [15] ( Theorem 4.2 in [15] ) essentially.
For the proof of Theorem 1, we use the Poincaré type inequality.

Proposition 1. Let D be a bounded domain in R® with smooth

boundary 4dD. Let { lq }

sequence of eigenvalues arranged in increasing order and the

”, and - be respectively the
q=1 { Yq }q=1 p v
complete system of the corresponding orthonormalized eigenfunctions
associated with -4 with Neumann boundary condition. Then we have

the following inequality



A -1
1 2 3 17"k )2
T f lgrad w|< dx + 3 —g17—~—~*( f. y y, dx )
g+l YD » k=1 g+1 D

2 J 1y 12 dx for.aﬁy Y € Hl(D) and natural number q .
- D

This can be easily proved by the eigenfunction-expansion and so

we omit the proof.

oo

Hereafter we denote by { 4; .} _, and { Yi qlq=1 °

respectively the sequence of eigenvalues arranged in increasing

“order and the complete system of corresponding orthonormalized

eigenfunctions associated with the operator -4 on Di with

N
Neumann boundary condition. Hereafter we put Q(¢) = Q(¢) - U Di .
‘ -o4i=1
*
(Proof of Theorem 1) We put a = max a, and a, = min a,
lgigN 1<igN

Let A(x) e« C“(Rn) n Lm(Rn) satisfy the following conditions

A(x) = a; for any X € Di (1 z1igN)

(2.3)

*
2y < A(x) g a for any x € R and grad A(x)

has compact support in R™.

We define for w e Hl(Q(C)) n LT(Q()),

. w(x)
(| grad w |? - f £(€) d& ) dx

Jp(w) =
¢t A(x)

JQ(C)
and also we define for ¢ >0 and 6 > 0 ,

— *

E(s,¢) = { w e C2(Q(t))n CH@E)) | ay - &

A
EH
»

A
o
+
Qs
[N
(s
0

oy

Jc(w) by Jc(A) + 63 ’ ” W= ai ”LZ(D )



To prove the existence of stable equilibrium solution of (2.1).
by the aid of Theorem 4.2 in [15], we will find a positive valued

function 6(¢) ( & > 0 ) which satisfies the following conditions

( 1im 8(Z) = O
. C—)O

E(6,) is a positively invariant closed subset of

(2.4) | c*( BIEY) n c®( 2(Z) ) under the flow defined by the

equation (2.1) when & belongs to the interval

. [6(C),26(¢)] for small ¢ > O .

It is clear by the aid of the Comparison - Existence Theorem that if
dy > 0 is small so that £'(¢&) < 0 for & « [a*—éo,a*) U (a*,a*+60]
hold, there exists a unique classical global solution uc(t,x) with

uC(O’X) = w(x) and a, - 4 g uc(t,x) < a* + 6 , x e Q(¢), t >0
for any w e C2(R(¢)) n CH(B(EY) such that

8g - O < a + & (xeQ),0<ds<3s

0 ) -

nA
g
%

Notice that 50 ‘depends only oﬁ f . From now on, we will argue
about ‘the behavior of uc(t,-) when t grows up, under the
condition that the initial condition w belongs to the set E(4§,().
Notice that uc also satisfies the equation given by replacing f
in (2.1) by f which is identical to f on the interval

‘[a*— 6O,a*+ 60] and has compact support in R , because the walue of
uc(t,x) aiways belongs to the above interval. Therefore from now

up to the end of the proof of Theorem 1, we assume, without loss of

generality, that f has a compact support in R

- 10 -



For each i (1 ¢ i < N ), we define vi Kk and ug a as follows,
»vC (t) = u {t x) (x) dx
i,k R A A I 9
. i
¢ I S o -
ui,,q(t’x) = kzl Vi,k(t) Wi,k(x)

and applying the inequality of Proposition 1 to P = uc - ug

D = Di there, we haVe‘the following inequality for each i .

(2.5) f | grad u (t,%) [%dx 2z 4, f up (e,x)-ud (5,%)]? ax
Di ' Di
. |
¢ >
s 2 A O e

On the other hand, the following inequality (2.6) is derived from

—gt JC( u;’-(t"i')) by o .

N
2.6 L lgrad u,(t,x)]|% -
(2.6) 3 | (Flerad ute.x)] fA(X)

ut(t,x)
(&) d& ) dx +

i
u,(t,x)
c [ e u e 2 - [ T e(e) a ) ax
Q(¢) 'A(x)
3
< JC(W) < JC(A) + 867 .

By (2.5) and (2.6), we have,

2

[ \Vy el
Ny
.
e
<
y

N
(2.7) —%— izl( A qel fDI u. - "4 ‘de +

X i,q K i k(t) )
1

1 ? l’

N u u
- ¢ + 1 2 _ Iy
izl fDi JA £(&) d& dx fQ(C)( > |grad uC{ JA £(&) df ) dx

- 11 -



+ Concerning the second term, we have for each i ( 1 <1 <N ),

) u, o i A
(2.8) j?i [} e as ax jDi fug,qf‘f) at ax
fbi fzé £(£) df ax

(2.9) f f g f(5> af dx f f P - sl ) ae ax

»Q

- f £(uf (5,%) (ug(t,x) - u§

'q(t,X) ) dé dx

. w2 .
[, [ 59 su £ qt Hlgmig ) g - 6) aE ax

O<u<l
1 q q
: ¢ ok - c
fDi(uC_uifq) {f(.vi’lwi, 1’)+fof (?i,lwi, 1+Mk§2'pi,kwi’k)kgzri’kwi,kd#}dx
2 ‘%‘ cq f; luc(t,x) - ug’q(t,x)]2 dx
i
g
i =
where ¢, = sup |f'(£)|. In the above we have used
£ R '
fD (uc(t,X) - Ug q( ))f(v 1(t) l 1(x)) dx = 0 which follows

i
from the orthogonality relation of the eigenfunctions and the fact.

that wi,l '1s a constant function in Di

- 12 -



Then we have from the above,

u
¢ 1 1 ¢ 2
(2.10) J‘D' fuc f(&) d& dx < cl(——2~ + 55 ) fD] uC - ul’q_! dx
1 i,d . +
°
Cdee & 0a? (e o

" From (2.7),(2.8),(2.9) and (2.10), we have the following inequality

(2.11) by using li,l = 0
N C e
1 1 1 ¢ 2
(2.11) '2 (—z~ 11,q+1 = - =, ) f | Up - ug oo | dx
i=1 Di v
N o] c, a N A
1 1 g 2
£33 (2, - ) -0 0% S [ [, o) et ax
i51 k=2 2 TRk 2 1.9 i=1 b, ugq

< JC(W) < JC(A) + 63 for t >0, a>0,q22
Now we put a = —%— inf li‘Z > 0 and fix it, so that we
1 1gigN ’
€1 1

HA
=

A
=
=

v
n

1 .
have 5= li,k - a 2 I li,Z (1
Next we take q sufficiently large so that the inequality

1

— 1

> i,q+1 T T3 i 1 holds for any i ( 1

v

A
.

A
=

- 13 -



and fix this natural number q

For a and q which we have determined above, the following

inequality (2.12) easily follows from (2.11).

N : 5 - N
(2'12)121 ]uc(t,x) - ui’q(t,x)] dx + g

Di : i

N a.
-3 [ i £(&) a& dx
i=1 YD ui,q(t’x)

i

U (t,x)
o | Flerad ugel? - [ ) ag  ax
Q(e) A(x)

A

< Jp(w) I (A) + 83

(t>20,¢>0,.0<34 < 6y » W € E(8,0) ).

The inequality (2.12) is the our main tool to proveithat uc(t,-)
always stay near A in Lz—sense if the initial condition w is
near A . In the inequality (2.12), only the third term is difficult
to deal with and it may be negative if w is not‘near to A . From
now on, we will prove that if & and ¢ are small, the third term
of (2.12) is always nonnegative and furthermore [ug’q(t,x) ; ai{

can be estimated in Di for the initial condition w e E(4,C).

We introduce the following function Bi(o).

a.
B. (o) fl £(6) a8 (1<ic<N)
a.+o
1

From (II-2) and {ai}§=1 c JI, it is easy to see that Bi satisfies

the following properties (2.13),(2.14) and (2.15).

- 14 -



(2.13) Bi(O) =0

(2.14) There exists a positive constant o, such that Bi(o) is

positive for any o € [~0,,0) YU (0, 0.]

(2.15) Bi(a) is a strictly convex function in ¢ on- (=0xr04) -

It is clear that XK = min min {'Bi(-g*)’Bi(g*)} is positive.
1<i<N

If w € E(é,f), we have

2 2 : 1/2 2
2 r dw-a ], = { »§ 1(0) = a; Vo1(p;)M/2 )

L<(D.) ,

) i

] E >
+ kgz ( vi3k(0) )< .
| ! i
We put ¢, = max Y. - and 6, = min {——,58, }
. 2 1<igN,1<kzq .k Ty (Di) 1 1gicgN 4c2 ql/2 0

Then for any &6, & such that O < § < 51 s+ & >0 , we have,

(2.16) | ug’q(o,x) - a; | < | vg’l(o) wi’l(x) - a; | +
S8 (0w, () | < { max v, o | a2
k=2 LK 1ok T 1gieN,1tksq TR TL7(p))

g
< { | yg,l(o) - a, vor(p)1/2 |2 . S "

- 15 -



Here we define, for &6 and ¢ ,

T(8,0)

n

sup { tye 2

\%
O
<2

() (x) - a;| + % | vh (1) (%) ]
i,15¥1 1 i < k,i'") ¥ik

A
Q
*

for any (t,x) € [0,t,] x Dy (1 <1

A
2z
[SSp—

It is clear that T(é6,f) is positive if w e E(6,C) for 6 and
¢ such that 0 < 6 < 6, and ¢ >0 hold. From now on we will

_ prove that T(8,f) is infinity if & and ¢ is small..

Lemma 2.1. Let 52 € (0,61) and Cl'> 0 be positive
constants such that the following inequality (2.17) holds for any

(8,6) & (0, 8,1 x (0, £y].

(2.17) 63 + o5 Vol(Q(?))

A

. o _ . 2
12;2N min {Bi(c*/S)Vol(Di), B;(-04/8)VOl(D;), 4; 5 0.7/6k(a-1)c, }.

where cg = sup |grad A(x)[2 + f |£(&)| df
, : x € R R

Then T(6,() = = for any (6,f) € (0,62] x (O,Clj.

(Proof of Lemma 2.1) We assume that T(é6,f) 1is finite for some
(6,¢) € (0,62] x (O,Clj and w € E(8,(). If t belongs to the

interval [0,T(6,¢)], the following ineguality (2.18) follows from

- 16 -



the definition of T(6,¢),

ey

(t,x) - a. | | vc

(2.18) | u q i < i1

(t) wi,l(x) - ai[

A
Q
*

gq v
+ 3 vg’k(t) vy e (x) | on [ 0, T(8,¢)] x D, .

Hence it follows from (2.13),(2.14) and (2.15)

‘T((STC‘)? i=1,2,---,N )

A
ot
A

ey
j J-C f(§) dédx > 0 (O
Di ui,q(t,x)

follows.

As we have the following inequality (2.19) from (2.12) and the

definition of JC and c3 :
N N g
2 ¢ 2
(2.19) S | | u(t,x) - ub (t,x) [Zdax+ S 3 1. (% (t))
i=1 fD ¢ 1.9 i=1 k=2 T2 L.k

A

N a.
-3 | % £(£) a¢ dx
i=1 Di ui k(t,X)

we have, for any (6,(0) e (0,62] x (0, Clj and from (2.17),

the following inequalities (2.20) and (2.21),

N q v
(2.20) 121 kzz 1 1 5 vg’k(t) )2 < Ay 0x°/64(a-1)c,”
[, I ‘ :
(2.21) 0 < f(&) df dx < min { B.(+ 0,/8)Vol(D,) }
= Jp Jut (t,x) T 1gizN 1= +

- 17 -



$ ¢
By (2.20) and g little calculation, we have k§2 [vi,k(t)] < mEEE

(0t g T(é,¢) ). Hence we get the following inequality (2.22)

(2.22) { ug q(t,X) - VJC'_,l(t) wl,l(x)l

9

o
= ¢ 1
= | kgz ?i’k(t) wi’k(x) | & — 9% -
. _ \-1/2
Next that from (2.21) by the aid of. Vs 1(x) = Vol(Di) .

we obtain

)—1/2

N
(2.23) 05 3 B, (v ,(t)Vol(D, ~a + ¥, (t,x)) dx
i= ’

D.
i

A

1T§2N { B;(#04/8) Vol(Di) }

(o

A
ct
A

T(6,0), 0 < ¢ < Cl , 0 <8 < 8, ) where we put

q .
. _ £
?l(tvx) = g vl,k(t) ‘Pl’k(x)
Remark that ?i(t,x) is estimated in (2.22). It follows from (2.16)

tha ]vg,i(O)wi,l(x) - ai[ < 0, /4 in D

Now we assert the following inequality :

(2.24) a;- oy /2 2 5 ((B)yy ((x) = ¥}

‘for any t e [0,T(é,()] and 1 = 1,2,---,N.

If the inequality (2.24) breaks at t = t' € [0,T(6,()] for the

first time for some i then lwc (t')Vol(D )_1/2 - a.| i
! i1 i i 2

- 18 -



holds and [ug (t',x) - a;| 2 I s in Di follows from (2.22)

and we have
B.(ud (t',x) - a.) dx > min {B,(—i-0,),B. (- —t—0.)}
p. & i.,a 77 i = iVTE )BT T 0w )
. : .
But this contradicts the inequality (2.23) by (2.13),(2.14) and
(2.15) and the continuity. Thus we have ascertained the inequality

(2.24).

Then again by (2.22) and (2.24), we have the inequality,

¢

l vi,l(t)wi,l(x) = ai l * ‘ Vg,k(t) wi,kfx) l

Il MQ
HA
Q
*

k=2

on [0,T(8,6)] x D, (1gisN).

Then there exists ( by the continuity of uc(t,-) ) T' > T(8,C) .

such that
¢ S ¢ '
‘ yi,l(t) wi,l(x) - ai l + k§2 I Vi,k(t) wi,k(x)l S Oy
holds on [0,T'] x D (1 <1 <N ). But this is a contradiction

to the definition of T(é,f). Consequently we conclude T(6,f) = «

for any (6,0) e (0,6,] x (0,8 ].

Lemma 2.1 is thus proved.
Therefore,from the inequality (2.19) and Lemma 2.1 we have the
following estimates (2.25),(2.26) and (2.27) concerning the behavior

of uC(t,-) with intial condition w € E(46,C),

N

¢ 2 ' 3
(2.25) (t,x) = u; _(t,x) dx < Vol(Q(¢)) + 6
2 Di[uc * ‘ul,q )7 dx 5 eg Vo
A ¢ 2 3
(2.26) iél kgz 11’2 ( vi’k(t)') : cg Vol(Q(¢)) + &

- 19 -



holds and [ug q(t‘,x) -a,| > —— 0+ in D; follows from (2.22)
and we have
B.(u4 (t',x) - a,) dx >  min {B,(——04),B, (-~ ——0,)}
' D i‘7i,q ? i - N %/ Py T %x/1
g
But this contradicts the inequality (2.23) by (2.13),(2.14) and

(2.15) and the continuity.‘Thué we have ascertained the. inequality
(2.24).

Then again by (2.22) and (2.24), we have the inequality,

¢ | | . ¢
ri o (Bdwy g () —ay b 2 1 wg g (8] vy (%) |

A
Q
*

on [0,T(6,6)] x D; (1

A

i<N).

Then there exists ( by the continuity of ué(t,-) )y T' > T(6,C)
such that

4
| Yi,1

A
Q
*

Il h4Q

(6) vy ((x) =2 |+ 3| 95 () vy (x)]

k=2
holds on [0,T'] x D, {1zs1c¢g N ). But this is a contradiction
to the definition of T(é,{). Consequently we conclude T(é,{) = =

for any (8,0) e (0,6,] x (0,0,].

Lemma 2.1 is thus proved.
Therefore,from the inequality (2.19) and Lemma 2.1 we have the -
following estimates (2.25),(2.26) and (2.27) éoncerning the behavior

of uc(t,-) with intial condition w € E(6,(),

(2.25) § lu, (t,%) - w6 (t,%)]2 dx < o, Vol(Q(e)) + &2
i=1 Jp, & i.9 7 = 73
(2.26) 3 3 i, (05 (012 5 o vel(alr)) + 53
it k=2 A = 3
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a, '
221y o ¢ [ [} £(£) dE dx < cp VOL(Q(Z)) + 87
- D. uq (t,x) - 3 '
i “i,g'7?
(O§t<m,O<C<Cl,O<5<52).
From 1lim Vol(Q(¢)) = 0 , it is clear that there exists a strictl

-0
monotone continuous function ¢((8) on some interval (0,53]
( 0 < 53 < 52 }) with the following properties (2.28).and (2.29),

(2.28) lim £(8) = O
| 5-0

(2.29) &3 + ey Vol(Q(Z)) <

62 +§

172 /2,2’ Vol(D,)B

2 A
min min { Z , i,2
1gicgN 64(1+c2(q-1

Vol(D,) i(BVOl(Di)l/2 :

for any ¢ e (0,£(d8)].
We define a function 6({) to be the inversé function of the above
function ¢((é). It is easy to see that 6({) is defined on some

interval (O, 52] (0 < CZ < Cl ) and 1lim 6(¢) = 0 holds.
- £-0

Lemma 2.2. The set E(6,f) 4is positively invariant for any
(6,0) & [6(6),53] x (0,52], i.e. for any w € E(8,0), the solutic

of (2.1) uc(t,-) belongs to E(é,f) for any t > O
(Proof of Lemma 2.2) For any w € E(6,f) ( 8(¢) g8 g 53 ,
0 < ¢ < CZ ), we can obtain from (2.25),(2.26),(2.27),(2.28) and

(2.29) the following inequalities,
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(2.30) z f | upltox) -l (6,002 5 (4 )2
N g 4 2
(2.31) 21 gz g Ay o | V 1 (E) )
2. |
< . i,2 { d }2
= 12§2N_ o4 BT (q-1)17/2 Vol(Di)l/Z
» +U.
2.32) 0 < £(£) df dx g Vol(D, B,
(2.32) 0 = f f e nyt) a8 ax s verd l)lfiEN{ (8Vol(D 7z
(0<¢C s ¢y o 6(¢) < ¢ §’63 y T >0 ).

Here we have, from (2.31), the following (2.33) and (2.34),

0
<
D)5 4 (1 + cy(a-1)t/Zvor(n,)t/?)

¢
i

(2~33) H v-,k(t)wi,k uLZ(

-
il i
N

' q
(2.38) | 3 0% 0wy b L g ey (@00 3 6] (60?32

2 X L¥(D)) k=2

i M’Q

cy(q - 1 )12

4( 1 + cy(a-1)2/%vo1(p,) /)

A

Hence applying the same argument as the last part of the proof of
Lemma 2.1 ( which deduced the inequality (2.24) ) to the inequality

(2.32), we have the following estimate.
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i i,1
s cy(q -1 )2
i Vol(Di)l/Z C4{ 1+ cz(qfl)l/z VOl(Di)l/z }

N ), and then webhave,

o
A

-
HA

(2.36) | ag - 5 () 4 L2 ) 2
1
1/2
1 1/2 1 : cy{q - 1)
Vol(D.) X . »
e 1 { Vol(Di)l./Z Yl cZ(q-I)l/ZVOI(Di)l/Z }

Therefore, using (2.30),(2.31) and (2.32), we have

: ¢
ty') - - =< (t;’) = . (ts")
| ,uc( a; “LZ(Di) 2 | uc u ,q HLZ(Di)
S . C ¢ |
o “ k§.2 Vi,k(t) wi,k‘ HLZ(Di) + ll a; -~ 'vi,l(t) wi,l “LZ(Di)
< 8 (tz0,1 < i< N).

Thus we have proved the positive invariance E(é,f) under the

conditions 0 < ¢

IA

:2 and 6(¢) s 8 =2 63 and we have

completd the proof of Lemma 2.2 .

Thus we are in the situation where we can apply Theorem 4.2 in

Matano [15] to the closed subset E(6(C),Z) of CZ(Q(C)) n Cl(Q(C))
because it is easy to see that E(6(¢),{) has " the property (S)"
in [15] for ¢ > 0 ( 0 < < CZ ). Thus we have obtained a

stable equilibrium solution v in E(6(¢),f) for small ¢ > O

¢
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(2.35) | a; = v (t) vy 1(x)[ <

1 i,1 5. =
P cy(q -1 y1/2 5
* VO:L(Di)l/2 b1+ Cg(qfl)l/z Vol(Di)l/2 }

on [0,=) x D,

1 ( 1

A
e
A

N ), and then we have,

(2.36) 1 ay = »§ ((£)py o |

<
L%(,) -
1/2
1 1/2 1 cyla - 1)
Vol(D. 1
5 o Vol(by) i { VOl(Di)l/Z 1. cz(q—l)l/ZVol(Di)l/Z }

Therefore, using (2.30),(2.31) and (2.32), we have

| up(e,e) - ay "LZ(Di) < lugle,) = ui (£,0) “LZ(Di)
ol 3 E ) vy O
2y TiLk L 12p ) i i,1 1.1 12
< 8 (tz0,1 g1igN )

Thus we have proved the positive invariance E(4,() under the

conditions 0 < [ < £, and  4(C)

A

S < 63 and we have

completd the proof of Lemma 2.2

Thus we are in the situation where we can apply Theorem 4.2 in -

Matano [15] to the closed subset E(8(£),Z) of C2(@(¢)) n cH(B(EY)
because it is easy to see that E(é6({),{) has " the property (S)"
in [15] for ¢ >0 {0 < < ¢, ). Thus we have obtained a

stable equilibrium solution Ve in E(6(¢&¢),¢) for small ¢ > O
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Next we examine the property of Ve - For any i ( 1 <1 g N)
Ve satisfies the following relations.
(2.37) AVC + f(v'c) = 0 in Di
*
(2.38) a, - 6(C) ¢ VC(X) < a o+ (&) in D,
avc
(2.39) =5 = 0 on ag(c)}n aD;

For any n > 0 , applying the;Schauder estimate to VC on the
do@ain Di(n/Z), we obtain the boundedness of { Ve }C>O in
C1+ﬂ(Di((1—(l/2)Z)n)) for some g € (0,1) and also the boundedness
of {f(vC)}E>O in C1+5(Di((l-(l/2)2)n)). Again,applying the Schauder
estimate to the domain Di((l-(l/Z)Z)n), we obtain the boundedness
of { VC-}C>O in C3+ﬁ(Di((l—(1/2)3)n)). Repeating this bootstrap

argument, we obtain the boundedness of { v, } in Cm(D.(n)) and
¢ >0 i

also the compactness in Cm(Di(n)). On the other hand, we already
have 1lim ﬂvc'- a; | 5 = 0 , then we conclude
-0 (D)
i
lim v = a, in c”(p,(n)) (1 <i<N ). This completes the
£>0 ¢ i i = = ,

proof of ‘Theorem 1.
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§ 3 Asymptotic Behavior on The Thin_Part.

In this section we consider the behavioerf the solution on the
perturbation part Q({), but the domains intfoduced in Section 2 can
contain extremely wild perturbation because thé condition (II-1) is
too weak. For the sake of the delicate argument about the behavior
of the solution, we establish the domain concretely which is the

special case of those in Section 2.
We set the domain Q(¢) in the following form :

a(¢) = D YU D, U Q)

where D, (i=1,2) and Q(¢) are defined in the following (III-1)

. _ . _ 4 . n-1
and (III-2) where x' = (XZ,X3, X)) € RO

(III—l) ‘Dl and D2 are bounded domains in Rn‘(mutually'disjoint)
with smooth boundary which satisfy the following conditions

-for some constant (§, .

1, |x'] < 3¢, 1}

51 no{ x = (x,x") e R? | Xy g
= {(1,x") eR” | |x'| < 3¢,
Dy, n {x=(x,x') e R™ | X, 2 -1, |x'| <30}
= { (-1,x') e R® | |x'| < 3%, }
(III-2)  'Q(¢) = Ry(¢) Y R,y(¢) v TI(f)

Ry(8) = { (xy,x") e RY | 1 -2¢ < x

A

L2 1 Ix'] < fal(xg-1)/2) )

Ry() = { (xg,x') e B | =1 g xy< -1 + 20, |x'| < ¢p((~1-x,)/) }

itA

x, £ 1=2¢ , |x'| < ¢ }

T(¢) = { (x.,x') € R | -1+20 < x,
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where p ¢« CO((—Z,O]) n C((-2,0)) is a positive valued monotone
increasing function such that p(0) =2, p(s) =1 for s e (-2,-1)
dk
and lim ———%——(s) = + oo holds for any positive integer k
51-0 ds
We also assume that

(II1-3) Iim £(&) < 0, lim £(&) > 0
5-—)00 5—)-—09

Remark. The domain determined above satisfies (II-1) and
(II-2) therefore it is a special case of that dealt in Section 2

and so we use the same notation ().

Under the situation supported by the conditions (II-2),(III-1),
(I1II-2). and (III-3), we analyze the asymptotic behavior of some
solutions ( which will be characterized by (III—Q) } of the

following semilinear elliptic boundary value problem (3.1).

4v + f(v) = 0 in Q(¢) ,
(3.1) A
%% = 0 on d3R(¢)

(III-4) Let Ve be an arbitrary solution of the above (3.1) for ¢

( 0 < < {4 ) such that the family of the functions { Ve }O<C<C*

satisfies the following condition.

lim | Ve =8y

I
=0 L (

i

where f(ai) = 0 and f'(ai) < 0 (1i=1, 2 ). ( See (II-2) )
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Definition 2. Let ul(C) be the first eigenvalue of the -

following eigenvalue problem.

4 p + f’(vc)w + py = 0 in Q(¢) ,
(3.2) ,
¥ = 0  on a0(f) .

Remark. It is well-known that if pl(C) > 0 { resp. pl(c) < 0)
Ve is stable ( resp. unstable ) as an equilibrium solution of

(1.1) for Q = Q(¢).

Remark. The two values a and a

1 > are not necessarily

mutually distinct.

We define M, = dinf { £ e R | f(£) =0 } and
M= sup { £ e R | f(£) =0 }. It is easily seen by (II-2) and

(III-3) that My, and M* are well defined and that

(3.3) M, < VC(X) < M for x € Q(¢).

Then we have the following theorem.
Theorem 2. Assume n > 3, then we have, for i (i=1, 2 ),

lim sup | VC(X) -2y | = 0.
-0 X € DiU Ri((:) » '

We prepare the ordinary differential equation which describes

the asymptotic behavior of Ve on Q(f) when ¢ I O

2
d T+ £5(V) = 0 in -1<z <1,
dz

(3.4)
V(1) =a , V(-1) = a, .
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Definition 3. Let lv_ and @v be respectively the first
eigenvalue and the first eigenfunction of the following eigenvalue

problem (3.5) for a solution V of (3.4).

a%se

dz2

+ £'(V(z)) ¢ + 21 @ = 0 in - 1<z<1 |,
(3.5) |
#(1) =0 , #(-1) =0

Now we present one of the main results of this paper.
Theorem 3. Assume n 2 3, then for any sequence of positive

0 , there exist a

]

such that lim ¢

M=o

values { Cm };=1

m
subsequence { x_ }mzl c { ¢, },-q anda solution V of (3.4)

with the following asymptotic property (3.6) :

(3.6) lim . sup [ v, ( xl,x') - V(xl) [ = 0
Moo X € Q(xm) m

Furthermore concerning the above V , if XV > 0 (resp. AV < 0),

then 1im (x.) >0 (resp. lim (#.) < 0 ) holds.
== Mg %y - #q\¥q

m->eo m->e

Before starting the proof we introduce some notations.

p1= (1,0,"’,0) ’ p2= (_1,07""0) ,’
I (n) = { (x,x") € R | x; > 1, | x=-p/]<n },
Zy(n) = { (x,x") eR" | x; < -1, | x-p,| <7}
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It can be easily seen by the last part of the proof of Theorem 1
and the condition (III-4) that the following convergence (3.7)

follows.

(3.7) %ig Ve =8y ~ in C (D,

for any small positive constant 79 (i=1, 2).

( Proof of Theorem 2 ) First we will prove
(3.8) lim sup | ve(x) - ay | = 0
-0 x € Dl
We define for ¢ >0 and 0 < ¢ < &, ,
K(e,l) = { x € Dy | [ VC(X) - a, | > ¢ }
n(e,t) = inf { 7. >0 | Z,(n) 2 K(e,0) }

Then it follows from (3.7) that

(3.9) lim #(e,f) = O for any ¢ > 0
¢-0 '

It is easily seen that (3.8) is equivalent to the following fact

(3.10).

(3.10) For any ¢ > 0 , there exists CO = Co(e) such that

n(e,) = 0 for any ¢ such that O < { < CO

Assume that (3.10) does not hold in spite of (3.9), that is

(3.11) there exists £g > 0 such that n(aO,C) > 0 for any ¢
such that 0 < § <

We shall show that this assumption yields a contradiction.

( See (3.38),(3;40) and Lemma3l,2 mentioned later. )
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Here concerning the convergence (3.9), we have the following

estimate.

Lemma 3.1.

. z
(3.12) %ig T 5T > 0 for any & such that 0 < & < £q
(Proof of Lemma 3.1) If we assume the contrary, there exist g
1
(0 < €1 < €5 ) and a sequence of positive values { Cm }m=1 such
that 1im (= O and Lim ——%;——f—T = 0 . This last
m->es - m—>ee KARSRAS !

limitation also holds if € is replaced by a positive constant

whichvis smaller than ¢ Therefore we assume without loss of

1 °

generality that ¢ is sufficiently small so that f'(&) < ‘O

1
holds for any ¢ € (al— €1» 8yt sl). We denote n(sl,cm)' by Ny
for simplicity hereafter. |

For the analysis of the behavior of VC on the small part Zl(C),
we change the scale of the variable x iInto y around the point
Py as follows.

(3.13) x =py = 7-(y=-pg)

Up(y) = ch(nm-(y-p1)+pl)

By (3.13), the equation (3.1) is transformed into the following

equation (3.14) in some neighborhood of Py

Ay Um g f(Um) = 0 in 21(35* /nm)
(3.14)
CAUR 2¢ 3 0y
3 (0,y') = 0 for y' such that < |ly'| <
Y1 m Mo
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]

We put max | U (y) - ay |

7
" vy 21, ly=py 1=3Ce/my "

=  max | v. (x) - a, |
xeDl,]x-p1|= 3L, ’m 1

Then it is easy to see lim = 0

m—res

’m
We have the following properties (3.15),(3.16) and (3.17) by the

definition of g = m(e ,¢ ) end U .

(3.15) max | U (y) - a, | = max | v, (x) - a, |
YI ; l,[y~pll=l m 1 X € Dl,lX~p1[=nm Cm 1
= 31
(3.16) | U (y) - ay | = £y in 2, (38«/ny) - 2,(1)

(3-‘17) M,

A

A
=

U, (v) in 2, (3L4/7_)

Here we define a comparison function Gm which will estimate Um

for large y .

€q
G, (yv) = == * 7
l Yy - P 1 !

It can be easily seen by (3.16) and the assumption of £q that

£(U(y)) < 0 for any y e (2;(30u/ny)-2(1)) n{y | U

nl¥) > e}

P(U_(y)) > 0 for any y € (2,(3¢x/n)-2,(1)) n { v | U (¥) <&, }

m
and that Gm is a harmonic function in Zl(C*/nm) - 21(1) with

aG 3 Cs

the boundary condition —2 (0,y') =0 (1 < ly'] <
9y 4 , Tm
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Then we can apply the standard argument similar to the Comparison
Theorem to the function Um -y in thg domain 21(3C*/nm) - 21(1)
by using (3.1&),(3.15) and the definition of ’m and we obtain the
following estimate (3.18) for sufficiently large m .

Recall lim ¢ /nm = 0

M-

(3.18) | Up(y) - a; | g Gu(y) for y e Z(3¢./ny) - 2;(1)

Applying the same argument as the the last part of the proof of

Theorem 1 and moreover the»diagonal argument to the family ({ Um }°°

m=1
in (3.14) with a-priori bound (3.17) by using lim 1, = 0 and
. m=» oo
iif Cm / Tn = 0, we can choose'a subsequence { Umj }j=1 such

that there exists a smooth function U in

=]

CT({(yyoy") e RY | vy 21} = {py})
with the following conditions (3.19), (3.20), (3.21) and (3.22).

*

(3.19) My < U(y) ¢ M in { (yovy") | vy2 1} -{pg}

. . n

(3.20) 4, U = 0 in { (yy,v') e B |y > 1}

(3.21) -%%— (1,y') = 0 for y' e R™' such that y' # 0
1

(3.22)  lim U = U

Joee J

in CT{ vy Iy ztomsly-p | s 1)

for any n > O

- 31 -



On the other hand, from the estimate (3.18), the convergence (3.22)

and lim o = 0 , U satisfies the following estimates
M—e
1
(3.23) | U(y) - a; | = )
l y - pl [
ln{(yl’y!)emnlylzly IY"Pll?.l}
¥*

(3.24) My ¢ Uly) ¢ M din { (y;,¥') € BY| y;>1 }

From (3.15), the convergence (3.22) and the compactness of the set

{ (YI,Y‘) e R | ¥4 1, |y- Py | = 1 }, it follows that

nv

(3.25) max | U(y) - ay | = £y
vy 2 1,ly-pyl=1

Here we can define a function U e c"(mn - { pl}) by using the

Laplace equation (3.20) and the Neumann boundary condition (3.21) as

follows
—_ U(y) for- yl 4 T, v # pl
U(yq,v') =
U(2-y,+v") for vy <1
By a simple calculation, we have,
_ . n _
Ay U = 0 in R { Py }
* . n
My £ Uly) g M in R° - { py}

Therefore, applying the removable singularity theorem, we can extend

T on R"™ as a bounded harmonic function. We denote it also by U .
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Thus U must be a constant function by the Harnack Theorem. But it
is impossible by (3.23) and (3.25). This is a contradiction and we

complete the proof of Lemma 3.1.

By Lemma 3.1, we take a constant g > 0O such that

(3.26) lim

755 M(egel) B> 0, 0 < f < 1/2

We change the variable x into y around Py by the following,

X - pl = C'( y - Pl )
(3.27)
By (3.27), the equation (3.1) is transformed into the following

equation (3.28)-(3.29)

2 _ .

(3.28) Ay UC + f(UC) = 0 in HC R
SUC

(3.29) 5 = 0 on aHC n 9H

Here we have put,

H = { (y;ov') e B |y, >1]}
U { (yyy") e BT | =1 <y 21, |y'] o< oplyy-1) )
v {'(yl,y')Eanl ylé_lvly'l<1 } o
He = H oo { (y,y') e R | y; g-1,0r |y=-p5] 23/t )

and » denotes the unit outer normal vector on dH.
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L}

Here we define T max | Uc(y) - ay [
yl ; 1yly‘Pll=3C*/C

= max | v.(x) - a, |
. X € Dl’lx_pl|=3c* C 1

It is easily seen by (3.7) that vlim Ty = 0 .

. ¢-0
From (3.26) and the definition of n(so,C), we have,
(3.30) n(eo,c) < ¢t/ B for sufficiently small ¢ > O
and also we have,

(3.31) max ] ve(x) - a, | = max JUAy) - a,]
x € 2,(6/8) ° R O I TAETY/ A t

> max | vo(x) - a, | = ¢
- Xl ; 1le_pll=ﬂ(£ovc) C 1 0
(3.32) ] Ue(y) - 2y | = e
3 1 n 35*
in { (ypy)eR |y 2 1, 5 sly-pplz }
(3.33) My 5 Uly) g M in H;
(3.34) | | 0
3.3 1 Upl(y) - a s - . T
¢ 1 = ﬁn 2 l y - pl ‘n 2 ¢

in 21(3C4/5) - 21(1/5)

- By the same argument in (3.28),(3.29),(3.33) and (3.34) as the proof

of Lemma 3.1, we can choose a convergent subseguence

c {vu such that 1im Cm = 0 and a

M- e

¢ to<r<r,

function U € C ( H ) which satisfy the following equations

(3.35) Ay Uu = 0 in H
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(3.36) =— = 0 on @H
(3.37) lim U, = U in C°(H_ ) forany % > O

M=o m 77

| | 0
(3.38) U(y) - a < — =

1 = 2 v - b, E 2
in { (yy,y) BV | oy, oz 1, | y=-p | 2z 1/}

(3.39) M, < U(y) < M in H

On the other hand, from: (3.31),(3.37) and the compactness of the set

{ (yyov') eR |y, 2 1, | y=»p, | £ 1/ }, we obtain

(3.40)  max | U(y) -a, | 2 1/8
vy 2 L ly-pyl s g

Thus (3.38) and (3.40) imply that U is a non-constant function in
H . But this is impossible from (3.35),(3.36),(3.39) and the

following Lemma 3.2.
Lemma 3.2. Let vy be a bounded function which belongs to

C( H) and satisfies the following equations

(3.41) 4, = 0 din H
(3.42) %%— = 0 . on oH
(3.43) lim | w(y) - a | = 0

Then w = a in H
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( Proof of Lemma 3.2 ) We assume the contrary. Without loss of

generality, we may assume

(3.44) sup w(y) = M > a
y € H
We choose a sequence of points { ro };=1 C H such that
1lim w(rm) = a . Using the Strong Maximum Principle, the Hopf

m-e

Lemma ( See [19] ) and the equation (3.41)-(3.42), we can easily see
that 1w cannot attain its maximum on H , because vy is a

non-constant function. Moreover { ro }m_1 does not have an

accumulation point on H and so from (3.43), we obtain

lim r = - =
m,1l
[I1—>o
We assume r < 0 for any m ;
m,1
here we denoted by r_ . the 1i-th component of the point r

m,1i m

We define a family of functions { v };=l as follows,
Yu(yey') = wlyg+ rp 1+2,5")

Each Yo satisfies the following equations,

(3.45) 4, vy, = 0 in H n {y; <0}
awm

(3.46) — = 0 on 3 n {y; <0}

(3.47) v (y) ¢ M in H
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(3.48) 1im max wm(y) = M
M- Hn {y; =-2 }

By the standard compactness argument cocerning the solutions of the

elliptic boundary value problem and the Maximum Principle in

(3.45)-(3.48), we deduce the following convergence,

(3.49) lim y_ = M in C*(Hn { -3 < yq< -1 1)

Mm-»eo

On the other hand, integrating the equation (3.41) in y' on

{ ly'| <1} by using the Neumann boundary condition, we have,

d2

dyl

t =
> flv'l<l p(ypy') dy' = 0 for 'y, £ O

But the boundedness of w implies the boundedness of

J

‘Therefore f
ly']<1

p(yq»y') dy! in - < y; 2 0
|y ]<1

w(yl,y') dy' 4is independent of 'y, when Yy

negative. We denote its value by K

Therefore we have the following equality,

(3.50) [

]
oy

v (=2,y") dy' = f plry 1pv') ay”

ly'[<1 ly' <1

We remark that the left hand side (3.50) tends to the value

M f 1 dy' when m tends to = . Then we obtain,
ly'[<1
f (Pm l,Y') dy' = f M dy' for any m

P
ly']<1 ly']<1
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From (3.44), the above equality implies w(rm 1,y') = M for vy
9

such that |y'| < 1 . But this contradicts to the fact that
cannot attain its maximum on H . This completes the proof of
Lemma 3.2 and also the proof of 1lim sup | vc(x) - ay | = o

-0 vx € Dl

To prove  1lim sup | VC(X) - ay | = 0 , we remember
-0 X € RI(C)

the transformation (3.27),(3.28),(3.29) and by means of a similar

argument there and we get the compactness of the family { UC }O<C<C*

in Cm(Hn) for any 7 > 0 . Let ({ UC };zl be any convergent
- M m
subsequence of the above family such that lim Cm = (0 and
m-o
there exists U e C (H) such that lim U = U in CT(H)
' mee  °m K
for any 7 > 0 . Then U 4is a harmonic function in H . ( See

(3.35) and (3.36). ) But we have already proved-

lim  sup | VC(X) - ay | = 0 which implies ﬁ(yl,y‘) = a, for
-0 x € Dl '

any y € Hn { ¥y > 1 }. Hence by the Unigque Continuation Theorem,

we get U = a; in H . Then we conclude
lim sup | UC(Y) - ay | = 0 for any 7 > O . This implies
(-0 y eH ,
7
lim sup | VC(X) - ay | = 0. Thus we complete the proof

(-0 x € Rl(C)

of Theorem 2.
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( Proof of the Former Half of Theorem 3 )

To analyze the asymptotic behavior of VC in the thin part

Q(¢), we change the variable x into y as follows.

Y1 T %1
(3.51) ty' = x!
Uc(Y) = Vc(yl’ty")

2

We define «((¢) = 2 sup | VC(X) - a; | and so by
i=1 x € R () ~

Theorem 2, we have lim () = O . We put o = - max * [ £(&)]

£-0 My 2 & 2 M

By (3.51), the equation (3.1) is transformed into the following

equation in the part corresponding to Q(¢).

a2 1 n a2
(3.52) ( —s * 3 2 5 ) UC + f(UC) = 0 in G(¢)
9y 4 ¢ j=2 ayj
aUC
(3.53) 3 = 0 on Gn {-1+¢<f<1-2¢1}
|
where we have put G = { (yl,y‘) eRY | |y'| <1, -= < vy <=

G(¢) =Gn{ -1+ <y, <1-¢(1} and denoted by » the unit

outer normal vector on 4G

We decompose UC as UC = U

equations which determine U

1,¢ + U2,C by the folloeing

1,¢ and UZ,C uniquely.

(3.54) (25 + =5 3 S5 ) U ,y) = 0 in G(£)
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Ul,C(y) = UC(Y) on G n { yl = 1 - c } :
(3.55)
Up ¢(¥) = Uely) on G {yg ==-1+10}
aul r
(3.56) 5;‘4—(Y) = 0 on G n{-1+¢<y, <1- c}

(3-57) UZ,C = UC - Ul,C

By the aboverdefinition, U2 r automaticaly satisfies the following
. b4

equation
(3.58) (—2 + 1 5 22y £(U,) = O G(¢)
. + —_— + 9] = in
ay, 2 % =2 ay .2 2t ¢ |
J

(3.59) U, ,(1=0,y') = Uy o(=1+C,y") =0  ([y'[ <1)

3U,
(3.60) Py = 0 3G n {-1+1C =2y, < 1 -7}

Hereafter we denote the differential operator by PC as follows

P, = + Z —

2 .
ayl ¢ j=2 SYj

We can deduce the following estimate by applying the comparison

theorem in (3.54)-(3.55) by the aid of the definition of 1 ({)

Lemma 3.3. For any ¢ € (0,(,), we have,
1”C"y1 l-C+yl

(3.61)  sup | U, (¥y) - 57— 28, = 57— a8, | = (¢)
y e a(r) Lt 2-2¢ 1 2-2¢ %2 2
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We define functions @i in G(¢) which estimate UC roughly.
( ) yl + 1 -7 : 1 -7 - yl
o Va,y') = a, + a
5,001 2-2¢ 1 2 -2¢ z

—%(y1+1—5)(1—¢—y1> (L)

1+

Lemma 3.4. For any ¢ € (0,f,), we have the following estimate
o_ (v) 2 Uey) 2 2, (y) in G(C).

(Proof of Lemma 3.4) By an easy calculation, we have,

PC @i = 7 ‘w in G(C)
a¢+ o
55— = O on 3G n { -1 + ¢ < vy <1 -1¢ }  and by the

definition of (), we also have

al - L(C) = é_,c(l—c,y') § Uc(l_C’y')

HA

®+’C(1'ny') = al + (%)

1}

az - L(C? Q_’c(_l+C9yr) é UC(-1+C’y') é ©+,C(—l+c’y') = az + L(C)

Applying the comparison theorem, we have the consequence.

Lemma 3.5. There existsba positive conStant Cq such that

au n oU
(3.63) f l .5§§4§ I 2 dy + _li S l 2,0 l 2 dy
G(¢) 1 ¢ j=2 “G(¢) oy’
< cy for any ¢ e (0,¢,)
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We can deduce this inequality by integrating the equation (3.58)
afterAmultiplying UZ,C and using the boundedness (3.3) and (3.61).
We define a fuhction which bounds UZ,C in G(¢).

7 w

!jc(yl’y')zT(l_C"yl)(l—C'*'S’l)

Lemma 3.6Q There exists a positive constant cs such that

(3.64) U, () | g () in G(¢)
au
(3:65) | 51ty |5 o
o (ly'l 1)
(3.66) t—é—y—ii<—1+c,y'> | = o

(Proof of Lemma 3.6)

' 4 satisfies the following equations,

¢
(3.67) PC TC + w =0 in G(¢)

awt

(3.68) 5> = 0 on 3Gn{-1+{ sy, s1-20}

1A

(3.69) Pp(-1+L,y') = ¥.(1-¢,y") =0 |y'| <1

Then applying the comparison theorem to (3.58)-(3.60) and

(3.67)-(3.69), we see that

(3.70) - ?C(Y) by UZ,C(Y) s Wé—(B’) in G(Z)

Then taking account of the boundary condition (3.59) and (3.69)

we have,
aUu ¥ ~
2,¢ ' ¢ ' -
l —551—-(1—C,Y ) s | 5;;-(1-C,y ) | =wo(l -¢) 2 o.
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aU

—— 28 1sr,y) | <

By the same argument, we have | R <
. 2

Thus we conclude the result.

Lemma 3.7. For any 8 € (0,1), there exists a constant

03 s 0 such that
8UC ' ,

(3.71) | 5§I(y) | £ c3 5 in G(8) (0<C gd/2)
aUl ¢ ]

(3.72) | 57, (v) | = Cy s 1P G(e) (0<C < 8/2)
aUZ,C _

(3.73) | 5§I"“(Y) | < cy 5 in G(s) (0<¢C < 8/2 )

(Proof of Lemma 3.7) We will prove (3.71).
For any vy, € [0, 1-8] , we define a function W, which is
defined on G n { 2y4- 1+ g Yy £ Y« } and satisfies the

following equations

oW, aU,
(3.74) 5§I—(y*’y ) = —5§I(y*,y ) for |y'| f 1
(3.75) P, W, + —— ( £(U;(¥)) = £(Up(2yeyg,y') ) = O
in G n { Zy*—l'f'f < yl < Vs« }
oW,
(3.76) 7= = 0 on 3G n { 2y.-1+f 2 vy 2 Vs }
(3.77) W (ya,¥') =0 for |y'| <1

We define a comparison function @1 as follows
1 -— w - . - -
@1(yl’y ) - 2 (Yi- yl) (yl ZY{- + 1 C )

+ u (ye = vq)
1 = ye = 7% 1
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o *
where we have put M = max ( |Mg|,|M | ).

This satisfies the following equations

(3.78) PC CH + w = 0 in G n { 2y,-1+¢ < Y1 < Ve }
30, _

(3.79) > = 0 on 3G n { 2y.-1+f 2 vy 2 Ve }

(3.80)  0,(2y,-1+¢,y') = M for |y'| <1

(3.81) 6, (yary') = 0  for |y'| <1

Applying the comparison theorem to'(3.74)~(3.76) and (3.78) - (3.803
( Notice PC(@l - wl)(y) < 0 . ), we obtain

A

W (y) g 0;(y) in Gn { 2ye-1+0 2 vy 2 Ve }-

Taking notice of the boundary condition (3.77) and (3.81), we deduce

from (3.82) by (3.74) that

au aw a@l
(3-83) ] ayl (Y{-ry ) l = I ayl (Y{uy ) 1 = l ayl (Y*’y ) }
M 2 M
= —%“ (1 -ya=20)+ 3 @ V.- = g * 5

for any ¢ € (0,8/2]

The above estimate holds uniformly in y, € [0, 1-4].
For the cése that y, € [-1+6,0], the proof is the same as the
above case. On the other hand, we can prove (3.72) and (3.73) by the

completely same argument ( reflection technigue ) as (3.71).

- Ly -



Lemma 3.8. For any &6 € (0,f(,), there exists a positive

constant 04 5 such that
b

Cu. s et

y
e«
S

N

IA

n
(3.84) z

on 3G n { -1+8 < Yq =

A
oy
|
[ %)
——

for any ¢ € (0,6/2]

(Proof of Lemma 3.8) For the sake of constructing a comparison

function, we take a function h e Cc”([0,=)) which satisfies

(1) h(0) = 0 , k(1) = 1
a*n

(ii) " (0) = O for any natural number k
a&

-%%-(5) >0 for any & « (0,1)

Take an arbitrary hyperplane # in R" which contains the‘yl-axis.
By an appropriate orthogonal transformation of coordinate in
(yz,---,yn) , we can assume that =n is expressed by the equation
Yy = 0 without loss of generality. Remark that the equation (3.52)
isvinvariant under the above transformation.

Now we define a domain G_({) and a function Wz(y) in G, (&)

+

as follows.

(3.85) G (¢) =G(¢) n{yy >0}
(3.86)  Wy(y) = ——( Up(¥y,¥p0 - s¥y) = Up(¥qam¥ouvgeomiyy) )
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It is easily seen that W2 satisfies the following equations

3W2 aUC
(3.87) 7, (v) = v, (v) on =« n 3G, (¢)
(3'88) PC wz + —%—'(f(UC) - f(Uc(ylf-yzsy?)"'”?yn)) = 0 in G+(C)

(3.89) Wz(y) =0 on m n aG+(C)

av,,
(3.90) —5=(y) =0 on 4G_(¢) n 3G(¢)

We put a comparison function @Z(y) as follows

2 _ y1—1+6
( e(s)¢ Y2(3‘y2) + M h<3_:—f"_) ( vy > 1-8 )

(3.91)  6,(v) = | e(8) t% y,(3 - v,) (-1+6 sy, g1 -6 )

2 _ —y1-1+6
L e(8) &7 y,(3-v,) + M h—5—F) (yy< -1+5)

where e(6) = 1 + o + 2 g sup [hm (&) |
‘ 8= & e [0,1]

By -a simple calculation, we obtain

( (6) + —0 A
- 2 e(d) + h" — v, > 1 -8 )
(6-0)% %t :
(3.92) PC @Z(Y) = -2 e(¢) ( -1+ 96 < vy £1-906)
= -y,-1+6
L -2 e(o) + M > h"(—~31:—f——) ( vy < -1 +6 )
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(3.93) =—=—(y) > 0 on 3G_({) n 3G

w
Ne)
4=
@
\V)
<
v
=

on (3G, (£) n {y,;=1-£}) Y (3G, (¢) n {y,;=-1+C} )

W
Ne)
Ul
@
no
—
«
|
(@]
(@]
s

8G+(6) nmn

By using 0 < { < 6/2 and the definition of e(d) , we obtain from

(3.88)-(3.90) and (3.92)-(3.94) that

(3.96) P,(6, - W,)(y) <0 in G,(¢)

(3.97) gv ( 6, - W, ) >0 on 4G _({) n 3G

(3.98).  0,(y) - W,(y) 20 on 3G (L) na
(3.99) 0,(y) = Wy(y) 2z 0 on (3G, (£)n{ yy=1~F })U(3C, (£)n{y,=-1+C))
(3.100) @,(y) - W,(y) = 0 on 8G,(8) n =m
Applying the Maximum Principle to (3.96)-(3.99), we obtain,
0,(y) - W,(y) 2 0 in G_(¢)

By a similar argument with respect to —@2 and W2 in G+(C), we

have - @Z(y) < Wz(y) in G+(C) . Then we conclude that

(3.101) | Wy (v) | ez(y)‘ in G (L) .

A

Thus by the inequality (3.101) with the boundary condition (3.100),

we have | (y) on 9G, (6) n = .
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Therefore we have from (3.87) that

au 20, 2

(3.101) ‘ _8_372__(5’)18G+(6)n:r 1 < l —@(Y)‘as+(5)nn l =3 e(a) ¢
BUC >

Then we have | —55=(¥) 156 (6)nmnac s 3ele) ¢

On the other hand we have the Neumann boundary condition

C(y) =0 on 3G, n m n 3G

Then by considering the arbitrariness of = ( containing yl—axis )
and the uniformness of the above argument in taking the hyperplane
n , we conclude that

au

—(y) | 2
3 4 |8GnaG_ (8)

n
z |
j=2

A

3 (n-1) e(8) && (0 <& z6/2)

We complete the proof of Lemma 3.8 by putting C&,é = (3(n-1)e(6))2.

By the aid of Lemma 3.3 - Lemma 3.8, we will obtain a convergent

oo

subsequence of { U Yoo, From Lemma 3.4 and lim () =0
. Cm m=1 £SO

it is easy to see that for ¢ > 0 , there exists a constant
T =7T(e) and 3 = 3(e) such that C(e) and §(e¢) depend

monotonously on ¢ and 1lim &(e) = 0, 1lim Z(&) = O and such that
-0 -0

(3.102) sup_ { _sup | Uply)-aq] + sup I Ue(y)-ay] )
0<fsl 1-262y,21-¢ ‘ -1l+lzy s -1+26
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On the other hand we deal with the convergence on the domain

G(25(e)). From Lemma 3.5, { Uy » }; is bounded in the Sobolev

m

=1

space Hl(G(E(e))) and it is compact in Hl/Z(G(ZE(e)) by the

Imbedding Theorem. Moreover { U is compact

2,0 |9G(28)naG b=t

in LZ(aG(ZE)nBG) by the Trace Theorem. ( Taylor [21] Chapter I )

Now take a sequence of positive values ({ £y };zl such that

£, > &5 > v >y > By > +¢s > 0 and iim e = 0
—> 00
By the above compactness argument for e = £ » W€ have a
(1) = = : w0
subsequence { { 7" } _; < (0, &(eq)) such that { UZ £ (1) Yo=1
b

is convergent in Hl/z( G(Zg(sl)) ) and also in LZ( aG(ZE(al))naG )

and its limit function is independent of y' by Lemma 3.5

oo

mn=1 is convergent in

Therefore by Lemma 3.3, { U (1) }
Cm

Hl/z(s(z}s‘(el))) and also in L?(9G(25(e,))nac)

( Recall U + U )

L
SRR WAL 2,¢it)

Then there exists a function U(l) € Hl/z( G(Z?(sl)) ) which is

independent of y' , such that

;if Uc(l) = vl in H1/2(G(25(51)))
m
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Again applying the same argument to the sequence { U (l)} =1 for

=] —

m=1

(2) }“

m m=1 < { Cél) }

¢ = ¢, , we get a subsequence { ¢

and a function U(Z) € Hl/Z(G(ZE(ez))) which is independent of vy',

such that

Lin U 5 - v in wY2(6(23(e,)))
-

(2

) JENEY
U e(2s(e,)) T Y

Repeating this process inductively , we obtain a sequence of

subsequences of { Cm };=1 such that

I ST N S SRS G ) b I PRI (3 O SRR

m

and a function V which is independent of y' such that

lim U (q) = V in Hl/Z(G(ZE(s ))) for any'natural number ¢
m
. o o0 - (m)
Determine the subsequence { %o }m=1 c { Cm }m=1 by #o = Cm

(m>1). From the way of the construction { Céq) };=1 , we have

(3.105) 1im U = Vv in HY2(G(23(c.))) (g>1)
m—ee *m q -
(3.106) 1lim U = V in LZ(aG(ZS(e ))naG) (g >1)
mee  m q -
(3.107) _ sup | U, (v)-aql + sup _ U, (y)-a,]
1—26(sq)§y1§1-xm m ~l+xm §y1§—1+26(5q) m
s e (m 2 a z 1 )
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From now on, we will investigate the uniform convergence of

{ U, };_1 By Lemma 3.7 and Lemma 3.8 and the Ascoli-Arzera
vm =

Theorem, { U is compact in CO(aG(ZE(sq))naG )

ny 19G(25(s))naG V=1

for any natural number q . On the other hand we already have

(3.106). Then we conclude that V is continuous in the interval

(-1,1) and
(3.108) lim sup_ | U, (y1o9') = V(yy) | =0
Mo Y& 8G(26(eq))naG m

for any integer gq > 1

Then, let m tend to = in (3.107) and we have

(3.109) __ sup | V(yy)-a | + sup | Viyy)-apl s e

- - < ) d
1 26(sq)§y1<l 1<yl§ 1+25(eq)

This concludes that V is continuous on [-1,1] and

(3.110) V(1) = &, , V(-1) = a,

Therefore from (3.107),(108),(3.109) and (3.110) , we have ,

M—>eo y € aGnaG(nm) m
< Iim sup | U, (v) - V(yy) |
Mmoo y € BG(Za(sq))naG m ,
+ Iim _ sup | (U, (v)-aq) + (a;-V(yq)) |
m-soco 1—25(£q)§y1§1'”m7 !y1 )=1 m
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+ -i_l—n:l. . Sup l ( U (Y)—az) + (az"v(yl)) [

V]
moe -lexy syys-1+26(e ), [y' =1 "
< &+  sup |V(yvy)-as| + sup_ Vyy)-ey|
= q 1-26(e )zyysl Fo -lgyyg-iv2s(ey) vl

for any g

v

1. Then lim & =0 and 1lim é(e_ ) = O imply
goe goe 4

lim "~ sup | U, (vioy') = Viyy) | =0
m->oee y € aG(xm)naG ‘m

Again by (3.107) and (3.109) we conclude that

1lim sup [ U, (yl,y’) - V(Yl) | =0 .
m-ee y € aG(xm) m .

From the equation (3.52) and (3.53), we have

a2 1 n 22 .
( - 5+ 2 _52 2 ) U”m + f(Uxm) =0 in G(xm)
V4 o 3 Y
aU
“m
—55;—(v) =0 on 9G(x_ )naG

Take any ¢ € C:((—l,l)) and integrate the above equation in
G(xm) after multiplying ¢(y1,Y') = ¢(y1) . Then we have for

sufficiently large m so that supp ¢ < (-l+xm,1—xm) ,

U P dy + f(U )Ydy = 0
fc(y (v) % ¢ dy JG ‘) ¢ - v
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2
( Remark that P_ ¢(y) = ~Q—Q§(y1) )

m ayl

Let m tend to <« and we get by (3.105) that

J

By the arbitrariness of ¢ , we have

1 a2
s | (V) Sgplvy) - alyy) 2V ) vy

|y ay,

2
__Q_z V(yy) + £(V(yq)) = 0 in (-1,1)
dy1

Lemma 3.9.

lim sup | u, (Yl,Y') - V(Yl) | = 0
m-ee y € G(x_) ‘m
m
(Proof of Lemma 3.9) We define a comparison function @+ m by
w 2 2
O, n¥) = Viyy) 2 g0 (1= |y 7)) #y
* sup | U, (vyoy') = Viyy) |

y € aG(xm) m

] o satisfy the following equations by (3.112)

P, (04~ U, )= - fV) z2a- £(u, ) S 0 in G(x)
Ou,m¥) = U, (y) 2 0 on 2G(xy)
Then applying the Maximum Principle, we have
Oem(¥) - U, () 2 0 in Gl
or 6 ,v) 5 U, (¥) 5 0, n(v)  in Glx)
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By the definition of @i o v e conclude that

’

1lim sup ] U, (y) - V(yl) | = 0
Mm—>ee y € G(xm) m

and complete the proof of Lemma 3.9

Expressing the equality in Lemma 3.9 in the original variable x ,

we complete the proof of the former assertion of Theorem 3.



( Proof of the Latter Half of Theorem 3 )

(1) The case lv < 0

We will prove that the first eigenvalue pl(xm) in (3.2) for

V., is bounded from below by a negative constant for sufficiently
m ,
large m .

It is well-known that

’ 2
[otey Clmwl? = 27(v, 9?7 ) ax
(3.113) u (% ) = inf L n
ST c Hl(a(x)) Jagsy wI% o
(7 %o %0
Here we define a function
0 x & D,V D2 U Rl(xm) U Rz(xm)
Yo (Xsx") =
@V(xl) - @v(l—me) X € F(xm)
Remark that @V(z) = @V(—z) on (-1,1) and v, € Hl(Q(xm)).

To estimate yl(xm) from above by using (3.113), we calculate

2 . 2
] - f (v%m) v ) dx

(3.114) JQ( 1T v

m

1-2=z 0P
- [ ax' [P g (2 - (v, ) ey(xg) -0y (1-2x) [P ) axg
x|z m

~1+2x 9%y
m
d2¢V
= - f f dx’dx1{~g——§— 2 £ (v, ) (9y(xy)=0,(1-2x_) )} (P, (x,) = (1-2%_))
Xl m
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' 1-2xm ,
X' < -1+2 m
= m

1-2=x
+ f—1+2: {-lvév(xl)+(2f'(vxm)—f'(V))év(xl) - f’(vxm)Qv(l—me)} x
m

o, (1-2x_)dx, } dx'

Using the former assertion of Theorem 3 which we have already proved

we have | f£'(V) - f'(vx ) | - lv/4 in T(xm) for sufficiently
m

large m . On the other hand, 1lim @v(l-me) = 0 holds from the

m—e

boundary condition @V(l) = 0 and then we have the inequality,

1-2x%
| f T myey(xy) ¢ (287 (v, )=£1 (V)@ (122 )= £ (v, )0 (1-2x )}

fl+2xm m m
v ! lv 1-2xm >
x @ (1-2%_) dx < - f o (x,)"dx for large m.
v m 1l 2 T “1e2e_ AR 1
Then we have
2 ,
f (Ivp 1% - £(v, ) p ?) dx < — o, (x,)% ax, ax'
m ® m = 2 viTl 1
Q(xm) m F(xm)

for large m

On the other hand one can easily check that

2

(x)“dx 2 f f ?.,(x,)” dx, dx' for large m
T(xm) VTl 1

1A

Jags., ¥a
Q(xm)
Then we conclude that yl(xm) < Zv/4 for sufficiently large m

This concludes the result the case (1).

(2) The case lv > 0
From now on we will prove that ul(xm) is bounded from below

by a positive constant for sufficiently large m. To prove by the
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contradiction we assume that there exists a subsequence { m(j) };_1

such that

(*) lim m(J) =%, lim 'ul(

j—)ce j—-)oo

y) £ 0

*m(j

Let wj be the corresponding eigenfunction of (3.2) to the

elgenvalue pl(xm(j)) such that

(3.115) lvy 1 5 =1 ( dz1).
L (Q(”m(j)))
Lemma 3.10. Under the condition (*),
§i§~ vy = 0 in Cw((Dl—Zl(n))U(DZ- Zz(n))) for any 7 > O.

(Proof of Lemma 3.10) Applying the bootstrap argument by the

a-priori estimate in S.Agmon,A.Douglas and L.Nirenberg [1], we see

(3.116)  { w; }j_; is compact in CT((D =2 (n))V(D, -Z,(n)))
for any 75 > O

On the other hand, we take two functions ¢1 , ¢2 € Cm(Rn) such that

¢1(x) =1 in Dl , ¢l(x) =0 in D2 , ¢2(x) = 0 in D1 ,
¢,(x) =1 in D, , supp ¢; n supp ¢, = @
We put , for i =1,2 and j = 1,2,3,--+ ,
ot = (4w (v, ey -t'(a)e; |, / 1ol 5
‘m(J) L2002y 4))) L2 (20 5)))
and we can easily check that 1lim 6§i) = 0 (4i=1,2) by
: : j—)oo

Theorem 2 and a simple calculation.

Therefore the eigenvalue problem (3.2) for ( = x

()

eigenvalues y(l)(j) and u j) for large j such that
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1/2

i), . ' i) ' - (‘) - (.
D I o L N B S OIS B S
.\ 1/2
)
1P 5y 95 - 95 1, /e 1, < ot
Ij ‘L (Q(”m(j))) L (Q(Xm(j)))

for i = 1, 2 and large J zAl , where P (1) is the eigenprojection
- I

( associated with the self-adjoint operator -4 - f'(vx ) ), onto
. m(J)

the subspace of LZ(Q(xm(j))) corresponding to the the interval I§i).
z (1) (1)

We have pl(xm(j)) ¢ U [—f'(ai)—ﬂj ,--f"(ai)+6j ] for large

i=1
by (*) and then (y., P ..\ ¢. ) = 0 for large j and
3 ()T 2000 L))

J m(J)

i =1,2 . Therefore we have for i = 1,2 ,

. 1/2
(v, 0,) Warn < ot
j'ri’. 2 iv. 2 = J
L (Q(”m(j))) L (Q(”m(j)))

for large Jj and so we can easily deduce lim j wj dx = 0
Joe D.
i

(i=1,2 ). Remark that wj(x) >0 in Q(= ) and we have that

m(Jj)
i = U
%iz wj(x) 0 for a.e. x € D, D,
By the compactness (3.116), we conclude the result of Lemma 3.10.

By using Lemma 3.10, we can choose a monotone sequence of positive

values { {j }j-l such that

( 1lim £, = 0 , 4. > %_,.
(3.117)| lim K(j) = O
Joe
\ where K(j) = su ij(x)] > 0

p
X € (D1-21(2£j))U(DZ—ZZ(Zﬁj))
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Here we define two sets,

Sj = ( Q(Xm(j))u 21(2£j)u 22(26j) )
L G g B A O O R P TR IR RA
Tj = {(Xl’x’) € Rn? lx']<xm(j), lxli s 1+ ((Zij)2~(xm(j))2 )1/2 }

Now we decompose eigenfunction wj uniquely as follows

wj(x) = Wél) + w§2) in Sj , by the following equations,
(1) _ ;
(4 ¥5 0 in Sj
(1) - -
(3.118) ¥y (x) = wj(x) on asj ag(“m(j))
awﬁl)
q 5;1—(x) = 0 on asj n ag(xm(j))

(3.119) (¥ (x)

vy(x) - wgl)(X) in S,
Apply the maximum principle to (3.118), we obtain the inequality,
(3.120) 0 < »{*)(x) < K. in s. .

J = J J

Now we calculate as follows.

(3.121)  py(x_ o) = oy l? - 27 (v, ) 9% ) dx
1Y "m(J) JQ(”m(j)) J m(3) J
- ( vy, ]2 - £r(v ) p.° ) ax
JQ(xm(j))~Sj J “m(j) 7
+ j |Vw§1)|2 dx
S
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' (2) (1) (1)
- £'( ) (2w - LY wl dx
fsj v”m(j) WJ WJ WJ

"

We have used f Vw§1)Vw§2) dx = 0 1in the above.
%3
By Theorem 2, - f‘(vxm(j)) > fs/ 2 in Q(xm(j)) - Sj for j ,
where B, = min (-f‘(al), ~f'(a2) ). Then we have ,
(3.122) By(3) z min(1,6./2) ( lvsl )2 for large ]
L (00 5))85)
By (3.117) and the boundedness of ngz) | 2( ) (3 =1,2,3,- ),
L7(S,;
J

(3.123)  Lim By(j) =0

j-—)m
Hereafter we estimate B3(j) from below.
= (2)12 _ 5o
59 = [ CIw§P1% - o,
J

(2),2 '
+ ( |Vl - f£' (v, )
ij-T- Ve V”m(j) v

) tw§2){2 ) dx
m(J) J

(2)‘2 ) dx
J

Again from Theorem 2, the second term of B3(j)

> min (1 ,84/2) ( ngz)ﬂ 1 )2
H(S;-T;)

To estimate the first term of B3(j), we change the variable x into

y in Tj as follows.
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»
i

1 (1 + oj') Y4

v m(j)
where Gj = 1+ ( (2{,3.)2 - (”m(j))z )1/2 .
Remark that ?iﬁ o5 = 1, Ej(y) =0 for y, = +1, ly'| < m(§)
Then we estimate as follows,
( \V/ (2) 2 - f'( )' {2) 2 ) d
ij vy {2 sy 1710 e
1 az
4 f dy' fdyl ==l (yl,y'HZ
- e i
' ' 2
- f (me(j)(ajyl'y )) Hj } GJ
1 3. (y,»y")
-+ ay' | (| gg—— 12 - £ (Vy )15y, ) [P ay,
Iyt ls wp ) -1 1
1
- v [ A ey - ev,  (eyv ) 52 6 dy,
lytlf ym(j) -1 Gj m(J J J J
1 f dy' fl £.(y)? ay -f dy’f 15-(y)2dy
Tyl ey, T ey
1
X sup £ (V(yq)) = £ (v (0.v,,v"))]
ly'lé xm(j)ylyll<l sz ! xm(j) J 1
2
. Y (2) 2 (2) 2 1
= ( \ ) - ( \ ) . « s
sz ”wJ HLZ(Tj) "WJ ”LZ(Tj) Gj sup ] ,
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By the first half of Theorem 3 and lim aj = 0 , the second term
o=
of the above line is minor to the first for large j. Then we have

the following inequality (3.124) for large j.

p

\Y (2) 2
—— : )
5 ( "WJ HLZ(Tj)

(3.124) B3(j)

v

Therefore from the inequalities (3.121),(3.122) and (3.124), we have

pyGepey) = By(d) 2 min( 1, ./2) ( |u,l )
1Y"m(J) 4 = J LZ(Q(”m(j))—Sj)
[ 112 @ v min (1,802) ({2 2
s, 9 I als,-t.)
J R I
A
+ ZV ( uw(z)“ > )2 . Let j tend to = , we have ,
JLe(T,)
J
lim .| = 0 by using lim pu,(x_,.,) < O and
(3.123) . But this contradicts to the fact ﬂwjﬂ 2( = 1 for
L7 (

m(J)
j >1 ( See (3.115) ). Then we have completed the proof of

lim ul(xm) > 0 and we conclude the result of the case lv >0 .
m-e '

Therefore we have completed the proof of Theorem 3.
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§ 4 Construction of Unstable Solution.

In this section, we will consider the equation (3.1) on the
domain Q(C)  established in Section 3 where we choose f in (3.1)
as the one we will establish below. We will construct a family of
solutions { Ve }C>O in (III-4) where Ve is an unstable solution
of (3.1) under the condition a; = a, = b1 for small ¢ > 0O

We determine the nonlinear term f in the following form.
(k.1) £(&) = ¢ g(¢&) (# > 0)
where g € C (R) satisfies the following conditions (IV-1)-(IV-2)

and the parameter ¢ will be chosen later.

(IV-1) There exist three points b1 < b2 < b3 such that

g(b;) =0 (1:1i:3), g (b)) <0, g'(bg) <0
g(§) >0 in  (-=,by) Y (by,b3)
g(€) <0 in (by,by) YV (bg,=).

b
(1V-2) fb3 g(£) d& > 0
: 1

From (IV-1)-(IV-2), there exists a unique d e« (bZ’b3) such
d
that f g(&) d¢ = 0
by
Above all things we seek for the solutions of the following
two point boundary value problem of the ordinary differential
equation (4.2) up to their linearized stability where the nonlinear

term f is that in (4.1).

2 -
9—% « £(V) = 0 in -1<z-<1
(4.2) dz
V(1) = b, , V(-1) = b,
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Proposition 2. There exists a positive values ﬁo such that

for any ¢ ;' B0 (4.2) has exactly three solutions

vl o) < v ) <« v (m1czcn )

with the following stability properties,

1 | o , 1 0
g0 70 Ay < g2 7
( See Definition 3 in Section 3 as forv 2 (0) ° A (1) A (2) - )
\Y \Y% v
~
_bg
2
VC)
‘7(1)
v |, )
Z =—1 z=1 2
Figure5

(Proof of Proposition 2) To construct nontrivial solutions, we must

search for the value ¢ € (d,b3) which satisfies the following

equation.
£k _1/2 |

(4.3) f ( zf t(p)ap )H/%a0 = 1 (a < &< by ) (See Maginu [14].)
b1 g

To examine the left hand side as a function of ¢ , we define

s(&) which is defined in (d,b3) as follows.

s(&) = fi ( 2 fi g(p) dp )'1/2 do
Py
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s(&) is well-defined by (IV-1) and (IV-2) and moreover we have the

following properties concerning s(¢&)

Lemma 4.1. s(&) is a positively valued differentiable function

on (d,b3) with. the following asymptotic conditions,

( lim s(¢) -1
' 1/2 1

£1by (-l/g (b3)) log R

lim S(f) = 1

£id (-l/Qg’(bl)Jl/? log —?%5_

. d . d

lim % s(é) = + =« , 1lim =% s(&) = - =

" by X gra 9

(Proof of Lemma 4.1) First we deal with the case that £ is near

b i.e. d' < (4" + b3 )/2 ¢ & < b3 where d' i1s a point in

3
(bz,b3) which will be determined later.

(4.4) s(&) = f:'[ 2 jig<p> dp j‘l/Zda . fi'( 2 ji g(p) dp ]“1/2 do
1

It is easily seen that the first term belongs to Cw([(d’+b3)/2,b3])
then the second term is essential to the asymptotic behavior of

s{(£) when & 1 b Expand g(p) around p = b3 as follows,

;-
g(p) = g'(bg)(p = By) + v, (p)(p - D3)° = g,(p) + g,(p)

By the simple calculation, we have,

(4.5) fj'(zji g,(p) ap |7H/2 a0 - jd%(ZJi g'(b3) (s - by) dp |72 ao

(_g,(bB))l/z log b3 =
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ff g,(p) dp fg rl(p)(p—b3)2 dp
ag

(2]

(4.6) =
£ 1 2 2
’ fa g,(p) dp ] 5 g'(bg) ((o-bg)™ = (&-b3)" )
2 ry b r, '
< :§§TTE§T ((2b3- 0 - &) g —:ggTngy ( by -d')
where r, =  max | ry(p)] L d' < (4 +bg)/2 g £ <by .

b2 g p < b3

By the power series expansion, we have,

( 1 +Y )_1/2 = 3 c; vJ  for |Y| <1 ( radius of convergence )
j=0
- Loyl gy Lo oy L ;
where cy = (-3 )(-3-1)(-35~-2)---(-35-(3-1)) / 3

Then by using the above expansion with the estimate (4.6), we have

the following expansion .

(4.7) ( 2 fig(p) de )"1/2 = ( 2 fi gq(p) dp»)—l/z

X
it 8

ff g,(p) dp
C. g
o Y ( 3 -

J
E ] for 4d' < (d'+b3)/2 <& <b
f g,(p) dp
)

J

For any ¢ > 0 , take d' near to b3 and fix it, so that we have

by the estimate (4.6), the following estimate (4.8)

HA
m

- RO RTINS
| Feow) |

(48) 1 - 2 c.
j=o J Ii g,(p) dp

for & € [(d'+b3)/2 ,b and o € [d',£].

3)
Integrating (4.7) with ¢ from d' to ¢, we have
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¢ ( 2 ji g(p) dp )'1/2 do

AR EEERE

(4.9) 1 - ¢

1A

"< 1 + ¢

for & e [(d'+b3)/2,b3) .

‘Using (4.4),(4.5) and (4.9), we have the following estimate (4.;0)

(L.10) 1 - & < lim S<5)_
T Eibg (e ()% dor g

im s(&) < 1+

3-5

A

for any € > 0 .

=l&) 172 1 = 1
) log 5——F
by - &

Then we have 1lim

by (—g.(b3))
Hereafter we take d' near b3 and fix it so that

B(&,0)

nv

1/2 for & =« [(d'+b3)/2,b3)f and o € [d',&].

ff g,(p) dp ~1/2
[¢]

js g (p) dp
ag

We put B(£,0) = ( 1

F(£,0) = ( 2 fi g (p) dp )1/2

_ . 1
and then, the second term of (4.4) = B(&,0) do
g F(&,0)

§-d’
1 .
= Jo FEE) B(&,E-7n) dy I(£) . Then we have the follwing.

£-a’
d _ 1 ' 4 1 . -
(5.11) FH 1(8) = Frpgry B(6,2) + fo 72— FrE =y B(E.E-) an

g-a
1 ad
: fo F(E,E-7) a5 D(&:87m) dn
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1 1 1 ff“d' a1 4
2- F(&,d7) 2- ), 3 F(EEm) T

£-d’
1 a
+ J‘ F(f,f""]) ac B(E,E-??) d’?

Here we have used that 0 .

9 1 .
3¢ F(&,&-m) =

On the other hand, one can easily check that

g,(p) dp

4 ( £-1 is bounded for (d'+b,)/2 < & < D
a¢ ¢ g,(p) dp 3 -

3 and

0O<n<é&-d andalso is 5%- B(£,&-7) , then we have some

constant M such that | 5%— B(&,&8-7) | M

A

for £ e [(d'+b3)/2,b3) and 0 <9y < & - d' . Therefore we have

£-d! §-a' |
) 1 d 1
(4.12) S7I(8) 2 — 37 f d7 - M fo F(&,6-7) a7

' 2 2y, -1/2
(bg=£) - ((d'=bg)=(bg-£)?) ]
2,172

_‘E A L - 2_ -
3 by-d'+ ((d b3) (b3 £)

b
- 3 (e () TP 10g [ 3

- @+ ((@'-bgy)P-(bg-g)2 )12 )
| P37 ¢
Then we conclude by (4.4) that
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. d
lim == s(&) = =
ETb3 d¢

In the case that & approaches d, we can deal as the same

procedure as above by the following decomposition.

s(&) = j:l ( 2 fjl g(p) dp + 2 fi g(p)dp )‘1/2 do
1

d b & 3 &
-1/2 -
o [ (2t eteran 2 [ storan )2 a0+ [ (2 [Tetorar )20
ey o d d g
Then we omit the proof of this case and we complete the proof of

Lemma 4.1.

By Lemma 4.1, the equation (4.3) which is rewritten as follows

s(g) = ot/2

has exactly two solutions 51 < 52 in the interval (d,b3) by taking
the parameter +# > 0 adequately large and at the same time

(4.13) s’(El) < 0 and s‘(fz) >0 hold.

We fix this ¢ and also f(&) = & g(&). Therefore corresponding to
El and 52 , we obtain two solutions V(l) and V(Z) of (4.2) for

f(£) = & g(&) determined above and one can easily check that

b, < V(l)(z) < V(2>(z) < bs in -1 <2z < 1.
By the aid of the almost same method as in K.Maginu [14], we can

investigate the signature of the linearized first eigenvalues 1 (0)
v

yi (1)'and i (2) ( See (3.5) for definition ) by (4.13) and we
\Y \Y

conclude that 1 > 0 , 2 < 0 and 1 > 0 where
s(1) v(2)

4(0)

V(O)(z) = b1 . We complete the proof of Propositioh 2.
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Hereafter first we will construct a family of solutions of (3.1)

2)

{ v( such that véz) behaves like 'V( in Q(¢) and takes

2)}

¢ Jo<z<t,
values near b1 in D1 U D2 and moreover pl(véz)) > 0 holds for
small ¢ > O. Here we denoted by pl(véz)) the first eigenvalue of

the eigenvalue problem (3.5) for the family ({ VéZ)}O<C<C
. *

We set the function V¥,(x,) = & (x,) + py where p, >0 is a
1 v(2) 1’
2) '

all constant such that 2 0] - bl V( 0 f
sm c 2(2) V(Z)(xl) ps £ (x7)) > or
any x; € [-1,1]. ( Recall that V(Z)(—l) = V(Z)(l) = b1 and
£ (bl) <‘O <)
Now we define a function wc(x) which is defined in Q({) as follows

W:(xl,X') =

(2) av,
( by (g (1m20) - 8a(8) (i-20) )

dxl
for x € DV DU (Ry(£)nlxy 2 1-0}) U (Ry(f)n{x; g -1+¢})

1, avi2) d¥s
by - Ef_( 5;;(1-2C) - 8,(C) a;;(l‘ZC))'(Xl-1+25)'(xl’1)

for x € Ry(¢) n { 1-20 s xy <1-1¢}

v2lx)) - 5,(2) #.(x,)  for x e I(Z)

A

L WC(—Xl’X') for x € Ry(f) n { -1+ < xl'= -1 + 2¢ }
where we have puf 64(C) = ( V(221-ZC) - by )/ ¥e(1-2¢)

It is easily seen that &6,(¢) > 0 and lim 6,(¢) = 0 .
¢-0
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Lemma 4.2. WC € Cl(Qlci) and we have, for small ¢ > 0 ,

4 W + f(wc) > 0

¢
in Q(¢) - Rl(C)n{x1=1—ZC or 1-¢ } - RZ(C)n{x1= -1+2¢ or -1+¢ }

£ = 0 on a0(¢)

(Proof of Lemma 4.2) One can check wc € Cl(Q(C } by a simple

calculation. In D, V D, U (Rl(C)n{x1 > 1-C}) U (RZ(C)n{xl < =1+C})

1
v dV(Z)
A4 W, =0 and W,.(x) < b for small ¢ > 0 from =—(1) < O
¢ ¢ = "1 dx,
and 1lim 6,(¢) = 0 . Then by (IV-1), we obtain the inequality.
¢-0

d¥,

| 4v(2)
In R, (£)U{1-2¢ < x;< 10 } , 4 W, = Zé (- Ty (1720) - o (C)dx (1-2¢))

> 0 and WC(X) < b for small ¢ > 0 . Therefore we have the

1
inequality by the same way above also in RZ(C)U {—1+C<xl< -1+2C}.

In I(f), we calculate as follows,

. 22y
A4 WC + f(wc) = ax12( \) xl) - é-l-(C) W*(Xl) )
» ey Cs e, e vl3y o os0)2 w2 5,
| 1
( where 2,(x;) = fo (1-1) £ (v() (x)-ro, (1), (x,)) dr )
a2y (2) (2) dZT* (2) | 2 2
= 5 + f(V ) - 4 (C)( 2 + f'(V ) ) + 5*(5) ”F* EC
dx1 dxl
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holds in TI'(¢) for sufficiently small ¢ > O by lim 6,(f) =0
-0

Therefore we have completed the proof of Lemma 4.2,

By Lemma 4.2, wc is a " weak lower solution " in the sense of
D.H.Sattinger [20] for small ¢ > O and we have the following
comparison property by the argument used in Section 2 and the
comparison theorem.

The set E,(¢) = { v < CH@EN)n c2(2(0))] v(x) 2z W (x) in 2(2) )
is a‘positively invariant set under the flow defined by the
evolution equation (1.2) for 2(¢) and f in this section and also
is the set E.(¢) = E(8,0) n E (£) (6 € [8(L),28(¢)] ) for
sufficiently small ¢ > O , where E(6,f{) and 6(f) are the ones
constructed in Section 2. Therefore applying again Theorem 4.2 in
[15], we have at least one stable equilibrium solution in E,({)

for small ¢ > O . Moreover we have the following.

Lemma 4.3. For small ¢ > 0 , there exists exactly one solution
véz) of (3.1) in E.(f) and the linealized first eigenvalue

(2),

#l(vt is bounded from below by a positive constant.

Here we put véo)(x) = b1 in (&) which is a stable solution.

One can easily check that véo)(x) < véz)(x) in Q(Z) by the
Strong Maximum Principle and by Theorem 4.4 in Matano [15], we

obtain another solution vél) between the above two solutions.

( véo)(x) < vél)(x) < VC(Z)(X) for x € Q(¢) )

lim yl(véz)) >0 implies that véz) is locally unique for small

-0
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¢ > 0 and then v(l) must be asymptotically near to V(l) on Q(¢)

¢
by Theorem 3 and Proposition 2. Therefore we have obtained the
following result by Theorem 3.

Theorem 4. There exist three distinct solutions ( for small ¢ )

véo) < vél) < véz) of (3.1) where f =4¢ g ( 4 > 60 ) and the
solutions satisfy the following asymptotic conditions.
lim sup [ Véi)(x) - by | =0 (i=0,1, 2)
-0 x € DlU D2
lim sup. | véi)(xl,x') - V(i)(xl) | =0 (1= 1, 2)
-0 x € Q(¢)
. 0) — (1) , . (2)
1imp, (v >0, TIm e (i) < 0, mm op (w3 s 0
50 T ¢ 50 Lt >0 L ¢

(1),

where we denoted by “l(vé the first eigenvalue of the

eigenvalue problem (3.5) for the family { Vgl)}O<C<C
*
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§5 Concluding Remarks.
In Section 4, by choosing an appropriate nonlinear term f in
the situation of Section 3 plus a condition a; = a, = b1 , we have’

‘constructed three distinct solutions véo) < vél) < véz) of (3.1)

(i)

for small ¢ > O such that VC takes values near bl in Dl U DZ

and behaves like V(l) in Q(¢) for small ¢ >0 ( i =0,1,2 ) and
(1) _ (2)

yl(vc ) > ¢, yl(vc ) = ¢ and yl(vc ) > ¢ hold for small

>0 and a positive constant ¢ which is independent of ¢
All (1) (i =VO,1,2 ) take almost same values near bl in Di U D2

Ms
( f'(bl)‘< 0 ) but vél) is unstable while véO) and VéZ) are

stable for small ¢ > 0. This phenomenon is owing to the fact that
the asymptotic behavior of vél) on Q(f{) corresponds to V(l)
which is an unstable solution of the ordinary differential equation

(3.4) on L while those of véo) and véz) correspond to the

stable ones V(O) and V(Z) . See Figure 6.

From these results, we see that the dependence of the stability
of the solution, upon the moving part Q(¢) , does not vanish when
{ » 0. Moreover the behavior of the solution on Q(¢) plays an
important role to determine the stability and on the other hand, it
is described as the solution of the ordinary differential equation
(3.4) on L in this case.

Therefore we conclude that it natural to regard Q({) as a
perturbation from Q¢ =Dy YD, VL ( See Figure 4 in Section 1 )

if we cosider the behavior of the structure of the solutions of

(3.1).
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Figure 6
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