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§1 Introduction We consider the following semilinear elliptic 

boundary value problem, 

(1.1) [ 

"LI v f{v) = in 

on aQ • 

o + 

dv 
a; = o 

where fJ is a bounded domain in IRn with smooth boundary afJ and 

n aZ 
v denotes the unit outer normal vector on afJ. LI = 2: --2 is 

j=l ax. 
J 

the Laplace operator and f is a real valued smooth function on IR. 

The structure of the solutions of (1.1) and their stability 

largely depend upon the geometrical property of the domain fJ and 

we may consider that the structure usually varies continuously under 

the smooth deformation of fJ. Our subject in this paper is to 

consider the behavior of the solutions and their structure when the 

domain fJ singularly perturbs. The domain which we deal with is 

exhibited in Figure 1 and it is decomposed as follows 

u U Q(1;) whereDt and "DZ " are· mutually disjoint 

and is a moving part which approaches a segment as 1;,J. 0 . 

Therefore the volume of Q(1;) decreases to zero as 1;,J. 0 . 

Figure 1 Figure 2 
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Then can we say that the influence of Q(C) over (1.1) for D = D(C) 

vanishes as C ,J. 0 i.e. that the structure of the solutions of 

( 1 . 1 ) for D = D(t; ) ( for small t; > 0 is equivalent to that of 

( 1 . 1 ) for D = DO - Dl u D2 ( Figure 2 ) ? 

In fact, Vegas [22J, Hale and Vegas [10J have considered ( 1.1) for 

f = f(l,u) =lu - uP on the same domain as that in Figure 1 and 

analyzed the bifurcation phenomenon for the bifurcation parameter t; 

(when 1 > 0 isa sufficiently: small constant ). Their bifurcation 

diagram in the case that p is an odd natural number and the domain 

D(C) is symmetric, is in Figure 3. 

2,1 

Figur·e 3 (Bifurcaj;.i-o n Diagram) 

In their situation, when C is very small ( i.e. 0 < r; < 1;2 in 

Figure 3 ) there are exactly nine solutions and each of them takes 

values near one of the values { 0, 11/(p-l) , _ll/(p-l) } in D. 
l 

( i = 1, 2 ) and its behavior on Q(C) is automatically determined 

by the behavior on Dl and D2 . Thus the structure of the solutions 

for D(C) ( 0 < C < C2 is equivalent to that for D = DO 

( non-connected open set ) . Remark that ( 1 . 1 ) for D = DO has 

exactly nine solutions, each of which is equal to one of the values 

{ 0, 11/(P-l), _ll/(p-l) } in D. 
1. 

for each i for sufficiently 

small 1 > 0 . In this case, Q(C) can be regarded as a perturbation 

from DO. Nevertheless,in this paper, we conclude that it is more 
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natural to regard Q( C)· as a perturbation rather from the set 

Q+ = D1 u D2 u L ( exhibited in Figure 4 ) where .L = n Q(C) 
C>O 

than from QO = D1 U D 
2 if we conside~ the domain perturbation up 

to the structure of the solutions of ( 1 . 1 ) for Q = D(C) . 

L . 

..F_ig.ure 4 

In the situation of Hale-Vegas [10J and Vegas [22J, we remark that 

af 
au is small around the solutions from the smallness of 1 > 0 and 

this may ensure the uniqueness of the behavior of the solution v 

on Q{C) when v is specified to take values near a i in D. 
1. 

( i = 1, 2 ) where f{a.) = 0 and f!(a~) < 0 , but the solution is 
1.. 1. 

rather free on Q(C) for general f. 

We consider a family of functions such that 

arbitrary solution of (1.1) for Q = Q{C) and 

lim 
C~O 

holds for i = 1 , 2 where 

is an 

is any 

point satisfying f(a.) = 0 
1. 

and f I (a
i

) < 0 

{ Cm };=1 

and we prove that for 

any sequence of positive values such that lim r = 0 
"'m ' 

m~oo 

there exist a subsequence { ~ }oo C {C }oo 
m m=l m m=l and a solution V 

of the two point boundary value problem of the ordinary differential 

equation (1.2), 
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[ 
d2V f(V) 0 in L 
dz2. 

+ = 

(1.2) 

V(z) = a i z E D. n L ( i :: 1 , 2 
~ 

such that v 
u 

is asymptotically near to V 
m 

sense of "uniform convergence" and near- to a i 

In this case, the stability of 

coincides with the stability 

v 
u 

m 
of V 

in (1.1) 

in (1.2) 

in Q(u ) in the m 

in Q(u ) n D. m ~ 

fo.r a:: .o(u) 
m 

for largem . 

Conversely, we take an appropriate nonlinear- term f for which 

V
(o)' (2) 

(1.2) has two stable solutions < V and another unstable 

solution v(l) between them, in the: case that at:: a
2 

:: b
1 

and 

f(b 1 ) :: 0 and f' (h 1 ) <" 0 ,_ and we construct three distinct 

solutions 

such that 

~~o) < v~l) < v~2) 

(i) Vc behaves like 

or (1.1) for a:: a(c) small C > 0 

. (i) 
V 

and 

in Q(C) ( i = 0,1,2 ) and takes 

and V~2) ,are stable and values near b 1 in Dl u D2 

v ~ 1 ) is unstable for small 1; > 0 • Therefore we see that,the 

behavior of the solution on Q(C) which is almost governed by 

the equation (1.2) on L" plays an iniportan t role to determine the 

stability of Vc even ir C > 0 is small. From these facts, we 

conclude that we should regard a(c) as a perturbation from 

a~ = Dl u D2 U L . 

Th~ boundary value problem (1.1) is 'a stationary problem of the 

following parabolic boundary value, problem, 

[ 
au L1 u feu) in (0,00) x .0 at = + 

(1.3) 
au 0 (0,00) x a.o a; :: on . 

Definition O. A solution of (1.3) which is independent of the 

variable t is said to be an equilibrium solution. 
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We recall the definition of the stability of an equilibrium 

solution. 

Definition 1. The equilibrium solution v of (1.3) is said to 

be stable if given any e > ° , there exists a 0 > ° , such that 

II u (t, .) - v ( .) II ~ e '0 < t< 00) for any WECO CD) 
Loo(D) -

satisfying ~ v - w ~ 00 < 0 ,where u is a solution of (1.3) 
L (D) 

with the intial condition u(O,x) = w(x) We, say that w is 

unstable if v is not stable~ 

For details ,. see Matano [151. 

It has been observed by several'authors that the stahil-ity and 

the structure of the equilibrium solutions are closely related to 

the geometry of the domain D .' It is known that any non-constant 

equilibrium solution must be unstable if D is a bounded convex 

domain in lRn . ( See N. Chafee [4] for n = 1 and see H • Mat ana [15] 

and Casten-Holland [3J for general n.) More generally,. the same 

'result holds in the case that .Q is a Riemannian manifold with 

non-negative Ricci curvature and aD has non-positive definite-

second fundamental form with respect to,the unit outer normal vector 

y on aD ( S.Jimbo [llJ ). On the other hand, Matano [15J has 

constructed a non-constant stable equilibrium solution on the same 

type of domain as D(~) in Figure 1 . We shall refine his result in 

Section 2. On the other hand, there are several results as for the 

reaction:-diffusion system. See K.Kishimoto and H.F.Weinberger [13], 

H.Matano and M.Mimura [17J. 
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The contents or this paper are as follows. 

In Section 2, first we will set a perturbing domairi 

N 
.o(C)= u 

i=l 
D. U 
~ 

under a rather weak condition ( so it may be a 

very wild perturbation ) and for small C > 0 , we will construct a 

stable equilibrium solution Vc of (1.3) for Q = .a(C) which ·takes 

values near a. in D. ( 1 ~'i ~N where a i is an arbitrary 
~ ~ 

zero point of f such that ft(a.) < 0 0 

~ 

In Section 3, we will establish the domain .o(C) in Figure 1 

concretely ( for the delicate argument) and analyze the behavior-on 

Q(C) of the solution of (1.1) for' .0= Q(C)·which takes values near 

a. 
~ 

in D. 
o~ 

= 0 ,.fo, (a.) < 0 ) and we prove that 
~ 

is 

asymptotically near to some solution of the ordinary differential 

equation (1 •. 2) up to the stabili ty .. 

In Section 4, we will choose an appropriate f a
1 

= 

in this case) so that (1.2) has two stable solutions V(O) 

and -another u"tls'tabre solution V(l) suchOtfl."atOV(O) <: V(l) 

a 2 = b 1 

< V(2) 

(2)-
< V 

For the domain .o(C) in Section 3 and these f and VeO) , V(l) 

and ~ we shall construct three distinct solutions viO) , v~l) 

and 

values near 

v ~ 0 ). and 

(i) V(i) such that Vc behaves like in Q(C) and takes 

are stable and 

for' each i o ~ i ~ 2 ) and 

( 1 ) v, is unstable for small C > o. 
All the functions that we consider in this paper are real valuedo 
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§z Existence of Stable Solutions. 

- Let Dl ,D Z ,~ •• , DN be bounded domains in IRn ( n > 2 such 

that each D. 
J 

has a smooth boundary aD. 
J 

and D. n D. = 
l. J 

holds 

for any i and j withi > j. From now on we establish the 

situation. 

(II-i) Let {D( C) } C>O be a family of bounded domains in IRn which 

satisfies the following conditions (.1) and (2 ) 
N 

( 1 ) Each D(C) has a smooth boundary and D(C 1 ) :; D(C2 ) :; .u D. l.=1 l. 

holds for any !; 
1 

and !;2 such that C1 > l;2 > 0 

N 
( 2) lim Vol(D(C) - u D. ) = 0 

r;~o i=l l. 

CII-2 ) Let f- be a real valued smooth function on IR ·such that 

the set I1 - { ~ e IR I f(~) = 0, f t (~) < ° } is not empty. 

Under the above conditions (II-i) and (11-2), we will consider 

the- equi-librium -solutions of the following· semiliriear diffusion 

equation (2 .. 1). 

au 
J u feu) in (0,00) D(l; ) at = + x , 

(2.1 ) 

au -0 a;- = on (0,00) x aD(l;) 

We present our first result concerning the existence of stable 

equilibrium solution which approaches the constant function on each 

D. when l; ~ 0 . l. 
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Theorem 1. For any sequence of values { N which a i }i=l is 

contained in the set IT = { ~ E JR f(~) = ° , f f (~) < ° } and 

for small C > 0, the boundary value problem (2.1) has at least. 

one stable equilibrium solution Vc which satisfies the following 

condition (2.2), 

[ 
lim v - a. II 

L2 (D. ) 
= ° ( 1 < i < N ) 

C~o 
t; ~ 

(2.2) ~ 

lim Vc = a. in Cco(D
i

(1])) for any 1] >- ° c~O 
~ 

1 ~ i < N 

where we have defined . D. (1]) 
~ 

- { X E Di l dis(x,.Q(1])- Di ) > 1] } 
for any 1] > o. 

Remark. Hale and Vegas [10J have proved a similar result to 

our Theorem 1 ( also the uniqueness ) under some asumption 

concerning the bound of af 
au with the aid of the Implicit Function 

Theorem. But we do not impose any assumption concerning the bound of 

af 
au and therefore we cannot apply the Implicit Function Theorem, 

because, as we will prove in Section 4, we can not expect the 

uniqueness of Vc which satisfies (2.2) in general. We apply the 

result of Matano [15J ( Theorem 4.2 in [15J ) essentially. 

For the proof of Theorem 1, we use the Poincare type inequality. 

Proposition 1. Let D be a bounded domain in JRn with smooth 

boundary aD. Let { 1 } co and 
q q=l { ~q }q:l be respectively the 

sequence of eigenvalues arranged in increasing order and the 

complete system of the corresponding orthonormalized eigenfunctions 

associated with -~ with Neumann boundary condition. Then we have 

the following inequality: 
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1 
fDlgrad 

2 q A -A 

( f D 'P 'Pk dx )
2 2: q-+-l k 

A lP 1 dx -+-
A q-+-l k=l q-+-l 

> fD 1 lP 12 dx for any lP E Hl(D) and natural number q 0 

This can be easily proved by the eigenfunction-expansion and so 

we omit the proof. 

Hereafter w.e denote by {Ai,q}q:l and {lPi,q}q:l ' 

respectively the sequence of eigenvalues arranged in increasing 

order and the complete system of corresponding orthonormalized 

eigenfunctions associated with the operator -J on D. with 
.1. 

Neumann boundary condition. Hereafter we put 

We define for w E 

N 
Q(C) = Q(C) - U 

i=l 

f f
W(X) 

(+1 grad w 12 - f(~) d~ ) dx 
.0(1;) A(x) 

and also we define for 1; > 0 and 0 > 0 , 

.. 

D. • 
.1. 

a .. - 0 < w(x) < a-+-o in Q(C) 

J C (w) < J C (A) + <5
3 , II w - a i ~ L 2 (D.) < <5 , i = 1,2,···, N } . 

.1. 
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To prove the existence of stable equilibrium solution of (2.1) 

by the aid of Theorem 4.2 in [15J, we will find a positive valued 

function 0 C-C) (C > 0 which satisfies the following conditions 

(2.4) 

lim o(C) = 0 
C~o 

E(o,C) is a positively invariant closed subset of 

C1 ( Q'[f).) n C2 ( Q(C)) under the flow defined by the 

equation (2.1) when 0 belongs to the interval 

[0(C),20(C)J fo~ small C > 0 • 

It is clear by the aid of the Comparison Existence Theore~ that if 

• • 00 > 0 is small so that f'(~) < 0 for ~ E [a.-oO,a.) U (a ,a+oOJ 

hold,there exists a unique classical global solution uc(t,x) with 

• 
ue ( 0 , x ) = w ( x ) and a.- 0 ~ u C ( t , x) ~ a + 0 ,- X E Q ( c ), t > 0 

for any w E CL(Q(C)) n C1(.Q(C)) such.that 

• a. - 0 < w(x) < a + 0 (x e Q(C), 0 < 0 < 00 ). 

Notice that 00 depends only on ~. Pro~ now on, we will argue 

about -the behavior of U
c 
(t, ... ) when t grows up, under the 

condition that the initial condition w belongs to the set E(o,C). 

Notice that U
c 

also satisfies the equation given by replacing f 

in (2.1) by f which is identical to f on the interval 
+ 

[a.- °O,a + °OJ and has compact support in IR , because tl}e v.~lle of 

uc(t,x) always belongs to the above interval. Therefore from now 

up to the end of the proof of Theorem 1, we assUme, without loss of 

generality, that f has a compact support in IR . 
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For each i ( 1 < i < N ), we define 

C v. k(t) -
l, f Ur(t,x) ~i,k(x) dx 

D. '" 
l 

C q ~ 
u. ( t ,x) == 2: v. k- (t)~. k (x) 
l,q k=l l, l, 

c 
v. k l, 

and u~ l,q as follows, 

and applying the inequality of Proposition 1 to ~ = u e - uI,k and 

D = D. there, we have the following ine-quali ty for each i ~ 
l 

(2 .. 5) grad ur(t,x) 12dx- > 1. 1 f IUr(t,x)-u~ (t,x) 12 dx 
'" l,q+ D. '" l,q 

l 

+ 
q C 2 2: l·k-·( v. k(t)) . 

k=l l, l, 

On the other hand, the following inequality (2.6) is derived from 

(2.6) Nfl - 2 fUC(t,X) 2: (~Igrad uC(t,x) 1 - f(~) d~ ) 
i=l Di A(x) 

J
u (t,x) 

+ f ( __ 1 __ I grad uC(t,x) 12 - C f(~) d~ ) 
Q(C) 2 A (x) 

< 

By (2.5) and (2.6), we have, 

1 N 
(2.7) ~ 2: ( 

i=l 

< 

- u~ l,q 
2 q 

I dx + 2: 1. k 
k=l l, 

- 11 -
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Concerning the second term, we have for each i (1 < i < N )9 

(2.8) - fD. fA
ue 

f(~) d~ dx 

1 

A - f f f(~) d~ dx 
- D. u~ 

1 1,q 

f· fU~ 
<, f( ~) d~ dx 

D. u. 1 1,q 

(2.9) f fue f(~) d~ dx 
D. u~ 

= f •. fU
' (f(t) - f(U~ . ) ) d~ dx 

D. u~ 1,q 
1 1,q 1 1,q 

+ J f ( u ~ ( t ,x)) ( u,... ( t ,X ) ~ u ~ . q ( t ,X) ) d~ dx 
D. 1,q <,. 1, 

1 

< + 

f
ee I1 I e q. c qe 

(u,..-u. ){f(v. 11p· 1)+ f (v. 11p· l+fl 2 1'. k1p· k)·2: v. k1p· kdfl}dx 
D. <, 1, q 1, 1, 0 .1, 1, k=2 1, .1., k=2 1, 1, 

.1. . 

< -i- c 1 f lu,..(t,x) - u~ (t,x)/2 dx 
D. <, 1,q 

1 

+ c 1 f /u,..(t,x) - u~ (t,x)./~ I ~ v~ k(t)1p~ k(X) / dx , 
D . <, 1 , q k=2 .1. , J.. , 

.1. 

where c 1 == sup I f ~ (~) I. In the above we have used 
~. E lR 

f (u,..(t,x) - u~ (t,x))f(v~ l(t)1p. l(x)) dx = 0 which follows D. ., 1,q 1, 1, 
1 

from the orthogonality relation of the eigenfunctions and the fact 

that 1p. 1 1, 
is a constant function in D .. 

1 
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Then we have from the above, 

(2..10) In. fue f(~) d~ dx 1 1 f I 
e 2 

u~ 
< c 1 (2 + 2a ue - u. I dx 

D. ~, q. 
~ ~,q ~ 

1 
q 

v~ )2 + z- c 1 a 2: ( a > a ) 0 

k=2 l,q 

From (2..7),(2.8),(2.9) and (2.10), we have the following inequality 

(2.11) by using 1. 1 = l, 
a 

(2.11) 

N 
+ 2: 

i=l 

< 

Now we 

have 

1 c1 c 1 (- 1 2 i,q+1 - -2-- - -za- dx 

q 1 c 1 a 
2: (z:- l i ,k - -2-

k=2 

N A 
.(v~ )2 + 2: f f f(E) dE dx 

l,q i=l D. u~ 
l ~,q 

for t ~ 0 , a > 0 , q > 2 . 

put 1 inf 1. 2 0 and fix it, that a - > so we c 1 l~i~N 
~, 

1 
1. k 

c 1 1 
1. 2 ( 1 i N k 2 ) . Z- - Z- a > ,- < < , > 

~, ~, 

Next we take q sufficiently large so that the inequality 

> 1 holds for any i ( 1 < i < N 
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and fix this natural number q . 

For a and q which we have determined above~ the following 

inequality (2.12) easily follows from (2.11). 

N J t; 2 N ( 2 . 12) 2: I Ut; ( t , x ) - u. ( t ,x) I dx + 2: q 1 t;. 2 2: --r.- 1. 2(11. ·(t)) 
i=l D.· 1,q i=l 

1 

N 
+ 2: 

i=l 

k=2 ~ 1, 1,q 

f
· u· (t,X) 

C f(~) d~ } dx 
A{x) 

< 

( t ~o , r; > 0 , .0 < <5 < <5 0 ' WEE ( <5 ,t;) ). 

The inequality (2.12) is the our main tool to prove that Ut;(t,o) 

always stay near A in L2-sense if the initial condition w is 

near A. In the inequality (2.12), only the third term is difficult 

to deal with and it may be negative if w is not near to A. From 

now on, we will prove that if <5 and t; are small, the third term 

of (2.12) is always nonnegative and furthermore I u~ (t ,x) - a. I 1,q 1 

can be estimated in D. for the initial condition w E E(<5,t;). 
1 

We introduce the following function B. (0-). 
1 

From (11-2) and N 
{ai }i=l c IT, it is easy to see that 

the following properties (2.13),(2.14) and (2.15). 

- 14 -
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(2.13) B. (0) = 0 l. 

(2.14) There exists a positive constant a. such that B. (a) l. 

positive for any a E [-a.,O) u (0, a.J 

(2.15) B. (a) is a strictly convex function in a on- (-a*, a*J . l. 

It is clear that K - min min { Bi(-a*),Bi(u.)} is positive. 
l~i~N 

If W' E E(o,C-), we have 

Ilw -

00 

+ 2: 
k=2 

We put 

Y~ k(O) )2 0 l., 

'!fl. k II 00 and 
l., L (D

i
) 

- a. l. 
Vol(D.)1/2 

.l. ' 

Then for any 0, 1; such that 0 < ° < 01 ' t: > 0 ,we have, 

(2.16) t: u. (O,x) - a. l.,q l. < 
t: . 

Y. 1(0) '!fl. l(x) - a. l., l., l. + 

q 
1; q1/2 } 2: I Y. k(O) '!fl. k(x) I < { max II '!fl. k II 

k=2 l., l., 
l~i~N,l~k~q 

l., L 00 CD. ) 
l. 

t: Vol(D. )1/2 12 
q 

t: )2 }1/2 x { I Y. 1(0) - a. + 2: Y. k(O) l., l. l. k=2 l., 

- 15 -
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< < 

Here we define, for ° and C , 

T(o,C) -

< 
1 

L+ 0 .. 

q 
sup ° I Iv~ l(t)1p. l(x) - a·1 + 2: 

~,~, ~ k=2 

for any (t,x) E [O,t .. J x Di 

in D. 
~ 

vk
C .(t) 1p. k" (x) I < 
,~ ~, 

} . 
It is clear that T(o,C) is positive if w E E(o,C) for ° and 

t; such that" ° < ° < ° 1" c~.nd"C > ° hold. From now on we will 

prove that T (0 "C) is infinity if ° and" C is small. , 

Lemma 2 .. 1. Let 02 E (0'01) and C1 > ° be positive 

constants such that the following inequality (2.17) holds for any 

(2.17) 03 + c 3 Vo~(Q(C)) < 

min min {Bi (O .. /8)VOI(Di ), Bi(-~./8)Vol(Di)' li,2 o.2/64 (q-1)c2
2 }~ 

l~i~N 

where sup n 
x E 1R 

Then T(o,C) = 

2 I grad A(x) I + 

for any' (0, C) E ( ° , ° 2 J x (0, C 1 J . 

(Proof of Lemma 2.1) We assume that T(o,C) is finite for some 

(o,C) E (0,02 J x (0,C 1 J and w E E(o,C). If t belongs to the 

interval [O,T(o,C)J, the following inequality (2.18) follows from 
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the definition of T(o,C), 

(2 .. 18) I u~ (t,x) - a. I < I,q I Y~ l(t) 1.p. l(x) - a·1 
~, I, I 

q 
+ 2: 

k=2 
Y~ k(t) 1.p. k(X) I < 0+ on [0, T(o,C)J x D. ~ 
I, I, I 

Hence it follows. from (2.13), (2.14) and (2.15) 

f f
a. 

I f(~) 
D. u~ (t x) I I,q , 

d~ dx >. ° ( ° < t ~ T(o,C), i = 1,2,···,N ) 

follows. 

As we have ·the following inequality (2.19) from (2.12) and the 

definition of J
C and 

N f C 2 N q C 2 
(2.19) 2: I uC(t,x) - u. (t,x) I dx + 2 2 1. 2( Y. k(t) ) 

i=l D. I,q i=l k=2 I, I, 
I 

+ 51 fDi I:Lk(t,X) f(~) d~ dx < C3 Vol(Q(C)) + 

we have, for any (o,C) E (0,02 J x (0, C1 J and from (2.17), 

the following inequalities (2.20) and (2.21), 

N q 1 C 2 
( 2 .. 20 ) 2: 2: --r,- 1. 2 ( v. k ( t ) ). < 

i=l k=2 '+ I, I, 

(2.21) 0 ~ f fa~ f(~) d~ dx < 
D. u. (t,x) I I,q 

{ B.(+ o+/8)Vol(D.) } 
I - I 

( ° < t ~ T(o,C) ). 
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By (2.20) and a little calculation~ we have 

( ° < t ~ T(o,C) )~ Hence we get the following inequality (2.22) 

= Y~ k(t) lfJ· k(x) I < 
~, ~, 

Next that from (2.21) by the aid of lfJi,l(x) = V01(D i )-1/2 

we obtain 

(2.23) ° N f C . -1/2. < ~ B.(Y. l(t)Vol(D.) -a.+ P.(t;x)) dx 
i= 1 D. ~ ~ , ~ ~ ~ 

< 

~ 

min {B.(+a+/8) Vol(D.) } 
. ~ - . ~ 

l~i~N 

P. (t,x) = 
~ 

Remark that P.(t,x) is estimated in (2.22). It follows from (2.16) 
~ 

tha in D. 
~ 

( 1 < i < N ). 

Now we assert the following inequality 

4 C _ C -1/2 
(2.2 ) a.- a .. 12 __ < Y. l(t)lfJ. l(x) - Y. l(t)Vol(D.) < 

~ ~,~, ~, ~ 

'for any t E [O,T(o,C)] and i = 1,2,···,N. 

If the inequality (2.24) breaks at t = t' E [O,T(o,C)] for the 

first time for some i , then IY~ 1(t')VOl(D.)-1/2 - a. I = a2* ~, ~ ~ 
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holds and in D. 
l 

follows from (2.22) 

and we have 

f t· B . (u. ( t t , X ) - a.) dx > 
D. l l,q l = 

l 

But this contradicts the inequality (2.23) by (2.13),(2.14) an~ 

(2.15) and the continuity. Thus we have ascertained the inequality 

Then again by (2 . .22) and (2.24), we have the inequality, 

I vI,l(t)1fJi,.l(X) - a. 
l 

q t 
I + ~ I v . . k(t) 1fJ. k(x) I 

k=2 l, l, 
< 

on [O,T(5,t)] x Di (1 ~ i ~ N ). 

Then there exists ( by the continuity of uC(t,.) ) Tt > T(5,C) 

such that 

I v~ l(t) 1fJ. l(x) - a. I + ~ I v~ k(t) 1fJ. k(x) I < 
l, l, l k=2 l, l, 

a .. 

holds on [O,T'] x D. 
l 

( 1 ~ i ~ N ). But this is a contradiction 

to the definition of T(5,t). Consequently we conclude T(5,C) = ~ 

Lemma 2.1 is thus proved. 

Therefore,from the inequality (2.19) and Lemma 2.1 we have the 

following estimates (2.25),(2.26) and (2.27) concerning the behavior 

of uC(t,.) with intial condition w E E(5,C), 

(2.25) 
N 
~ f lur(t,x) - u~ (t,x) 12 dx ~ c 3 Vol(Q(C» 

., l,q -
i=l Di 

N 
(2.26) ~ 

i=l 

q 1 C 2 
~ -r,- A. 2 (v. (t» < 

k=2 ~ l, l,k 

- 19 -
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holds and in D. 
1.. 

follows from (2.22) 

and we have 

·f B . (u ~ ( t ' ,x) - a.) dx > 
Dr 1.. 1..,q 1.. = 

1.. 

But this contradicts the inequality (2.23) by (2.13),(2.14) and:­

(2.15) and the continuity. Thus we have ascertained the. inequality 

(2.24). 

Then again by (2 . .22) and (2 .. 24), we have the inequality, 

~ q ~ 
v. l(t)lP' l(x) - a. I + 2: I v. k(t) lP· k(x) I 

1.., 1..~ 1.. k=2 1.., 1.., 
< 3 
.~ (1 .. 

on [O,T(o,~)] xD i (1 ~ i ~N ). 

Then there exists ( by the continuity of u~(t,.) ) T' > T(o,~) 

such that 

I v~ l(t) lP· l(x) - a. I + ~ I v~ k(t) lP· k(x) I < 
1.., 1.., 1.. k=2 1.., 1.., 

holds on [O,T'] x Di . ( 1 ~ i ~ N). But this is a contradiction 

to the definition of T(o,C). Consequently we conclude T(o,C) = = 

Lemma 2.1 is thus proved. 

Therefore,from the inequality (2.19) and Lemma 2.1 we have the 

following estimates (2.25),(2.26) and (2.27) concerning the behavior 

of uC(t,.) with intial condition w E E(o,C), 

(2.25) 
N 
2: f lu~(t,x) - u~ (t,x) 12 dx ~ c3 Vol(Q(C)) 

t" 1..,q -i=l Di 

N 
(2.26) 2: 

i=l 

q 1 
2: -r.- 1. 2 

k=2 't 1.., 
V~ k(t) )2 < 

1.., 
c3 Vol(Q(C)) 

- 19 -

+ 

+ 



(2.27) o < J Jai f(g) dE dx 
D. u~ (t x) 

1. 1.,q , 

< c
3 

Vol(Q(t)) {- 03 

( 0 < t < ~ , 0 < t < t1 ' 0 < 0 < O2 ). 

From lim Vol(Q(t)) = 0, it is clear that there exists a strictI .y 
t~O 

monotone continuous function C(o) on some interval (0,03 J 

with the following properties (2.28) .. and (2.29), 

(2.28) lim C(o) = 0 
0~0 

(2.29) 03 + c 3 Vol(Q(t)) < 

min min 
l~i~N 

for any C E (O,t(o)J. 

We define a function oCt) to be-the inverse function of the above 

function teo). It is easy to see that o(C) is defined on some 

interval (0, '2 J and lim oCt) = 0 holds. 
t.-?O 

Lemma 2.2. The set E(o,t) is positively invariant for any 

(o,t) E [0(t),03 J x (0,t 2 J, i.e. for any w E E(o,t), the solutic 

of (2.1) u t (t, .) belongs to E (o·,C) for any t ~ 0 . 

(Proof of Lemma 2.2) For any w E E(o,') o(C) ~ 0 ~ 0 3 ' 

o < t ~ '2 ), we can obtain from (2.25),(2.26),(2.27),(2.28) and 

(2.29) the following inequalities, 

- 20 -
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N f C 2 ( 2 .·30 ) 2: I u c ( t , x ) - u. ( t , x) I dx < 
i=l D. l,q 

l 

(2.31) 
N q 1 C 2 2: 2 -r.- 1. 2 ( v. k(t) ) 

i=l k=2 ~ l, l, 

< 
1. 2 
l, { 
64 1 

+ CI 

(2.32) o < . . l f(E) dE dx J f
a. 

Di UI,q(t,x) 
< Vol(D.) min { B.( - )} 

l l~i~N l 8VOl(D
i

)1/2 

Here we have, from (2.31), the following (2.33) and (2.34) ,. 

(2.33) II 
q 1; 
2: v. k(t)V'. k 

k=2 l, l, 

(2.34) II 
q C 
2:e. V.; k ( t ) 11'.; k II cc ~ 

k=2 ..... , ..... , L (D.)-
l 

< 

Hence applying the same argument as the last part of the proof of 

Lemma 2.1 ( which deduced the inequality (2.24) ) to the inequality 

(2.32), we have the following estimate. 
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(2.35)· I a. -
~ 

v~ l(t) 1p. l(x) I 
~, ~, 

4 VOl(D.)1/2 
~ 

+ 

< 

on [0,00) x D. 
~ 

1 < i < N ), and then we have, 

(2.36) a. - v~ l(t)1p .. 1 II 2 < 
~ ~, ~'L (D

i
) 

1 
Vol(D. )1/2 

~ 

+ 
c (q - 1)1/2 

1 *2C2(q-l)~/2V01(Di)1/2 } 

Therefore, using (2.30),(2.31) and (2.32), we have 

u~(t,·) - a~ ~. ~ 
1,. .... L2 (D.)-

~ 

u~(t,·) - u~ (t,·) 
I" .l.,q 

+ 
q t 
2. v~ k(t) 

k=2 .... , 
1p. k 
~, 

a. -
1. 

C v. l(t) 1p. 1 
~, ~, 

< t ~ 0 ,1 < i < N ). 

Thus we have proved the positive invariance E(o,1:;) under the 

conditions o < C < C2 and o(C) < 0 < and we have 

completd the proof of Lemma 2.2 . 

Thus we are in the situation where we can apply Theorem 4.2 in 

Matano [15J to the closed subset E(o(C) ,C) of C2 (.Q(C)·) n C1 (.Q(C)) 

because it is easy to see that E(o(/;),C) has· If the property (8)" 

in [15J for /; > 0 ( 0 < t; < /;2)' Thus we have obtained a 

stable equilibrium solution Vc in E(o(t;),t;) for small 1:; > 0 
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(2.35), I a. -
~ 

v~ l(t) tp. l(x) I 
~, ~, 

4 Vol(D.)1/2 
~ 

+ 

< 

on [0., co) x D. 
~ 

1 < i < N ), and then we have, 

(2.36) a. - v~ l(t)tp. 1 II 2 < 
l ~, ~'L (D.) 

~ 

+. (J Vol(D.;) 1/2 x .. {. 1 + 
't . .. Vol(D. )1/2 

~ 

c (q - 1)1/2 

1 +ZCZ(Q_l)l/ZVOl(Di)l/Z } 

Therefore, using (2.30),(2.31) and (2.32), we have 

+ 

a. 
~ 

q C; 
2: v. k(t) 

k=2 ~, 

< 

tp. k 
~, 

u~(t,·) - u~ (t,~) 
I., ~,q 

a. -
~ 

C; 
v. l(t) tp. 1 
~, ~, 

t ~ 0 ,1 < i < N ). 

Thus we have proved the positive invariance E(G,t;) under the 

conditions o < t; < t;2 and G(C;) < 15 < and we have 

completd the proof of Lemma 2.2 . 

Thus we are in the situation where we can apply Theorem 4.2 in 

Matano [15J to the closed subset E(G(t;) ,t;) of C2 (.Q(t;).) n C1 (.Q(t;)) 

because it is easy to see that E(G(C;),C;) has It the property (3)" 

in [15J for t; > 0 ( 0 < t; < t;2). Thus we have obtained a 

stable equilibrium solution v t; in E (15 (t;) ,t;) for small t;. > 0 
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Next we examine the property of Vc . For any i ( 1 < i < N) 

Vc satisfies the following relations. 

(2.37) Ll Vt; + f(v?:;) = 0 in D. 
~ 

*' (2.38) a .. - o ( t; ) < vC(x) < a + o(e) in D. 
l 

(2.39) 
aVt; 

= 0 on a.Q(C) n aD. a;- l 

For any 1] > 0 , applying the Schauder estimate· to Vc on the 

domain D.(1]/2), 
l . 

we obtain the boundedness of { Vc }C>O in 

C1+ P(D.((1-(1/2)Z)1]» for some P E (0,1) and also the boundedness 
l 

of {f(vt;)}t;>O in C1
+P(Di ((1-(1/2)2)1]»' Aga.:in,applying the Schauder 

estimate to the domain 2 Di ((1-(1/2) )1]), we obtain the boundedness 

of {Vt;}t;>O in C3+P(Di ((1-(1/2)3)1]». Repeating this bootstrap 

argument, we obtain the boundedness of {vC }c>O in CCXI(D i (1]» . and 

also the compactness in On the other hand, we already 

have lim live - a. II 
L 2 (D. ) 

= 0 , then we conclude 
C~O 

l 

l 

lim Vc = a. in COO (D . ( 1] ) ) 1 < i < N ) . This completes the 
C~O 

l l 

proof of 'Theorem 1. 
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§ 3 Asymptotic Behavior on The Thin Part. 

In this section we consider the behavior of the solution on the 

perturbation part Q(C), but the domains introduced in Section 2 can 

contain extremely wild perturbation because the condition (11-1) is 

too weak. For the sake of the delicate argument about the behavior 

of the solution, we establish the domain concretely which is the 

special case of those in Section 2. 

We set the domain D(C) in the following form 

D(C) = u u Q(C) 

where D. (i=1,2) and Q(C) are defined in the following (111-1) 
~ 

and (111-2) where 

(111-1) D1 and D2 are bounded domains in lRn (mutually disjoint) 

with smooth boundary which satisfy the following conditions 

for some constant C* ~ 

= { (l,x') E lRn I I x' I < 3'4>} 

52 n {x = ( xl' X f) E lR
n I x 1 ~ -1 , I x! I < 3' * } 

= { (-1, x') E lR
n I I x' I < 3 C * } 

(111-2) . Q( C) = u u r(c) 

Rl ( C) = { (xl' x!) E lR
n 

1 -2C < xl ~ 1, Ix'i < Cp( (x 1-1)!C) } 
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where p E CO«-2,0]) n C
oo
«-2,0)) is a positive valued monotone 

increasing function such that p(O) = 2 , pes) = 1 for s E (-2,-1) 

and lim 
Si-O 

(s) = + 00 holds for any positive integer k. 

We also assume that 

(111-3). lim f( ~) 
~~oo 

< ° ,. lim f(~) > ° 
~~-oo 

Remark. The domain determined above satisfies (II-i) and 

(11-2) therefore it is a special case of that dealt in Section 2 

and so we use the same notation D{C). 

Under the situation supported by the conditions (11-2),(111-1), 

(111-2) and (1II-3), we analyze the asymptotic behavior of some 

solutions ( which will be characterized by (111-4) ) of the 

following semilinear elliptic boundary value problem (3.1). 

(3.1) [ av 
a; = ° on aD(C) • 

LI v + f{v) = ° in D{ C) , 

(III-4) Let be an arbitrary solution of the above (3.1) for 

( ° < C < t~ ) such that the family of the functions {vr } . 
.,... I, O<C<t .. 

satisfies the following condition. 

lim 
t~o 

and fl(a.} < ° 
J.. 

- 25 -
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Definition 2. Let ~l(t) be the first eigenvalue of the 

following eigenvalue problem. 

(3.2) [ 

+ = o in .a(C) , 

= o on a.a(c) • 

Remark. It is well-known that if ~l(C) > O( resp. ~l(C) < 0) 

vc is stable (resp. unstable) as an equilibrium solution of 

(1.1) for .a = .a(t). 

Remark. The two values and are not necessarily 

mutually distinct. 

We define M .. = inf { g E IR I f(g) = O}. and .. 
M = sup { g E IR f(g) = 0 }. It is easily seen by (11-2) and .. 
(111-3) that M.. and M are well defined and that 

(3.3) M .. < for x E .a(C) • 

Then we have the following theorem. 

Theorem 2. Assume n > 3, then we have, for i i = 1 , 2 ) , 

lim sup I vC-(x) - a. = 0 . 
C--.?O E D. u R. (C-) ~ x 

~ ~ 

We prepare the ordinary differential equation which describes 

the asymptotic behavior of vc on Q(C) when C J- 0 . 

d2V f(V) 0 in 1 1 
dz 2 + = - < z < , 

(3.4) 

V( 1) = a 1 V(-l) = a2 . 
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Definition 3. Let AV and ~V be respectively the first 

eigenvalue and the first eigenfunction of the following eigenvalue 

problem (3.5) for a solution V of (3.4). 

[ 
d 2

<P f'{V{Z)) <p A <p ° in - 1 < z < 1 -2-' + + = 

(3.5) dz 

~(1 ) = ° , ~(-1) = '0 . 

Now we present one of the main results of this paper~ 

Theorem 3. Assume n ~ 3, then for any sequence of positive 

values { r}~ such that lim em = ° "m m=l 
there exist a 

subsequence {x } ~ c {C } ~ 
m m=l m m=l and a solution V of (3.4) 

with the following asymptotic property (3.6) : 

(3.6) lim sup v ( xl ,x t ) - V(x1 ) I = ° . X E Q(x ) x 
m-jo~ m m 

Furthermore concerning the above V , if AV > ° (resp. AV < 0), 

then lim fll(xm) > ° (resp. lim fll("m) < ° ) holds. 
m-jo~ m-joQO 

Before starting the proof we introduce some notations. 

Pl = (1,0,···,0) , P2 = (-1,0,·,· ,0) , 

Z 1 ( 1]) = { ( xl' X I) E IR
n 

'x 1 > . 1 , x - Pl' < 1] } 

Z 2 ( 1]) = { ( xl' X I) E IR
n I xl < -1, I x - P 2 I < 1] } • 

- 27 -



It can be easily seen by the last part of the proof of Theorem 1 

and the condition (111-4) that the following convergence (3.7) 

follows. 

(3.7) lim Vt; = a i 
in C<X>(D. - .r.(1])) 

t;~0 
1- 1-

for any small positive constant 1] i = 

( Proof of Theorem 2 ) 

(.3.8) 

We define for 

K(c,t;) =-

1](c,l;) = 

lim sup 
I;~O x E D1 

C > 0 and 

{ x E D1 

inf { 1] > 0 

I 

Then it follows from (3.7) 

(3.9) lim 1](c,l;) = 0 
t;~0 

First we will prove 

= 0 

0 < I; < t; .. , 

I Vl;(x) - a 1 ~ c 

.r1 (1]) :J K(c,l;) } 

that 

for any c > O. 

1 , 2 ) . 

} 

It is easily seen that (3.8) is equivalent to the following fact 

(3.10). 

(3.10) For any c > 0 , there exists = such that 

1](c,l;) = 0 for any I; such that 0 < I; < 1;0 

Assume that (3.10) does not hold in spite of (3.9), that is 

(3.11) there exists Co > 0 such that 1](cO,I;) > 0 for any I; 

such that 0 < I; < 1; ... 

We shall show that this assumption yields a contradiction. 

( See (3.38), (3.40) and Lemmaj ,2 mentioned later. ) 
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Here concerning the convergence (3.9), we have the-following 

estimate. 

Lemma 3.1. 

(3.12) lim 
C~O 

c 
17(c,C) > a for any c such that 

(Proof of Lemma 3.1) If we assume the contrary, there exist cl 

and a se.quence of positive values {r}oo such "'m m=l 

that lim r -- a and lim "'m -
m~oo m~oo 

= a . This last 17(c 1 ,Cm) 

limitation also holds if is replaced by a positive constant 

which is smaller than c
1

. Therefore we assume without loss of 

generality that c 1 is sufficiently small so that f'(~) < a 

holds for any ~ E (a1 - e l' -a 1 + e 1 ). We denote 17 ( e 1 ' C m) - by 17m 

for simplicity hereafter. 

For the analysis of the behavior of v C on the small par-t 1'1 (C) , 

we change the scale of the variable x into y around the point 

Pi as follows. 

(3.13) [ 
= 

= 

By (3.13), the equation (3.1) is transformed into the following 

equation (3.14) in some neighborhood of Pi . 

(3.14) 

+ 

au 
m 

aYl ( O,y') 

= a 

= a for y' 
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We put . rm 

= max Vc (x) - a 1 I 
xED 1 ~ 1 x-p 11 = 3f;* m 

Then it is easy to see lim rm = 0 . 
m-+ co 

We have the following properties (3.15),(3.16) and (3.17) by the 

definition of ~ - ~(€ f;) 
"'m -"' l' m and Urn 

(3.15) max 1 Um(y) - a 1 I = 
Yl> 1,IY-P l l=1 X E 

= £1 

(3.16) Um(y) - a 1 < in 

* (3.17) M* < Um(y) < M in 

Here we define a comparison function Gm which will estimate U 
m 

for large y. 

= + 

It can be easily seen by (3.16) and the assumption of €1 that 

f(Um(y)) < 0 for any Y E (Zl(3f;*IT)m)-Zl(l)) n { y 1 Um(y) > a 1 

f(Um(y)) > 0 for any y E (Zl(3C*/T)m)-Zl(1)) n { y 1 Um(y) < a 1 

and that G m is a harmonic function in Zl(C*/T)m) - Zl(l) with 

aG 3 C* 
the boundary condition m (O,y' ) 0 ( 1 Iy'l ) . 

aYl 
= < < 

T)m 

- 30 -

} 

} 



Then we can apply the standard argument similar to the Comparison 

Theorem to the function Um - a 1 in the domain I1(3C+/~m) - I 1(1) 

by using (3.14),(3.15) and the definition of I'm and we obtain the 

following estimate (3.18) for sufficiently large m. 

Recall lim Cm I~m = 0 
m~oo 

Applying the same argument as the the last part of the proof of 

Theorem 1 and moreover the· diagonal argument to the family { Urn } ;::1 
in (3.14) with a-priori bound (3.17) by using lim ~m = o ·and 

m~oo 

lim = o , we can choose a subsequence such 

that there exists a smooth function U in 

with the following conditions (3.19), (3.20), (3.21) and (3.22). 

+ 
(3.19) M* < U(y) < M in { (Y1 ,y') I Y1 > 1 } - { Pi } 

(3.20) Ll U = 0 in { (Y1'y') E IRn I Y1 > 1 } 
Y 

(3.21) au (l,y' ) 0 for y' n-1 such that y' ...L 0 aY1 
= E IR r-

(3.22) lim Urn. = U 
j~oo J 

in COO ( { (Y1'Y') Y1 > 1 , ~ I 1 } ) < y - P1 < 
~ 

for any ~ > 0 . 
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On the other hand, from the estimate (3.18), the convergence (3.22) 

and lim I'm = 0 , U satisfies the following estimates 
m-l>CO 

(3.23) I U(y) I 
c 1 - a 1 < 

,n-2 y - P1 

in { (Y1'y') E IRn 
Y1 > 1 I y - P1 > 1 } 

(3.24) M .. < U(y) < 
.. 

M in { (Y1'Y') E IRn 
I Y1 > 1 } 

From (3. 15), the convergence (3.22) and. the compac.tness of the set 

{ ( Y 1 ' y') E IR
n I 1 = 1 }, it follows that 

(3.25) max = 
y 1 ~ 1, I Y-P1 1 =1 

Here we can define a function a E Cco(IRn - {P1}) by using the 

Laplace equation (3.20) and the Neumann boundary condition (3.21) as 

follows 

U(y) for Y1 > 1 Y ;e P1 
a(Y1 ,y' ) 

, 
= 

U(2-Y1'y') for Y1 < 1 

By a simple calculation, we have, 

[ 
Lf U = 0 in IRn { P1 } 

Y 

.. 
IRn 

M .. < U(y) < M in { P1 } . 

Therefore, applying the removable singularity theorem, we can extend 

a on IRn as a bounded harmonic function. We denote it also by a . 
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Thus U must bea constant function by the Harnack Theorem. But it 

is impossible by (3.23) and (3.25). This is a contradiction and we 

complete the proof of Lemma 3.1. 

By Lemma 3.1, we take a constant p > 0 such that 

(3.26) lim 
l;~0 

> > 0, o < < 1/2 . 

We change the variable x into y around Pl by the following, 

(3.27) [ 

x = C·( y - Pl ) 

vl;(C(y-Pl)+ Pl) 

By (3.27), the equation (3.1) is transformed into the £ollowing 

equation (3.28)-(3.29) 

(3.28) L1 Uc + C
2 f(U

C
) = 0 in HC y 

(3.29) 
au

C = 0 on aRC n aH -a;;- . 

Here we have put, 

H - { (Yl'y') E lRn I Yl > 1 } 

u { (Y1 ,y' ) E lRn -1 < Yl < 1 , Iy'l < P(Yl-l) } 

u r (Yl ,y') E lRn 
Yl < - 1 Iyt I < 1 } , 

HC = H n { (Yl,Y')E lRn 
Y1 < -1 , or Y - Pl i < 3C+IC 

and y denotes the unit outer normal vector on aH. 
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Here we define 

= max 
x E D1 , IX-P11=3~* 

It is easily seen by (3.7) that lim 
~-.O 

= o. 

From (3.26) and the definition of TJ(eO'~)' we have, 

for sufficiently small ~. > 0 

and also we have, 

(3.31) 

> max 
xl > 1, I x-p 11 =TJ ( eO' ~ ) 

(3.32) < 

in 1 1 rr < I y - Pl 

(3.33) 

/3n-2 1 "I n-2 y - P1 

+ 

in 

= 

< 
3 ~* 
-~- } . 

"By the same argument in (3.28),(3.29),(3.33) and (3.34) as the proof 

of Lemma 3.1, we can choose a convergent subsequence 

such that lim ~m = 0 and a 
m""'CXI 

function U E C
CXI

( H ) which satisfy the following equations 

(3.35) LI U = 0 y 
in H 
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(3.36) 
au 
aY = 0 on aH 

(3.37) lim U, = U in COO ( H for any 'Y) > 0 
m~oo m 'Y) 

(3.38) I U(y) I 
Co 

- a 1 < n-2 ,n-2 {3 ! Y - P1 

in { (Y1 ,Y ' ) E IRn 
Y1 > 1 , I Y - P1 > 1/{3 } 

.. 
(3.39) M .. < U(y) < M in H 

On the other hand, from (3.31),(3.37) and the compactness of the set 

{ (y 1 ' Y I) E lR
n I y 1 > 1, I y -p 1 I < 1 / {3 }, we obtain 

(3.40) max U(y) - a 1 
Y1, > 1, !Y-P1! < EO 

> 1/{3 

Thus (3.38) and (3.40) imply that U is a non-constant function in 

H. But this is impossible from (3.35),(3.36),(3.39) and the 

f9l1owing Lemma 3.2. 

Lemma 3.2. Let ~ be a bounded function which belongs to 

(3.41) 

(3.42) 

(3.43) 

Then 

and satisfies the following equations 

L1 1p = 0 
Y 

2L = 0 av 

in H 

on aH 

lim ! ~ ( Y ) - a' = 0 
Y 1 ~ 1, I Y I ~oo 

a in H 
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( Proof of Lemma 3.2 ) We assume the contrary. Without loss of 

generality, we may assume 

(3.44) sup ~(y) = M > a 
y E H 

We choose a sequence of points {r}oo c 
m m=l H such that 

lim ~(rm) = a Using the Strong Maximum Principle, the Hopf 
m-+ oo 

Lemma ( See [19J and the equation (3.41)-(3.42), we can easily see 

that ~ cannot attain its maximum on H, because ~ is a 

non-constant function. Moreover { r}oo does not have an m m=l 

accumulation point on H and so from (3.43), we obtain 

lim r 1 = - 00 • m, 

We assume r 1 < 0 m, for any m 

here. we denoted by r . . m,~ 
the i-th component of the point 

We define a family of functions { 1n}00 as follows, Tm m=l 

~ (Y1'Y') = ~(Y1+ r 1+2,y') . m . m, 

Each ~m satisfies the following equations, 

(3.45 ) .d ~m = 0 in H n { Y1 < 0 } y 

(3.46) 
a~m 

0 aH { Y1 < 0 } aY = on n 

(3.47) ~m(Y) < M in H 
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(3.48) lim 
m-lo CO 

max 
H n { Y1 

1flm(Y) 
= -2 } 

= M 

By the standard compactness argument cocerning the solutions of the 

elliptic boundary value problem and the Maximum Principle in 

(3.45)-(3.48), we deduce the following convergence, 

(3.49) lim = M in 
m-+ CO 

On the other hand, integrating the equation (3.41) in y! on 

{ Iyt I <1 } by using the Neumann boundary condition, we have, 

= 0 for < 0 

But the boundedness of 1fl implies the boundedness of 

in -00 < o 

Therefore f 1fl(Y1'y!) dy! is independent of Yl when Yl is 
IY! 1<1 

negative. We denote its value by K . 

Therefore we have the following equality., 

(3.50)' f 1fl (-2,yt) dy' = f ~(r 1,y!)dy! 
ly!l<l m ly!l<l m, 

K 

We remark that the left hand side (3.50) tends to the value 

M f 1 dy' when m tends to 
IY! 1<1 

Then we obtain, 

= f M dy' 
Iy' 1<1 

for any m . 
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From (3.44), the above equality implies ~(rm,l'Y') = M for yl 

such that Iyl I < 1. But this contradicts to the fact that ~ 

cannot attain its maximum on H~ This completes the proof of 

Lemma 3.2 and also the proof of lim 
C~O 

= o. 

To prove lim 
C~O 

sup I vC(x) - a i I = 0, we remember 
x E Ri(C) 

the transformation (3.27),(3.28),(3.29) and by means of a similar 

argument there and we get the compactness of the family { Uc }O<C<C* 

in CtxI(H) 
1] 

for any 1] > O. Let {U~ }:=i be any convergent 
m 

subsequence of the above family such that lim = o and 

there exists such that lim = in 

for any 'YJ > 0 . Then IT is a harmonic functi.on in H. (See 

(3.35) and (3.36). ) But we have already proved' 

lim 
C~O 

sup I v C ( x ) - a 1 I = 0 
X E Di 

which implies IT(Yi ,yl) = for 

any y E H n { Yi > 1 }. Hence by the Unique Continuation Theorem, 

we get IT in H. Then we conclude 

lim 
C~O 

lim 
C~O 

sup 
Y E H 

1] 

= 

sup I vC(x) - a i I 
x E Ri (C) 

of Theorem 2. 

o for any 1] > 0 . This implies 

= o . Thus we complete the proof 

- 38 -



( Proof of the Former Half of Theorem 3 ) 

To analyze the asymptotic behavior of Vt; in the thin part 

Q(t;), we change the variable x into y as follows. 

= 

(3.51) t; yl = Xl 

= 

2 
We define t(t;) = Z 

i=l 
sup 

X E R.(t;) 
~ 

and so by 

Theorem 2, we have lim 
t;-+O 

L(t;) = 0 We put ()) max .. 1 f (~)I . 
M* ~ .~.< M 

By (3.51), the equation (3.1) is transformed into the following 

equation in the part corresponding to Q(C). 

n 
(3.52) + 

1 

7 2: 
j=2 

+ = o in G(t;) 

(3.53) = 0 

where we have put 

on aG n { -1 + ~ < " < 1 - t; } 
JI 

1 yl I < 1 , < co 

G(C) = G n { -1 + C < Y1 <1 - C } and denoted by JI the unit 

outer normal vector on aGo 

We decompose Uc as = + by the folloeing 

equations which determine U1 ,t; and U2 ,t; uniquely. 

(3.54) + 
1 

7 = o in G(t;) 
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( 
U1 ,C(y) = UC(y) on G n { Y1 = 1 - C } 

(3.55) 
U1 ,C(y) = UC(y) on G n { Y1 = -1 + C } 

au 
(3.56) 1,C(y) = 0 on aG n { -1 + C < Y1 < 1 - C } a." 

By the above definition, U2 ,t; automaticaly satisfies the following 

equation 

a2 1 n a2 
(3.58) ( 

2 +- 2: 2 ) U2 ,t; + f(U
C

) = 0 in G(t;) 
aYl C

2 j=2 ay. 
J 

(3.59) U2 ,C(1-t; ,y') = U2 ,C(-1+t; ,y') = 0 ( Iy'l < 1 ) 

(3.60) = 0 aG n { - 1 + t; ~ Y1 < 1 - C } 

Hereafter we denote the differential operator by Pt; as follows 

1 

7 
We can deduce the following estimate by applying the comparison 

theorem in (3.54)-(3.55) by the aid of the definition of L(t;) . 

Lemma 3.3. For any t; E (O,t;*), we have, 

(3.61) sup lUi, t; ( y ) -
Y E G(C) 

1-t;-y 1 
2-2t; a -1 
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We define functions ~± in G(C) which estimate U
c 

roughly. 

Y1 + 1 - C 

2 - 2 C 

1 - C - Y1 

2 - 2 C 

+ W
2 

(y + 1 - C )( 1 - C - y ) 
1 1 + 

Lemma 3.4. For any C E (O,C.), we have the following estimate 

< < in G(C). 

(Proof of Lemma 3.4) By an easy calculation, we have, 

Pc ~ = - w in G(C) 
± + 

a~ 
± 

a;- = ° on aG n { -1 + C < Y1 < 1 - C } and by the 

definition 

a -1 

a -2 

of t ( C) , we also have 

Applying the comparison theorem, we have the consequence. 

Lemma 3.5. There exists a positive constant c 1 such 

fG(e) I 
au2 ,C 2 1 n 

fGce) I 
au2 ,C 

2 dy (3.63) 
aY1 

dy + 7 2: I 
j=2 ay' 

< c 1 for any C E (O,C.) 
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We can deduce this inequality by integrating the equation (3.58) 

after multiplying UZ,C and using the boundedness (3.3) and (3.61) . 

We define a .fun<;tion which bounds UZ,C in G (C) • 

PC(Y1'y') = ~ ( 1 - C - Y1 ) ( 1 - C + Y1 Z 

Lemma 3.6. There exists a positive constant Cz such that 

(3.64) Uz,C(y) I < PC(y) in G(C) 

(3.65) 
au 
ayz,C(l-C,y') < Cz 1 

( Iy'l < 1 ) 
au . 
ay z,C (-l+t ,y') < Cz 1 

(3.66) 

(Proof of Lemma 3.6) 

Pc satisfies the following equations, 

(3.67) Pc Pc + ill = 0 in G(C) 

ap 
(3.68) C = 0 on aG n { -1 + C ~ Yl < 1 - C } av 

/y' / < 1 

Then applying the comparison theorem to (3.58)-(3.60) and 

(3.~7)-(3.69)~ we see that 

(3.70) < < in G (C) • 

Then taking account of the boundary condition (3.59) and (3.69) 

we have, 

au 
ayz,c (l-C ,y') 

1 
< 

ap 
ayt (l-C ,y' ) 

1 
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By the same argument, 
aU2 C 

we have ay , (-l+C,y') < co . 
1 

Thus we conclude the result. 

Lemma 3.7. For any 0 E (0,1) , there exists a constant 

c3 ,0 > ° such that 

(3.71) 
auC . 

in G(o) ( ° < C 0/2 ) ay-(Y) < c3 ,0 < 
1 

au 
(3.72) 1,C(y) < c3 ,0 in G(o) ( ° < C < 0/2 ) 

aYl 

au 
(3.73) 2,C(y) < c3 ,0 in G(o) ( ° < C < 0/2 

aYl 

(Proof of Lemma 3.7) We will prove (3.71). 

For any Y. E [0, i-oJ , we define a function Wi which is 

defined on G n { 2y.- l+C < Yl < Y*} and satisfies the 

following equations 

(3.74) = for I y I I < 1 

(3.75) + 

(3.76) = 

(3.77) 

o 

1 
-Z 

on 

for I y' I < 1 . 

We define a comparison function e 
1 

as follows 

e1 (y1 ,y') = ~ (Y. - Yl)·(Yl - 2y. + 1 - C 

Wi 
1 - y. - C(Y. - Y1 ) 

- 43 -

= 

} 

° 



.. 
where we have put M = max ( IM .. I ,1M I ). 

This satisfies the following equations 

(3.78) Pc 6 1 + w = ° in G n { 2y .. -1+C < Y1 < Y .. } 

a6 
(3.79) 1 

° aG n { 2y .. -1+C < } av = on Y1 < Y .. 

(3.80) 6 1 (2y .. -1 + C ,y' ) = M for /y'l < 1 

(3~81) 6 1 (y .. ,y') = ° for /y' I < 1 0 

Applying the comparison theorem to (3.74)-(3.76) and (3.78) - (3.80) 

Notice PC(6 1 - W1)(y) ~ ° . ), we obtain 

6 1 (y) < W1 (y) < 6 1 (y) in G n { 2y .. -1+C ~ Y1 ~ Y ... }. 

Taking notice of the boundary condition (3.77) and (3.81), we deduce 

from (3.82) by (3.74) that 

auC aWl a6 
(3.83) I (y .. ,y' ) I (y .. ,y' ) I 1 (y .. ,yt) I aYl = aY1 

< 
aY1 

w ( 1 - C) + 
M w 2 M = Z- -y*, C 

< Z- + --0-1 - Y .. -

for any C E (0,0/2J . 

The above estimate holds uniformly in Y.. E [0, l-oJ. 

For the case that Y .. E [-l+o,OJ, the proof is the same as the 

above case. On the other hand, we can prove (3.72) and (3.73) by the 

completely same argument ( reflection technique) as (3.71). 
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Lemma 3.8. For any ° E (O,C.), there exists a positive 

constant c4,0 such that 

n auC 
,2 c4 (3.84) z aYj 

(y) < c4,0 
j=2 

on aG n { -1+0 < Y1 < 1 - o} for any C E (0,0/2J. 

(Proof of Lemma 3.8) For the sake of constructing a comparison 

function, we take a function h E Coo([O,oo)) which satisfies 

(i) h{O) = ° h(l) = 1 

(ii) 
dkh 

(0 ) ° dgk = for any natural number k. 

~(g) dg > ° for any g E (0,1) . 

Take an arbitrary hyperplane n in mn which contains the·y
1
-axis. 

By an appropriate orthogonal transformation of coordinate in 

(Y2 ""'Yn) , we can assume that n is expressed by the equation 

Y2 = ° without los·s of generality. Remark that the equation (3.52) 

is invariant under the above transformation. 

Now we define a domain G+(C) and a function W2 (y) in G+(C) 

as follows. 

(3.85) 

(3.86) 
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It is easily seen that W2 satisfies the following equations 

(3.87) on Jt n aG (C) 
+ 

(3.88) 

(3.90) on aG (C) n aG(C) 
+ 

We put a comparison function 8 2 (y) as follows 

( Y1 > 1-0 ) 

(3.91) ( -1+0 ~ Yl < 1 - 0 ) 

where e (0) = 1 + (J) + sup I hIT ( g) I 
g E [O,lJ 

BY'a simple calculation, we obtain 

Wi Y1-1+0 
- 2 e(o) + h!f(--::--~ 

(0-C)2 0 - C 
( Y1 > 1 - 0 ) 

-2 e(o) -1 + 0 ~ Y1 < 1 - 0 ) 

- -Yl-l+o 
-2 e (0) + M h" (--:----:--

(0-C)2 0 - C 
( Y1 < -1 +0 ) 
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(3.93) 
ae

2 av (y) > 0 on aG (C) n aG 
+ 

(3.95) = 0 on aG (0) n 1C 
+ 

By using 0 < C ~ 0/2 and the definition of e(o) , we obtain from 

(3.88)-(3.90) and (3.92)-(3.94) that 

(3.96) 

(3.97) 

(3.98)_ 

aG (0) n 1C 
+ 

Applying the Maximum Principle to (3.96)-(3.99), we obtain, 

By a similar argument with respect to -8 
2 

have 8 2 (y) < W2 (y) in G+(C) . Then we conclude that 

(3.101) 

Thus by the inequality (3.101) with the boundary condition (3.100), 

we have 
aW2 
ay (y) I < 

2 

a82 a (y) on aG+(o) n n . 
Y2 
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Therefore we have from (3.87) that 

(3.101) < 
of) 

2 
-ay-(Y) loG (o)nn 

2 + 

Then we have 
aUt 
oYZ (Y)loG+(o)nnnoG I < 

On the other hand we have the Neumann boundary condition 

Then by considering the arbitrariness of n (containing Y1-axis 

and the uniformness of the above argument in taking the hyperplane 

n , we conclude that 

n 
I 

j=Z 
< 3 (n-1) e(o) t Z o < t ~ 0/2 ) . 

We compiete the proof of Lemma 3.8 by putting c4,0 = (3(n-1)e(0))2. 

By the aid of Lemma 3.3 - Lemma 3.8, we will obtain a convergent 

subsequence of { Ut }:=1 . From Lemma 3.4 and lim L ( t ) = 0 
m t~o 

it is easy to see that for c > 0 , there exists a constant 

f = f(c} and b = b(c) such that f(c) and J(c) depend 

monotonously on c and lim b(c) = 0, lim f(c) = 0 and such that 

< c 
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On the other hand we deal with the convergence on the domain 

G(2b(e». From Lemma 3.5, {U2 ,C }:=1 is bounded in the Sobolev 
m 

space and it is compact in H1/ 2 (G(2b(E) by the 

Imbedding Theorem. Moreover {U2 ,C
m 

laG(2b)naG }:=1 is compact 

in L2 (aG(2b)naG) by the Trace Theorem. ( Taylor [21J Chapter I 

Now take a sequence of positive values { 8k }~=1 such that 

E1 > 82 > . . . > 8k > ck+1 > ... > 0 and lim Ek = 0 
k~CQ 

By the above compactness argument for c = c1 , we have a 

subsequence { C(l) }CQ 
m m=l {U (i)} :=1 

2,Cm 

c such that 

is convergent in H1/2( G(2b(c1» ) and also in L2( JG(2b(8 1 ))naG 

and its limit function is independent of y' by Lemma 3.5 . 

Therefore by Lemma 3.3, { U
C

(l) }:=1 is convergent in 
m 

(Recall U (1) = U (1) 
Cm 1,Cm 

+ UZ ,C£l) ). 

Then there exists a function U(l) E Hl/2( G(2b(cl)) ) which is 

independent of y' , such that 

lim = in 
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Again applying the same argument to the sequence {U (1)};=1 for 
em 

C = c2 ' we get a subsequence { e~2) };=1 c { e~l) }:=1 n (0,f(c2)) 

and a function U(2) E H1 / 2 (G(ib(c2))) which is independent of y', 

such that 

lim = in 
m-+ oo 

Repeating this process inductively , we obtain a sequence of 

subsequences of {r}oo such that "'m m=l 

{ r }oo ~ {r(l)}oo ~ {r(2)}oo ~ ... ~ {C(q)}oo ~ ... 
"'m m=l "'m m=l "'m m=l m m=l 

and a function V which is independent of y' such that 

lim V in for any natural number q . 

Determine the subsequence {x }oo C {r}oo by x 
~m m=l I,m m=l ~m = 

( m > 1). From the way of the construction {e~q) }:=1 , we have 

(3·105 ) lim U = V in H1/2(G(iJ( c
q

))) ( q > 1 ) 
x = m-+ oo m 

(3.106) lim U = V in L2 (aG(25(c ))naG) ( q > 1 ) 
x q m-+ oo m 

< (m > q > 1 ). 
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From now on, we will investigate the uniform convergence of 

{U}~ By Lemma 3.7 and Lemma 3.8 and the Ascoli-Arzera 
x m=l· 

m 

Theorem, {U x laG(2b(c ))naG };=1 
m q 

is compact in CO(aG(2J(c ))naG 
q 

for any natural number q . On the other hand we already have 

(3.106). Then we conclude that V is continuous in the interval 

(-1,1) and 

(3.108) lim sup U (Yl'y') - V(Yl) I = 0 
aG(2b( cq ) )naG " m~~ yE m 

for any integer q ~ 1 . 

Then, let m tend to ~ in (3.107) and we have 

This concludes that V is continuous on [-l,lJ and 

(3.110) V( 1) = V(-l) = 

Therefore from (3.107),(108),(3.109) and (3.110) , we have, 

< lim Ux (y) - V(Yl) I 
., m 

< e q 

+ lim sup 
1-2J(cq)~Yl~1-"m' ly'/=l 

Ur. (y)-al ) + (al -V(Yl)) I 
m 
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+ lim 
m~oo 

< 

for any q > 1 0- Then lim 
q~oo 

lim sup U 
aG(x )naG x 

m~oo Y E m m 

e = 0 q 

(Yl ,y' ) 

U x ( y ) - a2 ) + (a2 - V ( y 1 )) I 
m 

and lim b( e ) = 0 imply 
q~oo 

q 

- V{Y1) I = 0 

Again by (3.107) and (3.109) we conclude that 

From the equation (3.52) and (3.53), we have 

Take 

G(x ) m 

a2 1 
--2 + --2 
aY1 x 

m 

au 
x 
m (y) = 0 a1l 

n 
I 

j=2 
U + feU = 0 x x m m 

on aG(x )naG 
m 

in G(x) m 

any ¢ E C~((-l,l)) and integrate the above equation in 

(3.fter multiplying ¢(Y1 ,Y' ) = ¢(Y i ) . Then we have for 

sufficiently large m so that supp ¢ c (-l+x ,i-x) , m m 

f U (y) P ¢ dy + 
G(x ) xm xm 

m 

f ¢ feU ) dy = 
G(x ) xm 

m 

o 
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Remark that Px ¢(y) 
m 

= 

Let m tend to and we get by (3.105) that 

By the arbitrariness of ¢ , we have 

Lemma 3.9. 

) dY1 = 0 

lim Ux (Y1,yl) - V(Y1) / = 0 
m 

(Proof of Lemma 3.9) We define a comparison function e by 
± ,m 

V() W (1 _ /y,/2 ) x 2 Y1 + n-1 m 

+ 

e satisfy the following equations b.y (3.112) ±,m 

P e U ) f(V) 2 f(U ) < 0 in G(x ) = - - W + 
x ±,m x + x > m m m m 

e (y) - U (y) > 0 aG(xm) on ±,m x < m 

Then applying the Maximum Principle, we have 

U (y) > 0 in G(x ) x < m m 

< U (y) < e (y) in G(x ) . x +,m m m 
or e (y) 

-,m 
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By the definition of e ±,m , we conclude that 

lim sup U (y) - V(Yl) = 0 
G(" ) " m-+ oo y E m m 

and complete the proof of Lemma 3.9 . 

Expressing the equality in Lemma 3.9 in the original variable x, 

we complete the proof of the former assertion of Theorem 3. 

- 54 -



Proof of the Latter Half of Theorem 3 ) 

( 1 ) The case < o . 

We will prove that the first eigenvalue ~l(xm). in (3.2) for 

v is bounded from below by a negative constant for sufficiently x 
m 

large m. 

It is well-known that 

= inf 

"P E" Hl(.Q(x )) 
m 

Here we define a function 

[ 
X E r(x) 

m 

Remark that on (-1,1) and "Pm E 
1 H (.Q(x )). 

m 

To estimate ~l(xm) from above by using (3.113), we calculate 

2 
f' (v x ) "Pm ) dx 

m 

= 
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Using the former assertion of Theorem 3 which we have already proved 

we have f! (V) - f! (v X ) I < - J..v/4 
m 

in rex ) m 
for sufficiently 

large m. On the other hand, lim ~V(1-2xm) = 0 holds from the 
m-+ oo 

boundary condition ~V(l) = 0 and then we have the inequality, 

1-2x 
I f-l+Z: ( -lV• V(x1) + (Zf' (V_m)-f' (V)).V(l-ZMm)- f'(V_m)·v(l-Zxm)} 

m 

for large m. 

Then we have 

for large m . 

On the other hand one can easily check that 

J 2 
1f'm(x) dx < 

Q(x ) m 

for large m . 

Then we conclude that ~l(xm) < J.. V/4 for sufficiently large m . 

This concludes the result the case (1). 

(2 ) The case > o . 

From now on we will prove that ~l(xm) is bounded from below 

by a positive constant for sufficiently large m.. To prove by the 
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contradiction we assume that there exists a subsequence {m(j) }j=l 

such that 

( *" ) 

Let 1p. 
J 

(3.115) 

lim m(j) = 0:> , 

jooo+oo 
lim 
jooo+oo 

< o . 

be the corresponding eigenfunction of (3.2) to the 

= 1 j > 1 ). 

Lemma 3.10. Under the condition (*"), 

lim 
jooo+oo 

1p. = 
J 

o in for any r; > O. 

(Proof of Lemma 3.10) Applying the bootstrap argument by the 

a-priori estimate in S.Agmon,A.Douglas and L.Nirenberg [lJ, we see 

(3. 116) { ~j }j=l is compact in C
oo

«D 1-Z1 (r;))U(D 2 -Z2(r;))) 

for any r; > 0 . 

On the other hand, we take two functions ¢1 , ¢2 E COO (IRn) such that 

¢l(x) = 1 in Dl ¢l(x) = 0 in D2 ¢2(x) = 0 in Dl , 

¢2(x) = 1 in D2 supp ¢1 n supp ¢2 = ¢ . 

We put , for i = 1,2 and j = 1,2,3,·· . 

II (Ll + f t (v ) ) ¢ i - f t (ai ) ¢ i II 2 / II if; i II 2 
um(j) L (.Q(um(j))) L (.Q(um(j))) 

and we can easily check that lim 
jooo+oo 

Theorem 2 and a simple calculation. 

e~i) = 
J 

o i = 1, 2 ) 

Therefore the eigenvalue problem (3.2) for ,= um(j) has 

eigenvalues ~{l)(j) and ~(2)(j) for large j such that 
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E 
( .)1/2 (,)1/2 

[-f'{a.)- e. l
. ,-f'(a.)+ e. l 

] 
l J l J 

< 

I~i) 
J 

e~i)1/2 
J 

for i = 1, 2 and large j > 1 , wherePI~i) 

J 

is the eigenprojection 

( associated with the self-adjoint operator -J - f'(v )), onto 
"m( j) 

the subspace of L2 (Q("m(j))) corresponding to the the interval I~i). 

We have 
2 

¢ U 

i=l 

by (+) and then ( 11' j' PI (. i) ¢. ) 2 
J l L (Q("m(j))) 

i = 1,2 . Therefore we have for i = 1,2 

< 

for large j and so we can easily deduce 

= 0 

lim 
j-+co 

for large 

for large j 

f 'IfJ. dx = 0 
D. J 

l 

and 

j 

( i = 1,2). Remark that 'lfJj(x) > 0 in Q("m(j)) and we have that 

lim 'IfJ.(x) = 0 for a.e. x E D1 U D2 . 
j-+oo J 

By the compactness (3.116), we conclude the result of Lemma 3.10. 

By using Lemma 3.10; we can choose a monotone sequence of positive 

values {i.}~ 1 such that 
J J= 

lim i. = 0 i. > " m (j ) j-+co J J 

(3.117) lim K(j) = 0 
j-;.co 

where K( j ) = sup /'IfJ . (x) I > 0 
X E (Dl-Zl{2ij))U(D2-Z2(2ij)) J 
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Here we define two sets, 

Sj = ( Q(xm(j»U Zl(2i j )U Z2(Zi j ) 

n { IX11 < 1 + ( (Zij)2-(Xm(j»2 )1/2 } 

T j = {(x1 ,x ' ) E lR
n

, Ix'l<xm(j)' IX11 ~ 1 + ((2ij)2-CXm(j»2 )1/
2

} 

Now we decompose eigenfunction ~. uniquely as follows 
J 

~J'(x) = ~~1) + ~~2) in S. , by the following equations, 
J J J 

.d (1) = 0 in S. ~j J 

(3.118) ~.(l)(x) = ~j (x) on as. - a Q ( x.m ( j ) ) J J 

a~~l) 
~(x) = 0 on as. n aQ(Xm(j» a." J 

(3.119) ~~2) (x) = ~. (x) ~~1) (x) in S. 
J J J J 

Apply the maximum. principle to (3.118), we obtain the inequality, 

(3.120) < K. in S. 
= J J 

Now we calculate as follows. 

f 2 2 
(3. 121) ILl (xm (J' » = ( I 'V~ . I - f I (v ) ~. 

Q(xm(j» J xm(j) J 
) dx 

= f ( I 'V~ . 12 - f I (v ) ~J' 2 ) dx 
Q(x (,»-S. J xm(j) 

m J J 

_ f I (v ) I ~ . (2) I 2 ) dx 
xm( j) J 
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- f f'(v ) ( 2 ~~2) - ~J~l)) ~J~l) dx 
S. um(j) J 

J 

We have used Is. V'~~l)V'~~2) dx = 0 in the above. 
J J 

J 

By Theorem 2, - ft (v ) > f3 ... / 2 in Q(um(j)) S. for j 
U m ( j ) J 

where f3 ... = min (-f'(a1 ), -f' (a ) 2 ) . Then we have 

( ~~j~ 2 )2 for large j 
L (Q(u ("))-S.) m J J 

By (3.117) and the boundedness of 1I~~2) II 2 ( j = 1,2,3,'·' ), 
J L (Sj) 

(3.123) ~im B4(j) = 0 
J~OO 

Hereafter we estimate B3(j) from below. 

B 3 ( j ) = f ( I V'~ ~ 2) I 2 - f f (v ) I ~ ~ 2) I 2 dx 
T . J urn (j ) J 

J 

+ f (I V'~ ~ 2) I 2 - f' (v. ) I ~ ~ 2.) I 2 ) dx 
S.-T. J um(j) J 

J J 

Again from Theorem 2, the second term of B3(j) 

> min (1 ,f3 ... /2) ( ~~~2)~ 1 )2 . 
J H (S" -T .) 

J J 

To estimate the first term of B
3
(j), we change the variable x into 

y in Tj as follows. 
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x' = y' 

E"j(Yl'y') = 1p~2) (cr j y
1 ,y') for ly1 1;; 1 , Iy'l < "m(j) 

where crj = 1 + ( (2i j )2 - ("m(j))2 )1/2. 

Remark that lim cr. = 1 , E". (y) = 0 for Yl = + 1 , Iy'l < " m (j ) . 
j~oo J J -

Then we estimate as follows, 

I ( I 'V1p ~ 2) I 2 - f' (v ) 11p~2) 12 ) dx 
T. J "m ( j ) J 

J 

dy' Ii 1 
dYl { --2 

-1 crj "m( j) 

- f'(v (cr'Yl'y')) 
"m(j) J 

1 
+ I dy' I (~2 f' (V ( Yl )) - f' (v ( cr . Yl ' y' ) )) S. 2 cr. dY1 

Iy' I;; xm(j) -1 crj xm(j) J J J 

1 I . Ii - 2 > dy 'AV .:. . (y ) dy 1 
---cTj /y'l;; xm(j) -1 J 

x sup 

Iy' I~ "m(j)' IY11<1 
~2 f'(V(Y1)) - f'(v (cr'Y1,y'))1 

cr. "m(j) J 

J.. V = --2 
cr . 

J 

J 

• sup I " I. cr. 
1 

J 
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By the first half of Theorem 3 and lim a. = 
J 

o , the second term 
j~CXJ 

of the above line is minor to the first for large j. Then we have 

the following inequality (3.124) for large j. 

1 
B

3
(j) >..::L ( 111f1~2)11 )2 . 

2 J L 2 (T.) 
J 

(3.124) 

Therefore from the inequalities (3~121),(3.122) and (3.124), we have 

+ 

lim 
j~QO 

> min ( 1, fJ * /2 ) ( IIlP j /I 2 
L (.Q(u (O»)-So) 

m J J 

min (1, fJ * /2 ) ( 111f1 ~ 2) II 1 ) 2 
J H (S .-T 0) 

J J 

Let j tend to we have , 

= o by using lim 
j~CXJ 

. But this contradicts to the fact 

< o 

= 

j ~ 1 (See (3.115) ). Then we have completed the proof of 

and 

1 for 

lim > o and we conclude the result of the case lV > 0 . 

Therefore we have completed the proof of Theorem 3. 
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§ 4 Construction of Unstable Solution. 

In this section, we will consider the equation (3.1) on the 

domain Q(C) established in Section 3 where we choose f in (3.1) 

as the one we will establish below. We will construct a family of 

solutions {vC }C>O in (111-4) where 

of (3.1) under the condition a 1 = a 2 

We determine the nonlinear term 

( 4 . 1 ) f(~) = {} g(~) 

Vc 
= b 1 

f in 

{} > 

is an unstable solution 

for small C > 0 . 
. the following form . 

0 ) 

where g E C~(ffi) satisfies the following conditions (IV-l)-(IV-2) 

and the parameter {} will be chosen later. 

(IV-i) There exist three points 

(IV-2) 

g(bi ) = 0 ( 1 ~ i ~ 3 

g(~) > 0 in (-~,bl) 

g(~) < 0 in (b 1 ,b2 ) 

b J 3 g(~) d~ > 0 
b 1 

) g'(b1 ) 

u (b 2 ,b
3

) 

u (b3'~)' 

such that 

< 0 g I (b
3

) < 0 

From (IV-l)-(IV-2), there exists a unique d E (b2 ,b
3

) such 

that J
d 

g(~) d~ 
b 1 

= 0 . 

Above all things we seek for the solutions of the following 

two point boundary value problem of the ordinary differential 

equation (4.2) up to their linearized stability where the nonlinear 

term f is that in (4.1). 

[ 
d2V f(V) 0 in - 1 < z < 1 
dz 2 + = 

(4.2) 

V(l) = b 1 V(-l) = b 1 
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Proposition 2. There exists a positive values ~O such that 

for any ~ > ~O' (4.2) has exactly three solutions 

with the following stability properties~ 

1 (0) 
V 

> 0 , - 1 (1) < 
V 

o 

( -1 < z < 1 

1 (2) > 0 
V 

( See Definition 3 in Section 3 as for lV(O) , lV(l) , lV(2)') 

Z=-l Z=l z 

Figure 5 

(Proof of Proposition 2) To construct nontrivial solutions, we must 

search for the value ~ E (d,b
3

) which satisfies the following 

equation. 

(4.3) f
g 

( 2fg f(p)dp )-lj2du = 1 (d < ~ < b
3 

) (See Maginu [14J.) 
b

1 
(J 

To examine the left hand side as a function of ~ , we define 

s(~) which is defined in (d~b3) as follows. 

s(~) = g(p) dp do )
-1/2 
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s(~) is well-defined by (IV-1) and (IV-2) and moreover we have the 

following properties concerning s(~) 

Lemma 4.1. s(~) is a positively valued differentiable function 

on (d,b
3

) with the following asymptotic conditions, 

lim s(~) 

(-l/g ' (b
3

)) 1/2 1 
~ib3 log b - ~ 3 

= 1 

lim s(~) 

(-1/4g' (b 1 ) J 1/2 1 
~J-d log 

~-d 

= 1 

d 
lim d~ s(~) = 
~J-d 

(Proof of Lemma 4.1) First we deal with the case that ~ is near 

b
3 

i.e. d' < ( d' + b
3 

)/2 ~ ~ < b
3 

where d' is a point in 

(b 2 ,b
3

) which will be determined later. 

(4.4) s(~) = fd' ( 2 f~g(p) dp )-1/2da + f~ ( 2 f~ g(p) dp )-1/2 da 
b

1 
(J d' (J 

It is easily seen that the first term belongs to C~([(d'+b3)/2,b3J) 

then the second term is essential to the asymptotic behavior of 

s(~) when ~ i b
3

. Expand g(p) around p = b
3 

as follows, 

By the simple calculation, we have, 

(4.5) f:, (2f: gl(P) dp )-1/2 da = fd~(2f: g'(b3)(P - b 3 ) dp )-1/2 da 

= 
b

3
-d' + (d'-b

3
)2 - (~-b3)2 )1/2 

b 3 - ~ 
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J~ gl(P) dp 
a 

f~ r 1 (p)(p-b
3

)2 dp 

~ag'(b3l «a-b3l2 U-b
3

l 2 1 I 
( 4.6) = 

< 2b - a - ~ ) 
3 

< b - d' ) 
3 

where r * = max ! r 1 (p)! , d' < ( d I + b3 ) /2 < ~ < b 3 . 
b 2 ~ P ~ b 3 

By the power series expansion, we have, 
00 

( 1 + Y ) -1/2 = ~ c. yj for IY! <1 (radius of convergence 
j=O J 

where c . 
J = (- ~ )(- ~ -1)(- ~ -2)···(- ~ -(j-l)) / j! . 

Then by using the above expansion with the estimate (4.6), we have 

the following expansion 

( 4. 7) (2tg(Pl dp ) -1/2 = ( 2 t gl (p 1 dp ) -1/2 
a a 

00 

( 
f~ g2(P) dp 

J 

j 

~ 
a for d' (d'+b

3
)/2 ~ < b

3 
x c j J~ 

< < 
j=O gl(P) dp 

a 

For any c > 0 , take d' near to b
3 

and fix it, so that we have 

by the estimate (4.6), the following estimate ( 4.8) 

00 

( 
I~ g2(P) dp 

J j ( 4.8 ) I 1 - ~ 
a 

< c. 
J~ 

c 
j=O J gl(P) dp 

a 

for ~ E [(d'+b
3

)/2 ,b
3

) and a E [d',~J. 

Integrating (4.7) with a from d' to ~ , we nave 
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( 4 . 9 ) 1 - c < 

f!, ( 2 f: g(p) dp )-1/2 da 

J!, ( 2 J: gl(P) dp )-1/2 da 

for ~ E [(d'+b3 )/2,b3 ) . 

"< 1 + 

Using (4.4),(4.5) and (4.9), we have the following estimate (4.10) 

(4.10) 1 - c < 

for any c > 0 . 

Then we have 

lim 
~tb3 

s(~) 

s(~) 

< 1 + c 

s(~) = 1 . 

Hereafter we take d' near b3 and fix it so that 

B(~,G) > 1/2 for ~ E [(d'+b3)/2,b3) and G E [d' ,~J~ 

We put B(~,G) = 

( f~ )1/2 F(~,G) = 2 gl(P) dp 
G 

~ 
and then, the second term of (4.4) - f 

- d' 

) -1/2 

1 
-F~(~~,-G~)- B(~,G) dG 

I(~) . Then we have the follwing. 

+ 
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1 1 1 f~~d' a 1 
> -2- P ( ~ , d ') + -z 0 ar -p""-( ~=-,-~---r;.....-) d r; 

t-d
' 1 a dr; + 

P(~,~-r;) ar B(~,~-r;) 
0 

Here we have used that a 1 0 ar P(~,~-1']) 
> . 

On the other hand, one can easily check that 

f:_~ g2(P) dp 
d ( ) is bounded for (d'+b

3
)/2 ~ < b

3 
and err J:_~ 

< 
gl(P) dp 

d' and also is a ar B(~,~-r;) , then we have some 

constant M such that < M 

for ~ E [(d'+b
3

)/2,b
3

) and 0 < r; ~ ~ - d' . Therefore we have 

(4.12) a 1 a f~-d' 1 ar I ( ~) ~ -z ar 0 ......,P~(r-:-~-, ~"'---r;-'-) d 1'] -
~-d' 

M f 1 d o P(~,~-r;) r; 

1 a f~ 1 f~ = -z ar d' P(~,o) do - M d' 
1 

p(~,a) do 

b - d' + ( (d'-b3)2_(b3-~)2 )1/2 
- M2 ( - g I (b 3 ) ) -1/2 log (----=3:::.--__ --::--_~----=:::....----::::.----­

b 3 "'" ~ 

Then we conclude by (4.4) that 
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lim 
~ib3 

d 
d~ s(~) = 00 

In the case that ~ approaches d, we can deal as the same 

procedure as above by the following decomposition. 

s(~) = 5:: ( 2 5:1 
g(p) dp + 2 5: g(p)dp )-1/2 do 

+ 
f

d (2 fb 1 f~ ) 1/2 g(p)dp + 2. d g(p)dp -
e 1 a 

Then we omit the proof of this case and we complete the proof of 

Lemma 4.1. 

By Lemma 4.1, the equation ( 4.3) which is rewritten. as follows 

s(~) = {}1/2 

has exactly two solutions ~1 < ~2 in the interval (d,b
3

) by taking 

the parameter {} > 0 adequately large and at the same time 

(4.13) s ' (~1) < 0 and sl(~2) > 0 hold. 

We fix this {} and also f(~) = {} g(~). Therefore corresponding to 

~1 and ~2' we obtain two solutions V(l) and V(2) of (4.2) for 

f(~) = {} g(~) determined above and one can easily check that 

b 1 < V(l)(z) < V(2){z) < b
3 

in -1 < z < 1 

By the aid of the almost same method as in K.Maginu [14J, we can 

investigate the signature of the linearized first eigenvalues A (0) 
V 

A (1) and A (2) ( See (3.5) for definition) by (4.13) and we 
V V 

conclude that A (0) > 0 ,A (1) < 0 and A (2) > 0 where 
V V V 

We complete the proof of Proposition 2. 
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Hereafter first we will construct a family of solutions of (3. 1 ) 

{ (2 ) Vc }o<C<C+ such that (2) Vc behaves like V(2) in Q(C) and takes 

values near b 1 in D1 u D2 and moreover fJ- (v(2)) 
1 C 

> 0 holds for 

small C > O. Here we denoted by the first eigenvalue of 

(2) 
the eigenvalue problem (3.5) for the family {vC }O<C<C* 

We set the function P + (xl) = cp (2)(x1 ) + p+ where p+ > 0 is a 
V 

small constant such that 1 (2)CP (2)(x1 ) - p+ f!(V(2)(x
1

)) > 0 for 
V V 

any xl E- [-l,lJ. ( Recall that V(2)(-1) = V(2)(l) - b - 1 and 

f!(b
1

} < O. ) 

Now we define a function WC(x) which is defined in D(C) as follows 

1 dV(2) dP+ 
b l - 2'"' (-' (1-2C) - o+(C) -(1-2C))·(x -1+2C)-(x-1) .., dX

1 
dX

1 
. 1 1 

for x E r(c) 

for x E R2 (C) n { -l+C < xl .~ -1 + 2C } 

where we have put o+(C) = ( V(2(1-2C) - b 1 )/ P+(l-2C) 

It is easily seen that o+(C) > 0 and 
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Lemma 4.2. w~ E C1(QTfT) and we have, for small ~ > 0 , 

~ W~ + f{W~) > 0 

inQ(~) - R1(~)n{x1=1-2~ or 1-~ } - R2(~)n{x1= -1+2~ or -1+~ } 

o on aQ(~) • 

(Proof of Lemma 4 .. 2) One can check W~ E C1 (QTfT) by a simple 

calculation. In D1 U DZ U (R1(~)n{x1 > 1-~}) U (R2(~)n{x1 < -1+~}) 

dV(2) 
~.W~ = 0 and W~(x) ~ b 1 for small C > 0 from dx1(1) < 0 

and lim o*(C) = 0 . Then by (IV-1), we obtain the inequality. 
C~O 

> 0 and WC(x) ~ b 1 for small ~ > 0 . Therefore we have the 

inequality by the same way above also in R2 (C)U {-1+C<x1< -1+2C}. 

In T(C), we calculate as follows, 

+ 

+ 

+ f' (V(2)) ) + 
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holds in r(c) for sufficiently small C > 0 by lim o*(C) = 0 . 
C-+O 

Therefore we have completed the proof of Lemma 4.2. 

By Lemma 4.2, Wc is a " weak lower solution" in the sense of 

D.H.Sattinger [20] for small C > 0 and we have the following 

comparison property by the argument used in Section 2 and the 

comparison theorem. 

The set El (C) = { 1p eC1 (TITf))n C
2(.o(C» I 1p(x) ~ WC(x) in .o(C) } 

is a positively invariant set under the flow defined by the 

evolution equation (1.2) for .o(C) and f in this section and also 

is the set E*(C) = E(o,C) n E1 (C) (0 e [0(C),20(C)] ) for 

sufficiently small C > 0 ,where E(o,C) and o(C) are the ones 

constructed in Section 2. Therefore applying again Theorem 4.2 in 

[15], we have at least one stable equilibrium solution in E*(C) 

for small C > 0 . Moreover we have the following. 

Lemma 4.3. For small C > 0 , there exists exactly one solution 

vt2 ) of (3.1) in E*(C) and the linealized first eigenvalue 

~1(v~2) is bounded from below by a positive constant. 

Here we put vtO)(x) - b1 in .o(C) which is a stable solution. 

One can easily check that v(O) (x) 
C 

Strong Maximum Principle and by Theorem 

obtain another solution ( 1 ) Vc between 

lim 
C-+O 

11. (v(2» > 0 
'1 C implies that 
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< v(2) (x) 
C in .0 ( C ) by the 

4.4 in Matano [15], we 

the above two solutions. 

is locally unique for small 



c > 0 and then v t 1) must be asympto.tically near to V( 1) on Q (C) 

by Theorem 3 and Proposition 2. Therefore we have obtained the 

following result by Theorem 3. 

Theorem 4. There exist three distinct solutions ( for small C 

< of (3.1) where f = ~ g ( * ~ *0 ) and the 

solutions satisfy the following asymptotic conditions. 

lim sup ( i = 0, 1, 2 ) 
C~O x E Diu D2 

lim sup. i = 1, 2 ) 
C~O· x E Q( C) 

where we denoted by the first eigenvalue of the 

eigenvalue problem (3.5) for the family 
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§5 Concluding Remarks. 

In Section 4, by choosing an appropriate nonlinear term f in 

the situation of Section 3 plus a condition a 1 = a 2 = b 1 ' we have 

constructed three distinct solutions v~O) < v~l) < v~2) of (3.1) 

for small ~ > 0 such that v~i) takes values near b 1 in Dl u D2 

and behaves like V(i) in Q(~) for small ~ > 0 

fLl(v~O)) ;; c 'P.l(v~l))< -c and P.l(v~2)) ;; c 

i = 0,1,2 ) ahd 

hold for small 

~ > 0 and a positive constant c which is independent of ~ . 
All (i) 

v~ ( i = 0,1,2 ) take almost same values near b 1 in Dl u D2 

( f! (b
i

) < 0 ) but ( 1 ) 
v~ is unstable while (0) 

v~ and (2 ) 
v~ are 

stable for small ~ > O. This phenomenon is owing to the fact that 

the asymptotic behavior of on Q(~) corresponds to 

which is an unstable solution of the ordinary differential equation 

(3.4) on L while those of and correspond to the 

stable ones v(O) and V(2) . See Figure 6. 

From these results, we see that the dependence of the stability 

of the solution, upon the moving part Q(~) , does not vanish when 

~ ~ O. Moreover the behavior of the solution on Q(~) plays an 

important role to determine the stability and on the other hand, it 

is described as the solution of the ordinary differential equation 

(3.4) on L in this case. 

Therefore we conclude that it natural to regard Q(~) as a 

perturbation from Q* = Dl u D2 U L (See Figure 4 in Section 1 

if we cosider the behavior of the structure of the solutions of 

(3.1). 
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(2) 
vl, 

Q(~) 

75 

) 

L 

L 
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