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ABSTRACT 

Analytical models for explaining the mechanism of drainage basin formation 

in cohesive soils are presented. A sheet flow on a plateau is assumed to cause 

erosion and the resulting channelization. Two different kinds of models are 

proposed. 

In the "step foot erosion model", a linear stability analysis is brought to bear 

considering erosion right under a step (at the foot of the step) at the downstream 

end of a tilted plateau. The model predicts that infinitesimally small basin spacing 

tends to dominate. It is found that, while explaining an instability giving rise to 

channelization, the "step foot erosion model" cannot explain the mechanism of 

drainage basin wavelength selection. 

Models for upstream-driven and downstream-driven channel inception using 

a "threshold hypothesis" for bed erosion on the plateau are then proposed. The 

models predict that a basin spacing of the order of depth divided by slope tends to 

dominate. The "threshold hypothesis" provides successful results to explain the 

mechanism of wavelength selection. 

It is suggested that the surface erosion is substantial in the process of 

channelization and drainage basin wavelength selection. 
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1. INTRODUCTION 

River drainage basins have long been of interest to geomorphologists and 

river specialists. Many researchers have tried to explain how drainage networks 

form on an originally flat surface of a plateau. Two famous examples of early work 

include Horton (1945) and Strahler (1958). Due to the complexity of the 

phenomenon, their work was limited to empirical description or qualitative 

explanation. A good summary of recent geomorphological literature on the subject 

can be found in Abrahams (1984). 

It is only relatively recently that attempts have been made to develop 

theoretical models for the formation of drainage basins themselves, and the channel 

network within each basin. 

A landmark analysis in which the concepts of nonlinear wave mechanics and 

linear stability analysis were brought to bear on the problem is that due to Smith 

and Bretherton (1972). In their analysis, the base state is taken to be a flat, tilted 

surface subjected to a uniform rainfall, giving rise to a base flow with a streamwise 

direction. Surface flow is modelled as normal flow directed parallel to the gradient 

of bed topography. Sediment discharge per unit width is computed by using a 

simple power relation including both water discharge per unit width and bed slope. 

Bed evolution is computed using the Exner equation of sediment continuity. This 

base state is then perturbed by defining infinitesimal troughs and ridges parallel to 

the direction of the base flow. The ridge-to-ridge spacing can then be interpreted 

as a wavelength A; this allows for a linear stability analysis. One goal of such an 

analysis is determining the growth rate of perturbation amplitude as a function of 

wavenumber k, where k = 27r/ A. In linear stability analyses a typical assumption is 
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that the characteristic wavenumber that first tends to evolve is given by the one 

that maximizes perturbation growth rate. Unfortunately, however, the model of 

Smith and Bretherton predicts maximum growth rate for infinite it, i.e. a ridge 

spacing ;\ = O. 

Luke (1974) derived a nonlinear system of differential equations to describe 

evolution of landforms. His main concern was to obtain special solutions for the 

nonlinear differential equations. Though the equations he derived to describe 

landform evolution are further developed and extended than those in Smith and 

Bretherton's theory, Luke's analysis sheds no further light on the characteristic 

spacing of drainage basins. 

Loewenherz (1991) has recently reconsidered the model of Smith and 

Bretherton. Her model achieves a maximum growth rate for a finite wavenumber 

only at the expense of introducing an ad-hoc "smearing function" to prevent the 

over-concentration of water in troughs. 

In recent years, there has been a veritable explosion of literature on the 

subject of drainage basins. Since the present study concentrates on theoretical 

aspects of drainage basin formation, it suffices to mention work of a mechanistic 

nature. Foremost among these is the treatise of Willgoose et al. (1991); also of 

considerable value are the contributions made by Sawai et al. (1986), Roth et al. 

(1989), and Howard (1990; ref. as personal communication, 1993). 

Of the above-{luoted mechanistic models, those of Smith and Bretherton, 

Luke, Roth et al., Willgoose et aI., and Loewenherz are all transportational in 

nature. That is, the governing equation for bed evolution used in each case can be 

cast in the following general form: 
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(1-1) 

where .A.p denotes porosity of bed material, t denotes time, 77b denotes bed elevation, 

(J denotes the rate of tectonic uplift, and q denotes the vectorial volume sediment 

transport rate per unit width. Bed elevation is seen to change in response to 

tectonic uplift and the differential transport of sediment. 

The model of Sawai et al. alone, which is designed to explain rill formation in 

a badlands environment, treats the purely erosional problem for the case of cohesive 

sediment. Let E = E(r) denote the volume rate of erosion of material from the bed 

into suspension, which is taken to be a function of boundary shear stress r. In the 

case of erosion of cohesive material, it is often possible to assume that the eroded 

material is not redeposited due to the prevalence of below-capacity conditions for 

transport. The law for bed evolution now takes the form 

a77b 
-- (J = -E. 
at 

(1-2) 

The problem to be considered here is incisional drainage basin development in an 

environment of the type of a badlands or a loess plateau. With this in mind, (1-2) 

is adopted for bed evolution. 

An incisional model based on pure erosion was adopted in this study, 

however, only after consideration of the work of Willgoose et al. (1991). Their very 

inspiring model is nevertheless based on an adaptation of a model due to Meinhardt 

(1982) originally designed to explain the formation of vein networks in leaves. As a 

result, a model which claims to be physically based contains a crucial equation 

3 



which has no real justification in the context of the problem under consideration. 

This unjustified equation is the "Y" equation, which takes a form like 

dY == _ 0.1 Y + y2 
d t 1 + 9y2' 

(1-3) 

The role the equation plays in the theory is to provide a sudden "jump" condition 

that changes hillslope to channel. Its simple form, however, has yet to be derived 

from considerations of erodible-bed mechanics. 

The final objective of this research is to study the mechanisms which operate 

to determine the spacing between drainage basins. In Chapter 3, a consideration of 

nonlinear wave mechanics and linear stability analysis of the type of Smith and 

Bretherton (1972), and Loewenherz (1991) is brought to bear, but in the different 

context of a purely erosional environment. This allows for the derivation of a 

physically-based "shock" condition that allows for the conversion of overland zones 

to channel zones through the mechanism of headcutting. In Chapters 4 and 5, an 

alternative to stability analysis that predicts the spacing between channels formed 

on the surface of the plateau is proposed. This is based on a consideration of the 

"threshold" discussed in Montgomery and Dietrich (1989). 
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2. GOVERNING EQUATIONS 

2.1 Governing equations for flow 

2.1.1 St. Vena.nt shallow water equations 

The surface of the earth displays a variety of interesting landforms created 

by fluvial action of flowing water. In most cases of interest, the scale of the 

landforms is much larger than the characteristic depth of the flow that sculpted 

them. In this analysis, then, the horizontal scale can be taken to be much larger 

than the scale of flow depth. As a result, the flow field can be approximated with 

the depth-averaged St. Venant shallow water equations. Because the effects of 

Reynolds stresses and a uniform rainfall will be considered in Chapter 5, the St. 

Venant equations including those effects need to be derived. While there are several 

studies which try to introduce the Reynolds stresses into the St. Venant equations 

(e.g., Rodi, 1982), a full derivation does not seem to be available. Therefore, this 

chapter begins with the derivation of the St. Venant equations including the effects 

of Reynolds stresses and a uniform rainfall. 

The flow causing fluvial action is commonly turbulent, and can therefore be 

described by the Reynolds equations. For three-dimensional incompressible flow, 

the Reynolds equation and the continuity equation take the form 

au. au. 1 fin au? u'. cru. 
_1 + U._1 = F. __ ~ __ I--11.J_+ vI, 

at Jax. 1 p ax. ax. ax .ax. 
J 1 J J J 

&fl. 
---1 = 0, 
ax. 

J 

5 
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where xl and x2 correspond to x and y respectively and are taken parallel to the 

land surface (Figure 2-1), x3 correponds to i and is taken upward orthogonal to the 

land surface, ui is the time-averaged velocity component in the \ direction, p is 

local, time-averaged pressure, p is fluid density, !I is kinematic viscosity, and F. is 
1 

the time-averaged volume force per unit mass in the xi direction. Einstein'S 

summation rule is applied hereafter. In the absence of qualification, the subscripts i 

and j take the values 1, 2 and 3. 

Consider a plateau which is flat but slightly tilted. Then, the volume forces 

acting on flow on the plateau can be expressed by 

F. = g sin 0., i = 1, 2, 
1 1 

(2-3a) 

(2-3b) 

Here g is gravitational acceleration and 0i is angle of inclination in the Xi direction. 

If O. is very small, the approximations sin O. ~ - 01lbl ax., cos O. ~ 1, where 1lb is bed 
1 I I 1 

elevation can be made. The volume force vector can thus be approximated by 

0-
- 17t 
F. = - g-, i = 1, 2, 

I ax. 
I 

(2-4a) 

(2-4b) 

As described before, the horizontal scale is taken to be much larger than the 

scale of flow depth. Since the horizontal components of velocity are also much 
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larger than velocity in the upward normal direction, the inertia terms, Reynolds 

stress terms and viscous terms in the upward normal direction are all negligibly 

small. As a result, the case i = 3 in (2-1) is well approximated by the hydrostatic 

expression 

1}ffi 
-g--~= o. 

P&x 
3 

Equation (2-5) is integrated to yield 

(2-5) 

(2-6) 

where the atmospheric pressure is set equal to be zero (gage pressure). Note that 

the assumption of hydrostatic distribution breaks down wherever abrupt changes of 

flow occur, such as in the immediate vicinity of a free overfall. 

The procedure of depth-averaging is performed below. Adding (2-2) 

multiplied by ui to (2-1), the following equation is obtained: 

i = 1,2. (2-7) 

The left hand side of (2-7) is depth-integrated as 
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it au. it au. au. r_1dX+r 1 Jdx 
J 0 at 3 J 0 ax . 3 

J 
it - h -a r - d- - I 8h + a r - - d- - - I 8h 

= atJO ui x3 -ui x3=h at ax Jo ui u1 x3 -uiu1 x3=h ax 
1 1 

it -a i - -..1::' - - I ah + - - I + - u,u2 lL'I.3 - u,u2 - -h- - u.u3 - -h-' ax 0 1 1 X3- ax 1 x3-
2 2 

i = 1,2. (2--8) 

If the rainfall intensity is denoted by I, u3 at the water surface is given according to 

the kinematic boundary condition as 

With the aid of (2-9), (2-8) reduces to 

it au. h au. au. it it 
i 1..1::' + i 1 J..1::' - a i -..1::' + a i --..1::' 1- I -_- lL'I.3 _ lL'I.3 - -::- u· W\..3 -=- u· u ·w\"3 - u· - -h-' o at 0 Ox . at 0 lOx. 0 1 J 1 X3-

J J 

i, j = 1, 2. (2-10) 

The right-hand side of (2-7) is depth-integrated to yield 
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Equation (2-7) is thus depth-integrated to yield 

h h 8~ 8-
8 r - -l::' + 8 r - - -l::' 1- I h- b h- h 
8i'JO uiWl.3 ax.JO UiUjWl.3 - ui x3=h = - g ax. - g ax. 

J 1 1 

h 8U?u'. h 02u. 'T. _ J 1 J -l!". + "J 1 -l!". - _1 .. 1 2 Wl.3 v Wl.3 , 1, J = , , 
o ax. 0 ax. ax. ph 

J J J 

(2-12) 

where Pll8ii. / ax3 1- 0 is denoted by 'T., which corresponds to the two dimensional 
1 X3= 1 

(i = 1, 2) bed shear stress vector. 

Depth-averaged velocity iii is defined as 

h 
- 1 r - -l!". • 1 2 ui = fiJo Ui Wl.3' 1 = , . (2-13) 

The introduction of quasi-similarity hypothesis for the vertical distribution of 

velocity allows for the following expression: 

(2-14) 
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where a is a shape factor that is known to be close to unity in the case of 

fully-<ieveloped turbulent flow. Hereinafter a is assumed to be unity. Since in fully 

turbulent flow the viscous stresses are usually much smaller than the Reynolds 

stresses, the fourth term on the right hand side of (2-12) is dropped. Then (2-12) 

reduces to 

(2-15) 

or upon manipulation, 

(2-16) 

The continuity equation is depth-integrated as follows: 

ii Oil. 
r ~dX 

JO {]X. 3 
J 

ii - ii-
= ~ r u fly _ - ~u 1_ - + ~ r u dX - ~u 1- - + u 1_ -

{]X JO 1-""3 {]X 1 x3=h {]X JO 2 3 {]X 2 x3=h 3 x3=h 
1 1 2 2 
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= o. (2-17) 

With the use of (2-9) and (2-13), (2-17) reduces to 

aii au.it 
-::- + -.-L = I, j = 1, 2. 
at ax. 

J 

(2-18) 

With the aid of (2-18), (2-16) yields the depth-averaged version of momentum 

equations of the form 

au. au. I a"b &-
1 - 1 (- - I ) -_- + U.-_- + -:- U· - U· - -h- = - g- - g-at Jax. h 1 1 X3- ax. ax. 

J 1 1 

_lrhatijUJ -l!: _Ti 
hJO ax. UA3 ph' i, j = 1, 2. 

J 

(2-19) 

In the absence of clarification, i and j hereinafter take the values 1 and 2. Since the 

vertical profile of velocity is highly uniform in the case of fully developed turbulent 

flow, the difference between iii and ui at x3 = h can be assumed to be small as long 

as secondary courrents are not very large. Then, the third term of the left-hand 

side of (2-19) can be neglected. In addition, the quasi-steady assumption is made 

in this study, according to which the time variation of flow is much faster than that 

of the landforms. In other words, the flow is assumed to react spontaneously to 

geomorphic change. With this in mind, the time derivative term in (2-19) is also 

neglected. The governing equations of the flow are then finally obtained as 
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2.1.2 Bed shear stresses 

&ii.it 
-1-=1. 

ox. 
J 

7. dX __ 1 
3 -, 

ph 

Bed shear stresses are evaluated with the use of a friction factor Cf; 

T. = pCf Uu., 
1 1 

(2-20) 

(2-21) 

(2-22) 

where 'li2 = U. U.. For the present analysis the crude assumption of constant Cf is 1 1 

made. Note that the above assumption renders Ti parallel to ui. 

2.1.3 1teY1lolds stresses 

According to the traditional Boussinesq assumption, the Reynolds stresses 

can be evaluated with the use of eddy viscosity lit and time-averaged local (i.e. not 

depth-averaged) velocity u; that is 

au. 
-,-, _ 1 

- pu.v. - Pllt-. 
1 J ax. 

J 

(2-23) 

If a depth-averaged value of lit is adopted as an approximation, then lit is not a 
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function of x3 and the Reynolds stresses in (2-20) are expressed by 

1 li ~ 1 li.Q au. - _ r ~ dx = _ r -4l1 _1 )dx 
liJo ax. 3 iiJo ax. tax. 3 

J J J 
au -

= ~lI _i) + !L [~tOh (ii.- u.l- -)] ax. tax. ax. ii ax. 1 1 X3=h 
J J J J 

-2 - au au 
[ 1 Oh] (- - I ) lIt Oh [i i ] + II - - u·- u· - h- + - - - - - . 

t ii ax. 1 1 X3= ii ax. ax. ax. x3=ii 
J J J J 

(2-24) 

As described before, the difference between iii and ui at x3 = ii can be assumed to 

be negligibly small, thus allowing for the neglect of the second, third and fourth 

terms of the right-hand side of (2-24), the depth-averaged Reynolds stress term 

approximates to a simple diffusional form. In addition, since (2-23) itself is already 

a crude assumption, the residual terms can be probably dropped with sufficient 

accuracy. Therefore, the following assumption is made in this study; 

(2-25) 

The eddy viscosity in the horizontal direction is known to be slightly larger 

than the vertical eddy viscosity (e.g., Webel and Schatzman, 1984). In the similar 

manner to the depth-averaged eddy viscosity in the vertical direction, lit is assumed 

to be estimated by the form 

(2-26) 
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where a is a dimensionless constant, and ii; and 1\ are a reference friction velocity 

and a characteristic depth associated with the turbulent structure of the 

corresponding flow field, respectively. In the case of channel flow, ii; is set equal to 

the friction velocity, iir is set equal to depth at the channel center and a is taken to 

be 0.13 (Parker, 1978; Ikeda et al., 1990). 

2.2 Governing equation for erosion 

As noted previously, only purely erosional landforms sculpted into cohesive 

material are considered here. A large body of experimental work on the relation 

between the erosion rate and the boundary shear stress, or near-bed velocity, is 

available (e.g. Parthenaides, 1965; Arathurai and Arulanadan, 1978) A common 

empirical form for the erosion function is the power form 

(2-27) 

Here 7th denotes a critical bed shear stress below which no erosion occurs. 

Furthermore, the parameter 7 denotes the magnitude of the bed shear stress vector, 

i.e. 

(2-28) 

The coefficients Es and I can be expected to be positive; otherwise, they are rather 

strongly dependent upon the physico-chemical properties of the material in 

question. 
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If the slope of the landform is sufficiently small, bed degradation per unit 

time is equal to the erosion rate, allowing for the use of the following form in the 

Exner equation; 

ffiJb 1 
E (- - )f at = - 1 - Ap s 7 - 7th . 

15 

(2-29) 



Figure 2-1. Coordinate system 
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3. STABILITY ANALYSIS OF DRAINAGE BASIN INCEPTION 

- STEP FOOT EROSION MODEL -

3.1 Introduction 

In this chapter, the first of several models of drainage basin inception is 

proposed. In order to allow for a simplified stability analysis, the assumption is 

made that erosion occurs only at the foot of the step ("step foot erosion model"). 

According to this simple assumption, the retreat speed of the step can be estimated 

solely as a function of discharge per unit width right under the step. 

3.2 Conceptual models 

Figure 3-1 shows a plateau composed of cohesive material which is flat, but 

which has a mild slope S in the y direction. The downstream edge of the plateau 

terminates in a step-like overfall. It is assumed that a laterally uniform discharge 

of water is supplied at the upstream edge of the plateau, resulting in a continuous 

sheet flow that eventually cascades over the step. As noted in the figure, the y 

coordinate is directed upslope, with its origin located at the step, and the x 
coordinate is taken to be perpendicular to it. 

Far upstream of the overfall, the flow is assumed to be in a normal, or 

equilibrium state. Here all the flow is directed in the y direction, and depth and 

velocity are constant. The slope S is assumed to be low enough for the flow to be 

subcritical in the Froude sense. As the flow approaches the step, then, velocity 

increases and depth decreases in accordance with an M2 backwater curve. It is 

assumed that the magnitude of the boundary shear stress T everywhere on the 
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plateau is below the critical value for bed erosion according to (2-27). 

The edge of the step itself is first assumed to be perfectly straight and 

parallel to the x direction. The flow cascades down at the step and reattaches to 

the erosible surface under the step. It is assumed that active erosion occurs at the 

foot of the step because of the strong impact of the falling water. One can visualize 

this erosion as resulting in the gradual upstream propagation of the step. 

Suppose now that a small perturbation is given to the shape of the step, such 

that its edge is described by 

y = a cos kx, (3-1) 

where a and k are the amplitude and wave number of perturbation, respectively. In 

the present linear analysis, the amplitude is assumed to be small. As shown in 

Figure 3-2, then, the overfall is wavy in nature, consisting of alternating 

indentations and protuberances in the transverse direction. In the case of 

subcritical overland flow, the indentations should act to attract the flow, causing a 

gathering of streamlines. The protuberances should result in a commensurate 

repulsion of the flow, as illustrated in Figure 3-2. As a result, boundary shear 

stress under the overfall can be expected to be intensified near the indentations and 

reduced near the protuberances. The resulting differential erosion should cause the 

incision of incipient channels, each with its mouth located at a point of maximum 

indentation along the edge. The zones of highest erosion could be expected to 

gradually migrate upstream, each so forming an upward-extending channel acting 

as the main stem of an incipient drainage basin. 

In this chapter, it is the above process that is postulated to be the cause of 
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channelization resulting in drainage basin formation. The transverse distance 

between each drainage basin would be given by the wavelength X of the 

perturbation (3-1), where X = 27r/k. Although the present analysis considers only 

the initiation of this process, channel extension and bifurcation might be expected to 

result in the system of basins schematized in Figure 3-3, each containing a network 

of connected tributaries. 

The main goal of the present analysis is the prediction of the distance X 

between adjacent drainage basins in terms of a standard linear stability analysis. If 

there exists a specific wavelength at which intensification at the indentations is 

maximized, perturbations with that wavelength should grow faster and thus tend to 

dominate. This provides a mechanism for the selection of spacing between drainage 

basins. 

3.3 Formulation 

3.3.1 Governing relations and linearization 

In accordance with Figure 3-1, it is assumed that a flat plateau has a slight 

slope S ascending in the positive y direction. Bed elevation in excess of that of the 

edge of the dropoff can be expressed as 

(3-2) 

Equations (2-20) and (2-21) then take the forms 
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-au -au ali rx 
u - + v - = - g - --=-, 

ax fJy fJX ph 

-&V -&V ail r u - + v - = - g - - gS - ~, 
ax oy OJ ph 

auii &vii -+-=0. 
ax OJ 

Here the Reynolds stress and rainfall are neglected. 

(3-3) 

(3-4) 

(3-5) 

Because the flow drops off a vertical edge at the downstream end of the flow 

domain, the downstream boundary condition can be taken as that of a Froude 

number of unity. In the present analysis, it suffices to prescribe this boundary 

condition as 

-2 u 
~ = 1 at y = a cos kx, 
gii 

where fi is the component of velocity normal to the step. n 

(3-6) 

Infinitely far upstream from the step, the flow converges to uniform flow over 

a constant slope S; that is 

fi = 0, v = V 00' ii = Hoo ' at y = 00. (3-7a, b, c) 

Here V and H are the velocity and the depth of the uniform flow infinitely far 
00 00 

upstream from the step. This flow is taken to be subcritical here. 
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The following dimensionless parameters are introduced; 

Using the above normalization, the governing equations reduce to 

F2( ,Ou'+ ,Ou') _ ah / u,2 + uox Vay --ox-- h 
,2 

v u' , 

F2( ,DY'+ ,DY') _ 8h 1 / u,2 + uox Vay --ay- -- h 

Ou'h DY'h <JX+ay=o. 

,2 v , v, 

(3-8a, b) 

(3-8c, d) 

(3-9) 

(3-10) 

(3-11) 

Here the parameter F = V 001 ~ denotes the Froude number of the normal flow 

far upstream of the edge, which is taken to be less than unity. 

It is convenient to employ the following conformal transformation, illustrated 

in Figure 3-4, in order to analyze the effect of a wavy perturbation to the edge of 

the drop off; 

I" • ik I" 
z = ':> + lae ':>, (3-12) 

where z = x + iy and ( = e + iTJ. In real coordinates, the transformation is given as 
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-k~ -k~ x = e - ae sin ke, y = ~ + ae cos ke· (3-13a, b) 

The Jacobian of the transformation is 

(3-14) 

In the limit as the parameter ak approaches unity, the wavy character of the 

edge devolves into cusps. In the present linear analysis, ak is taken to be very 

small, in which case the edge shape is well approximated by a simple sinusoidal 

function. While a more general transformation can in principle be used by adding 

higher harmonics, (3-14) is sufficiently versatile for most purposes. 

The equations of motion written in the transformed plane now take the form 

2( u au v au uvf)J l/2 V
2f)J 1/ 2) 

F Jl/2 ~ + Jl/2 Oij + r Fr1 - J or-
__ 1 8h + ake-k1]sin kg j u2 + v2 

- Jf12~ Jl/2 - h u, (3-15) 

2 (u fJv v 8v uv f)J l/2 u2 f)J1/ 2) 
F Jl/2 ~ + Jl/2 Oij + ror- -J Fr1 

1 8h 1 - ake -k1]cos ke j u2 + v2 

= - Jl/2 Oij- Jl/2 - h v, (3-16) 

(3-17) 

where u and v are the velocities in the g and ~ directions, respectively. 
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Here dimensionless amplitude a is taken as a small parameter; the following 

expansions in powers of a are introduced; 

(3-18a) 

(3-18b) 

(3-18c) 

At leading order, i.e. O(aO), (3-16) and (3-17) give 

(3-19) 

(3-20) 

This describes the base flow in the absence of perturbations. 

At the next order, O(a), the governing equations give 

(3-21) 
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(3-22) 

(3-23) 

3.3.2 Zeroth order solution; the base flow 

For the subcritical flow considered here, (3-19) and (3-20) describe a simple 

M2 backwater curve. Since the flow becomes uniform with v 0 = hO = 1 far 

upstream of the step, (3-20) can be integrated to yield 

(3-24) 

Between (3-19) and (3-24), the following ordinary differential equation for Vo is 

obtained: 

(3-25) 

The boundary condition at the downstream end of the domain is the overfall 

condition of (3-{j) as applied to the base flow; in conjunction with (3-24), this 

yields 
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I - F-2/ 3 h I - F2/ 3 Vo - '0 - . 
1]=0 1]=0 

(3-26a, b) 

Equation (3-25) can be integrated directly with (3-26) to yield an M2 

backwater curve in implicit form; 

(3-27) 

What is not apparent about this solution, however, is the existence of a singularity 

in the derivative dvO/d1] at 1] = O. Applying the boundary condition (3-26) to the 

denominator of the right hand side of (3-25) yields the result 

dVO\ 
CITl 1]=0 = - 00. 

(3-28) 

As long as the parameter F < 1 is chosen to be order one, it is readily seen 

that both v 0 and hO are also order one on their complete domain of solution. The 

expansion solution of the form (3-18) sought here, however, will turn out to depend 

not only on v 0 but also its first derivative. With this in mind, special treatment 

will be required near the point 1] = 0 of singulari ty 

As a prelude to future developments, a simple technique for describing the 

singularity is presented here. A boundary layer of thickness scaling with some small 

parameter 8 near the overfall is considered. A physical basis for defining the 

magnitude of 8 is considered later. An inner variable 1]* near the overfall is defined 

as 
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(3-29) 

Substitution of (3-29) into (3-19) and (3-20) yields the relations 

(3-30) 

(3-31) 

The flow velocity v 0 and flow depth hO are now expanded in 6 as follows; 

-2/3 1/2 
v 0 = F + 6 vOl + 6v 02 + ... , (3-32a) 

2/3 1/2 
hO = F + 6 hOI + &02 + .... (3-32b) 

Note that the forms (3-32a, b) automatically satisfy the boundary condition (3-26) 

as long as 

von l1J
*=o = 0, n = 1,2,3, ... , 

hO I * 0 = 0, n = 1, 2, 3, .... n1J= 

(3-33a) 

(3-33b) 

At the lowest non-vanishing order, i.e. Of.... 61/ 2), the streamwise momentum 

equation (3-30) gives 
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4/3 dv 01 dhOl 
F 07T+~=0. (3-34) 

Integrating (3-34) with the aid of (3-33) yields 

4/3 
F vOl + hOI = O. (3-35) 

The continuity equation (3-31) likewise yields at 0(81/ 2) 

This equation is integrated to yield (3-35) once again. No further information 

about vOl and h01 can be obtained at 0( 81/ 2). 

Progressing to O( 8), (3-30) and (3-31) yield, respectively, 

4/3 dv 02 dh02 _ 2 dv 01 -2 
F mrr + mrr - - F vOl ~ - 1 + F (3-37) 

/ dv / dh d 
F2 3 02 + F-2 3 02 - _ ~ h ) 

QT(" mrr - dry'" \ vOl 01 . (3-38) 

If (3-38) is multiplied by F2/ 3, it is seen that the right-hand side of both the above 

equations are identical. Subtracting one from the other yields a second relation 

connecting vOl and hO 1 in addition to (3-35). Eliminating hO l' the following 

relation for vOl is obtained: 

dv2 
3 F2 01 _ F-2 1 
2" arr- -. 
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Integrating and applying (3-33a), it is found that 

where 

Likewise, the form for h01 is found from (3-40) and (3-35) to be 

h - F4/ 3 G *1/2 01 - TJ· 

(3-40a) 

(3-40b) 

(3-41) 

The singularity in the derivative of both v 01 and hOI at TJ* = 0 is readily apparent. 

Transforming (3-40a) and (3-41) back into the variables v 0' hO' and TJ, it is 

found that near TJ = 0 

_ F-2/ 3 _ G 1/2 vO- TJ, (3-42) 

(3-43) 

Considering the derivatives of v 0 and hO with respect to TJ, the above expressions 

can be expected to be valid as long as 6 is chosen to be small compared to G-2. 

3.3.3 Reduction of the first order problem 
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The first order equations (3-21) N (3-23) admit solutions of the form 

(3-44a, b) 

(3-44c) 

Substituting (3-44) into (3-21), (3-22) and (3-23), and reducing with the aid of 

(3-24) and (3-19), the following equations are obtained: 

(3-45) 

(3-46) 

(3-47) 

Equations (3-45), (3-46) and (3-47) can be written in compact matrix form 

as 
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where 

and 

d (J ( ) -k1] -:r::- = .%(1]) (J + -?'It 1] e , u1} N 
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(3-48a) 

(3-48b) 

(3-48c) 



-(n) = [ (3-48d) 

Note that t!( TJ) and -m( TJ) are functions of TJ via the parameter Vo and its first 

derivative. 

3.4 Solution 

3.4.1 Outer layer, intermediate layer and inner layer. 

Before actually solving the problem, it is useful to outline the solution 

strategy. This strategy is defined in terms of three distinct layers, here called the 

inner, outer, and intermediate layers 

In the region very far upstream of the step, the flow converges to the uniform 

base flow as described above. Where uniform flow is attained there is a perfect 

balance between the downslope gravitational force and the resistive force associated 

with bed shear stress. Here the outer layer is defined to be one in which the 

deviation from this normal solution is very small. As a result, the equations of 

motion can be accurately linearized about a constant base state corresponding to 

uniform flow. This results in a set of ordinary differential equations with constant 
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coefficients, allowing for a simple closed solution for which the homogeneous part 

has exponential form. 

As shown earlier, the base solution (3-27) possesses a singularity in the 

derivative at the edge of the overfall, where the Froude number of the flow attains 

unity. This is a characteristic feature of the M2 curve; in the present coordinate 

system, dv O/dTJ attains the value - 00, and dhO/dTJ attains the value + 00, at TJ = O. 

This singular behavior carries over to the perturbed flow field. The zone affected by 

singular behavior is characteristically quite thin. Within it, however, the 

two-dimensional flow farther upstream simplifies into a one-dimensional flow. 

This thin layer, scaled with the previously introduced parameter 0, is termed the 

inner layer in this analysis. 

Between the outer and inner layers is an intermediate layer where the 

inertial, gravitational, resistive, and pressure forces are roughly in balance. The 

effects of inertia and pressure in particular render the flow interesting, and account 

for the tendency for the flow to gather toward the indentations. 

3.4.2 Solution in the outer la.yer. 

The outer layer is realized as TJ becomes large. As TJ approaches infinity, v 0 

approaches 1 and d v 0/ d TJ approa.ches O. In the outer layer, then, the flow is allowed 

to deviate only slightly from this normal flow. With this assumption, the matrix 

$, and vector ~, which in general depend upon TJ, can be approximated by 
N 

invariant forms, the elements of which are evaluated from (3-48c) at normal flow. 

Reduction yields 
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.,11= 
N 

1 

1 

and 

1 

F2 
k 
_ F2 

kF2 
_ F2 

o 
m = 

0 k 
-~ 

F 

2 1 
(3-49) -

F2 1 - F2 
, 

1 -

2 1 

1 _ F2 1 _ F2 

k 2 
-~ - k 

F 

(3-50) 

where the superscript 0 is used to denote constants and variables in the outer layer. 

The differential system (3-48) now reduces to 

o da _ ,,0 0 + 0e-k1] 
-:r=--eZa m . u'fJ N 

(3-51) 

~nspection of (3-51) reveals the existence of a forcing term proportional to 

e -k'fJ. With this in mind, a solution of the form 

(3-52) 

is assumed. Here ah (1]) and aie -k1] are homogeneous and inhomogeneous solutions 
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respectively, and 0i is a constant vector. Substituting (3-52) into (3-51), the 

following relations are obtained; 

(3-53) 

and 

[oZfJ + k '71 0 . + /fll,0 = 0, 
N ~ J 1 (3-54) 

where J is the identical matrix. 
N 

The solutions to (3-53) can now be taken to be of exponential form; 

3 A 
a = ~ a e n17 

h hn' n=1 
(3-55) 

where An denote the eigenvalues. The resulting eigenvalue problem is 

(oZfJ - A '71 0h = o. 
N n~ J n (3-56) 

Upon reduction, the solvability condition for (3-56) yields the following cubic 

characteristic equation for An; 

(3-57) 

In general, it is found that one of the roots An of (3-57) is always a negative 

34 



real number; the other two have positive real parts. It can be seen that a O diverges 

as TJ -I 00 when the real part of An is positive. If the complete solution to first order 

is to properly converge to normal flow far upstream, it follows that eigenvectors 

corresponding to eigenvalues which have positive real parts larger than k must 

vanish. This is equivalent to the application of the following boundary conditions to 

v7 and h7 in (3-44); 

(3-58) 

Now let the single remaining negative real eigenvalue be denoted as A
1
. The 

corresponding eigenvector is found to have the form 

k 

(3-59) 

1 

where Co is a free constant. 

The inhomogeneous solution a i is found from (3-54) to be 

(3-{)O) 

The complete solution is thus 
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k k 
1 - F2 A 

1 

0 
= Co 

1 + A1 
eA11] + 0 -k1] 

(3-61) 0 
F2A 

e , 
2 - 1 

1 0 

in the outer layer. Note that, as expected, 0
0 

-j 0 as 1] -j 00. A precise definition of 

the domain in 1] used to define the outer layer is deferred until later. 

3.4.3 Solution in the inner layer 

It can be seen from (3-48) that the character of the perturbed solution in 

general depends on the derivative dvO/d1]. As noted earlier, however, this 

parameter displays a singularity at the free overfall located at 1] = o. It is thus 

impossible to directly integrate (3-48) numerically up to the overfalL To study the 

behavior of the governing equations near the step, it is necessary to introduce an 

inner layer which captures the singularity. Here this inner parameter is measured in 

terms of the scale parameter 0 introduced earlier in (3-29). 

In the inner layer, then, 1] is renormallzed as 

(3-62) 

Note that 1]* varies from 0 (edge) to 1 as 1] itself varies from 0 to o. The governing 

equations (3-15) f\J (3-17) thus take the form 
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(3-63) 

(3-64) 

(3-65) 

where 

J = 1 - 2ak cos k~ (1 - k01]* + .... ) + (ak)2(1 - 2k01]* + .... ) 

(3-66) 

In analogy to the base flow solution, the higher terms in a in (3-18) may also 

be exPanded in 0 as 

(3-67a) 

(3-67b) 
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(3-{)7c) 

Substituting (3-{)7) into (3-18), u, v, and hare re-expanded to yield 

(3-{)8a) 

v = - [F-2/ 3 + aV10(~) + 81/ 2v01(17*) + a81/2vl1(~'17*) + .... J, 

(3-{)8b) 

h = F2/ 3 + ahlO(~) + 81/
2
h01(17*) + a8

1
/ 2hu (e,17*) + ..... 

(3-{)8c) 

Note that terms which are of 0( 81/ 2) or higher in 8 describe variations within the 

inner layer, and are thus taken to vanish at 1]* = 0; 

umn 117*=0 = v mn 117*=0 = hmn 117*=0 = 0, 

m = 0, 1, 2, 3, .... , n = 1, 2, 3, ..... (3-{)9a, b, c) 

Terms which are independent of 8 need not vanish at 17* = O. In light of 

(3-{») and (3-26), however, the following condition must hold: 

(3-70) 

At order a, for example, (3-70) yields 
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4/3 2F vlO = h iO ' (3-71) 

As noted previously, a condition for the validity of the expansion in 8 is that 

8 be small compared to the order-constant G-2. Here 8 is chosen to have the same 

order as a2. Substituting (3-{)8) into (3-{)3) rv (3-{)6), reducing with the aid of 

(3-{i9) and (3-71), and dropping terms of 0(a2), 0(a81/ 2), 0(8), and smaller, the 

following approximate results are obtained. 

(3-72a) 

(3-72b) 

(3-72c) 

Here the parameter G is that given in (3-40b). ImpliCit in the above relations is 

the result that the terms VOl and hOI in (3-72) are identical to the corresponding 

values found for the base solution as (3-42) and (3-43). Note that the parameters 

ulO and vlO are both function of ~ only. 

As described earlier, the inner solution is to be matched to an intermediate 

solution of the form of (3-44). With this in mind, uOI and VOl may be taken to 

have the following forms: 

(3-73a) 

(3-73b) 
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where C1 and C2 are constants. 

In order to facilitate matching of the inner solution with the solution in the 

intermediate layer, (3-72) is reduced with (3-73) and transformed into the variable 

8 via (3-{32); 

(3-74a) 

_ (-2/3 1/2 ) v - - F - G1] + aC2 cos k~ + .... , (3-74b) 

(3-74c) 

Matching is then performed at 1] = 8, i.e. 1]* = 1. The following matching condition 

is obtained for the base flow: 

(3-75a) 

(3-75b) 

At O(a), the following matching conditions are obtained: 

(3-76a) 

(3-76b) 

(3-76c) 
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or in compact matrix form, 

(3-77) 

3.4.4 Solutions in intermedia.te la.yer. 

The solution for vo can be evaluated numerically by integrating (3-25) 

upstream from the point TJ = 8 using the Runge-Kutta method. The required 

boundary condition is (3-75a). The form of (3-25) insures that vo converges to 

unity far upstream. The point TJi defining the interface between the outer and 

intermediate layer can then be defined such that v 0 is sufficiently close to unity. 

The full differential system (3-48) is then solved numerically in the 

intermediate layer. The outer solution contains the one free constant CO' which 

provides the basis for a shooting method. A guess for the value of Co is made; the 

Runge-Kutta method is then used to step the solution downstream of the point TJ. 
1 

of matching with the outer solution. At the point TJ = 6, matching with the inner 

solution is tested. In particular, the parameters Cl, C
2' 

and C3 are estimated as 

(3-78a) 

(3-78b) 

(3-78c) 
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Note the indicated functional dependence of the solution on the guess for Co in the 

above relations. According to (3-76c), correct matching and evaluation of the 

constants CO' CI , and C2 is obtained if 

(3-79) 

A Newton-Raphson technique is used to improve the successive guesses for CO' 

The method is continued until all three unknown constants CO' CI , and C2 are 

successfully evaluated. 

3.5 Stability analysis 

In Figure 3-5, the parameters u?( 1]), v?( 1]), and h?( 1]) are shown as functions 

of 1] for the case F = 0.5, k = 4. These parameters can be interpreted as the 

velocities and depth along a line extending upstream from the center of an 

indentation such as that illustrated in Figure 3-2. Far upstream of the step, it is 

seen that u? increases and h? decreases in the direction of the step. Because inertial 

effects are still small in this region, the discharge per unit width remains constant. 

Near the edge of the dropoff, however, inertial effects cause h? to increase in order 

to satisfy the boundary condition at the step. 

In Figure 3-6, a complete velocity field is illustrated over one transverse 

wavelength. It is seen that as the step is approached, the velocity vectors are 

deflected toward the indentation. At the edge of the step, the velocity at the center 

of an indentation is seen to be larger than that at the center of a protuberance. 

The flow velocities and depth at the step (1] = 0) are seen from (3-74) to be 
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given to linear order in a by the relations 

(3-80a) 

(3-80b) 

(3-80c) 

In the present analysis, the gradual retreat of a free overfall (waterfall) is 

considered. As mentioned in 3.2, erosion is caused by the impact of the falling 

water. Therefore, it is resonable that the retreat speed cr is assumed to be an 

increasing function of discharge per unit width, Ci; that is 

(3-81) 

Here Cie denotes the value of Ci evaluated at the upstream edge of the overfall. The 

implication is that larger amounts of discharge at the downstream edge result in 

higher velocities of retreat of the overfall. 

Equation (3-81) can always be expanded in power form about some reference 

edge ~scharge Cir ' i.e. 

- b- N c = a r .~' 
(3-82a) 

where 
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(3-82b, c) 

The condition that the overfall retreat more rapidly with increasing discharge places 

the condition that band N must be positive. Precise values are not specified in the 

present linear analysis. 

Between (3-82) and (3-80), the (dimensioned) magnitude of the discharge 

per unit width <ie at the overfall edge is seen to be given to linear order in amplitude 

a by the relation 

(3-83) 

It is assumed that the elevated discharge due to the concentration of flow 

under an indentation is responsible for the initiation of a channel. Here a very 

simple stability analysis is performed to obtain a first estimate of the distance 

between initial channels, and thus incipient drainage basins, as illustrated in Figure 

3-3. The relation (3-82) is postulated as the governing relation for magnitude of 

the upstream migration speed. 

The direction of upstream migration is taken to be perpendicular to the 

overfall edge. Note that the overfall serves as the origin of the 'TJ coordinate in 

Figure 3-4. Let the distance Ye(x, t) denote the distance of the overfall in the y 

direction from some fixed line, as shown in Figure 3-7. As seen in Figure 3-1, the 

mean line of the overfall corresponds to the origin of the y coordinate. The distance 

from the fixed line of Figure 3-7 to this mean line is taken to be YO(t\ such that 
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(3-84) 

where ye(x, t) denotes the location of the edge of the overfall in the x-y coordinate 

system of Figure 3-1. 

The geometric relation connecting the speed of retreat cr and the distance Y
e 

is illustrated in Figure 3-8; it can be stated as 

(3-85) 

The parameters Y e' YO' and Ye can be reduced to the corresponding nondimensional 

forms Ye, YO' and Ye using the length scale HooS-
1 

of (3-8), and the velocity scale 

V can be used to reduce C to the dimensionless form c. Using (3-84) and (3-85) 
00 r r 

the following dimensionless form is obtained; 

(3-86) 

Here the superscript . denotes the ordinary derivative with respect to t. 

The above relation is now linearized. Evaluating (3-13) at the overfall edge 

('TJ = 0) and reducing for small amplitude a, the following results are obtained; 

y e (x, t) = a cos kx; x = f (3-87) 

Between (3-82), (3-83), (3-84), (3-85), (3-87) and the appropriate 
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transformations between dimensioned and dimensionless, (3-86) can be reduced to 

the following forms. At O(aO), the base rate of retreat is given by 

(3-88a) 

where 

1 b- N - _ C V 2 F-4/3 
crO = V- qeo; ~o - P f 00 . 

00 
(3-88b,c) 

At O(a), it is found that 

(3-89) 

It is now possible to perform a linear stability analysis of the overfall retreat. 

Equations (3-87) and (3-89) reduce to 

(3-90) 

The above equations has exponential solutions of the form 

(3-91a) 

where 

(3-91b) 
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Note that only C2 depends on wavenumber k in (3-91b). 

In the above relation, the parameters N, crO ' and F can all be taken as 

positive. It follows that w > 0, and instability results, if C2 is positive. An 

examination of (3-80) and (3-83) confirms that a positive value of C2 corresponds 

to a gathering of flow toward the indentations. 

The functional dependence of C2 versus wavenumber k is described in Figure 

3-9 for several values of Froude number F. It is found that the parameter C2 is 

positive for all values of k for which calculations were performed. It appears to go 

to infinity with k. This implies that downstream end is always unstable and 

maximum instability appears for infinitely large value of k. The predictions of 

Figure 3-9 provide an estimate of the wavelength between incipient drainage basins 

predicted by the present analysis. Between (3-8d) and the relation 

- 27r ,\ =-- , 
k 

the following result is obtained for characteristic basin spacing Ac: 

(3-92) 

(3-93) 

Here kc is the characteristic wavenumber which maximizes C2(k). According to the 

relation (3-93), Figure 3-9 also shows that the characteristic basin spacing Ac is 

infinitely small. 

It is concluded that the charcteristic basin spacing cannot be obtained from 

the stability analysis using the foot step erosion model proposed in this chapter. 
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3.6 Conclusion 

A theoretical model is presented to explain the process of drainage basin 

inception on plateau composed of cohesive soil using the simple assumption of "step 

foot erosion". 

The velocity distribution and water surface profile on a plateau which has a 

sinuous step at the downstream end are obtained theoretically using perturbation 

techniques. 

It is found that flow is gathered to and intensified at indentations, and that 

the intensification is maximized when the wavelength of the perturbation is 

infinitesimally small. It is concluded that the process of drainage basin inception 

cannot be explained by means of the "step foot erosion" model, in which bed shear 

stress is assumed to be below critical everywhere on the plateau, and with erosion 

only at the foot of the step. 

The problem of drainage basin inception is approached from different point 

of view in Chapters 4 and 5. 
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Figure 3-2. 

(a) 

(b) 

Schematic diagram showing the backwater-driven tendency for 
flow to concentrate in the indentations of a sinuous step 
bounding a plateau. 
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DIVIDES 

Figure 3-3. Schematic diagram of the resulting system of basins. 
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Figure 3-4. 
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Conformal transformation defined by (3-12) in which 
ak = 0.3. 
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Figure 3-5. Velocity and depth profiles for the case F = 0.5 and k = 4. 
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Figure 3-6. 
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Velocity vectors near the step on the plateau for the case 
F = 0.5, k = 4 and a = 0.025. 
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Figure 3-7. 

Figure 3-8. 

Definition diagram showing the parameters Ye, YO' and Ye· 

./ '" Ye(x, t + L'1t) 

", 

a':etlt 
at Ye(x, t) 

Definition diagram showing the relation between c and Y. 
r 
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4. UPSTREAM-DRIVEN DRAINAGE BASIN INCEPTION 

USING A THRESHOLD HYPOTHESIS 

4.1 Introduction 

In Chapter 3, a theoretical model of drainage basin inception was proposed. 

This model was based on classical linear stability analysis; it resulted in the 

achievement of maximum perturbation growth rate at infinitely large wavenumbers. 

This implies that the characteristic wavelength is infinitesimally small. The "step 

foot erosion model II thus fails to satisfactorily explain the processes of drainage 

basin inception. This may be because the assumption made in Chapter 3 is not 

generally valid. According to the assumption of the "step foot erosion model", 

erosion resulting in channel inception occurs only at the foot of the step. This is 

reasonable only when the water discharge is limited in a certain special range, in 

which falling water has enough energy to give rise to erosion right under the step, 

but the shear stress on the plateau itself is nowhere large enough to cause bed 

erosion. If the discharge exceeds this range, however, erosion occurs on the surface 

of the plateau. The analysis is thus extended to cases in which erosion occurs not 

only right under the step but also on the surface of the plateau. 

As an alternative to stability analysis, a new "threshold model" is proposed. 

This is based on the threshold arguments of Montgomery and Dietrich (1989). One 

of their thresholds consists of a critical shear stress generated by an overland flow 

sufficient to erode the bed and thus initiate channel formation. 

4.2 Conceptual model 
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Fig. 4-1 shows a plateau composed of cohesive material which is flat, but 

which has a slight slope S in the y direction. A uniform rainfall is assumed over the 

entire plateau. If the upstream edge is taken as the origin and the downstream 

direction as the positive y direction, the water discharge of the surface flow increases 

linearly in y as a result of rainfall. At the same time, the bed shear stress increases 

in the downstream direction, eventually reaching the threshold value for bed erosion 

at some point on the plateau. If the plateau is completely flat, the threshold points 

form a straight line parallel to the x direction, downstream of which erosion starts 

to occur. The surface of a plateau in nature can never be expected, however, to be 

perfectly flat. Rather it always includes a component of irregularity. This 

irregularity can be described by the superposition of Fourier modes with various 

wavenumbers. At the linear level, the flow on an irregular surface can also be 

expressed in terms of superposition of flows on sinuous surfaces with various 

wavenumbers. With this in mind, the flow field on a sinuous surface of specified 

wavenumber is considered. 

Let the surface of the plateau be flat but tilted with mild slope S in the y 

(streamwise) direction; to this add a small transverse sinusoidal perturbation of 

amplitude a. The resulting bed surface is given by 

1lt = - Sy - a cos ti, (4-1) 

as shown in Figure 4-2. Here ~b is taken to be zero at y = 0, i.e. the divide, in the 

unperturbed state. 

Consider first the case of a constant downslope discharge per unit width 

supplied along the divide, in the absence of rainfall. As it flows downslope, water 
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tends to gather in the troughs. The velocity of the resulting overland flow can be 

expected to be larger in the troughs than over the ridges, because flow velocity is 

roughly proportional to square root of the corresponding depth. It will be shown 

that this flow concentration due to this topographical effect has no dependency on 

the wavenumber k. 

Suppose, however, that a steady, uniform rainfall is provided everywhere 

over the surface. It will be shown that this uniform rainfall accelerates flow in 

troughs more strongly than over ridges. This drives an enhanced lateral flow from 

ridges to troughs in accordance with the condition of water continuity. This effect 

is stronger for shorter wavelengths. If it were not for backwater effects, flow would 

be continuously concentrated toward the center of troughs, resulting in infinite 

concentration of flow in the troughs. Transverse backwater effects, however, yield a 

net force from trough to ridge, so preventing the overconcentration of flow. As 

wavelength k becomes smail, the transverse Reynolds stress acts to reduce the flow 

concentration at troughs. A combination of all these effects results in the 

maximization of flow concentration at some finite wavelength. 

Near the value of k associated with maximum flow concentration, the locus 

of threshold shear stress does not form a straight line in the transverse (x) direction. 

In troughs, where velocity is intensified, the flow reaches the threshold condition in 

a shorter distance downstream of the divide than over the ridges as shown in Figure 

4-2. This can be expected to result in a preferential tendency for channelization 

along the troughs, a tendency that would be magnified farther downstream. Once 

channels are formed on the plateau surface, each channel can gather more and more 

water and grow rapidly, thus preventing other channels from being formed nearby 

(Figure 4-3). Following this scenario, channels the heads of which form in the 
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shortest distance downstream of the divide should dominate during the initial stage 

of channel formation. It is therefore hypothesized that the wavelength which 

minimizes the distance from the divide to the point at which the threshold condition 

is reached in a trough is taken to be the characteristic spacing of the incipient basin. 

As revealed later, the flow considered here does not have to be subcritical in 

the Froude sense, a feature that distinguishes the analysis from that in Chapter 3. 

4.3 Formulation 

4.3.1 Governing relations 

In accordance with Figure 4-1, it is assumed that the plateau has a slight 

slope S descending in the positive y direction. Perturbed bed elevation is expressed 

by (4-1). Equations (2-20) and (2-21) then take the forms 

= = Oh- C j -2 -2 - uu - uu -k- . i:::. f u +v -u- + v- = - g- - ga sm.l\.J\. - _ u 
fJX ffY fJX h 

a au a au + ~ lIt-) + ~ lIt-) , 
fJX fJX ffY ffY 

(4-2) 

(4-3) 

auii + &vii = I, 
fJX OJ 

(4-4) 
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where I is rainfall intensity (volume per unit bed area per unit time). 

4.3.2 Base flow solution; base-normal flow 

If there is no perturbation on the bed surface, equations (4-2), (4-3) and 

( 4-4) reduce to 

-dv _ dh + S CfV
2 + d j dv) v---g- g --_- --,Y-, 

d51 d51 h d51 td51 

dvh = 1. 
d51 

(4-5) 

(4-6) 

A boundary condition on these equations is that there be no flow beyond the divide; 

that is, 

vii = a at 51 = o. (4-7) 

A solution to these equations defines the base flow, which is to be perturbed 

according to (4-1). 

There is a simple version of this base flow, however, that turns out to be an 

accurate approximation everywhere except in a thin region near the divide, i.e. 

51 = O. It is obtained by neglecting the backwater and turbulent diffusion terms 

(4-5), yielding the force balance characteristic of normal (equilibrium) overland 

flow: 
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C -2 
S fV - 0 g ---- . 

h 
(4-8) 

The flow solution obtained from (4-{») and (4-7) is herein called the base-normal 

flow. 

This base-normal flow can be solved as follows. Equation (4-{») is 

integrated with (4-7) to yield 

vh = IY. (4-9) 

Equations (4-7) and (4-9) then give solutions of the form 

1 1 2 1 -- ( ~)! -! h- - (Cd )!-i v--Cf y, - -gs- y. (4-10, 11) 

1 2 
That is, velocity and depth are proportional to y! and j'!, respectively. 

It is now useful to back-calculate the order of magnitude of the terms 

neglected in going from (4-5) to (4-8). The backwater terms in (4-5) are 

estimated using the solutions (4-10) and (4-11) as follows: 

(4-12) 

The streamwise Reynolds stress term is similarly estimated as 
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( 4-13) 

The eddy viscosity lit is assumed to take the form 

lit = crii*h, (4-14) 

where u* and denotes the friction velocity of the surface flow. Recalling that 

u* = ..fry'l, the use of (4-9) and (4-14) yields the result 

( 4-15) 

Then (4-13) yields 

( 4-16) 

Comparing the estimates (4-12) and (4-16) with the original force balance of 

the base flow (4-5), it is seen that the ratio of backwater terms to the gravitational 

term varies as y-l/3, and the rate of the streamwise Reynolds stress term to the 

gravitational term varies as y-2/3. Since the force balance of the base-normal flow 

of (4-8) is between gravity and friction, the indication is that the backwater and 

Reynolds stress terms of the base flow become negligible sufficiently far 

downstream. This conclusion is put on a more formal basis below. 
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4.3.3 Normalizations 

Let the distance from the divide y at which the threshold bed shear stress T c 
for bed erosion is first attained by the base-normal flow be given by Lth. The shear 

stress itself is given by the relation 

(4-17a) 

where V th denotes the flow velocity of the base-normal flow at y = Lth' the depth 

there is likewise defined to be Hth. Mass conservation of water ensures that 

( 4-17b) 

Equation (4-10) applied to (4-17b) yields the result 

(4-17c) 

The following normalizations allow for a dimensionless treatment: 

(ii, v) = Vth(u, v), (a, b.) = Hth(a, h), (4-18a,b) 

( 4-18c,d) 

- -1 
k = (Hth/S) k. ( 4-18e) 

where l is the distance of the threshold point downstream of the divide. Note that 

64 



according to the base-normal solution, f = 1. The normalized governing equations 

thus take the form 

2 au au 8h . .~ 
F ( Uax + 1f;vay ) = - ax - ak sm kx -~ u 

( 4-19) 

( 4-20) 

( 4-21) 

In the above equations, F is the Froude number of the base-normal flow, 

which according to (4-10) and (4-11) is constant in y and thus given by 

(4-22) 

The model places no restriction on the value of this Froude number; indeed it can 

exceed unity. The parameter 1/J in (4-19) rv (4-21) is defined as 

(4-23) 
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As seen in Figure 4-4, it is thus equal to the depth of overland base-normal flow at 

threshold conditions divided by the elevation drop from the divide to the point 

y = Lth at which the threshold for bed erosion is reached. As the overland flow due 

to rainfall can be generally be expected to be extremely thin, ?jJ can be expected to 

be a very small parameter for most cases of interest. Finally, the dimensionless 

eddy viscosity E takes the form 

2 1/2 
E = as /C f . (4-24) 

The parameter a is of the order of 0.1 (Parker, 1978; Ikeda et al., 1990), as is also 

likely for the parameter C}J2. It then follows that EN S2 and is thus a small 

parameter. 

Note that in deriving (4-19) and (4-20), the eddy viscosity lit has been 

evaluated using the base-normal result (4-15). The terms involving the eddy 

viscosity are in general small, so that accuracy sufficient for the present analysis can 

be achieved by this approximation. 

The reason for the normalizations (4-18), and in particular (4-18c, d) can 

now be readily seen by examining the base flow, for which u and a vanish and v 

and h are functions ofy alone. Equations (4-20) and (4-21) reduce for this case to 

( 4-20a) 

( 4-21a) 

It is now seen that in the limit as ?jJ ~ 0, the equations governing the base flow 
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reduce strictly to those governing the base-normal flow. 

4.4 Solution 

4.4.1 Normal flow assumption 

In order to understand the difference between the present model and those of 

the type of Smith & Bretherton (1972), the solution for normal flow over a 

perturbed bed is provided here. 

In the models of Smith and Bretherton (1972) and Loewenhertz (1991), 

overland flow over the wavy bed given by (4-1) is analyzed according to the normal 

flow approximation. It is shown below why this approximation must yield the 

unsatisfactory result of a characteristic wavelength of drainage basin spacing equal 

to zero. 

a) Linear analysis 

If the backwater and Reynolds stress terms are neglected m (4-19) and 

(4-20), the governing equations take the form 

j 2 2 
- ak sin kx - u tv u = 0, ( 4-25) 

j 2 2 
1 u +v - 0 - h v - , ( 4-26) 

( 4-27a) 
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Since backwater effects can be neglected a priori in this analysis, this is no reason to 

maintain the different scalings in x and y of (4-18c, d) that lead to the justification 

for their neglect. With this in mind, y is rescaled such that 

y= 1/lY, 

so that (4-27a) becomes 

( 4-27b) 

Assuming that the dimensionless perturbation amplitude a is infinitesimally 

smail, the following asymptotic expansions are introduced: 

u = aU1 + .... , ( 4-28) 

(4-29) 

h = hO + ah1 + ..... (4-30) 

These expansions are truncated at linear order in amplitude a. 

Substituting (4-28), (4-29) and (4-30) into (4-25), (4-26) and (4-27b), the 

following equations are obtained at 0(1): 

( 4-31) 
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( 4-32) 

Applying the boundary condition of no flow at y = 0, (4-32) is integrated to yield 

Between (4-31) and (4-33), the following solutions are obtained: 

These are the base-normal solutions. 

At the next order, O(a), the governing equations give 

vo 
-ksinkx-n:::ul =0, 

o 

au1 &v 1 dhO 8111 dv 0 
hO~+ hO-+ -v1 + vO-+ -hI = o. 

ux BY dy BY dy 

With the use of (4-34) and (4-35), (4-36) gives the solution 
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( 4-33) 

(4-34,35) 

( 4-36) 

( 4-37) 

( 4-38) 

( 4-39) 



It is found that ul is positive between x = 0 and 1f/k, and negative between 

x = -1f/k and O. Since the point x = 0 corresponds to an indentation, (4-39) 

indicates that flow gathers toward the indentations. 

The first-{)rder differential equation (4-38) admits solutions of the form 

1* 
V 1 = 1/J"'Jv 1 cos kx, (4-40) 

(4-41 ) 

Substituting with the use of (4-39), (4-40) and (4-41), equation (4-38) 

gives the following differential equation for v~: 

* 
3
dv1 + 2~-1 * k2~t - 0 - y v 1 - y - . 
dy 

(4-42) 

The solution of (4-42) is composed of the corresponding homogeneous and 

particular solutions; that is 

2 k2 4 * - B ~-3 ~3 
V1 - OY + 6 Y , (4-43) 

where BO is an integral constant. With the use of (4-40), (4-41) and (4-43), 

(4-37) gives 

1 k2 5 
h* - B ~-3 ~3 

1 - 2 OY + 3 Y . 
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Applying the boundary condition (4-8), BO is found to be zero. Then vIand hI are 

finally obtained as 

(4-45) 

(4-46) 

The solution (4-45) shows that the velocity at troughs (e.g. y = 0 in Figure 4-2) is 

proportional to the square of k and is maximized for infinitely large values of k, or 

infinitesimally small wavelength. This is the fundamental reason for the failure of 

the linear model of Smith and Bretherton (1972) to select drainage basin 

wavelength. 

b) Full nonlinear analysis 

In fact, it is possible to obtain an exact nonlinear solution to (4-25), (4-26) 

and (4-27a). This solution is here used to illustrate that the normal flow 

approximation of those equations implies the unsatisfactory result of infinite flow 

concentration in the troughs for any y > O . 

. Equations (4-25), (4-26) and (4-27) reduce to 

( 4-47) 

oq oq 
af+ ~= 1jJ, (4-48) 
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where q and q are the discharges per unit width in the x and y directions, x y 

respectively, given by 

q = uh, q = vh. x y 

Since streamlines are defined such that 

Qr= ! 
dX u' 

it follows for the present case that 

Equation (4-52) is integrated to yield 

1 l-coskx 
y = - --2 In 1+coskX + B1· 

2ak 

(4-49, 50) 

( 4-51) 

( 4-52) 

( 4-53) 

Suppose the streamline passes through the point (xp' yp)' as shown in Figure 4-5. 

The integral constant Bl is then calculated as 

1 1-coskx 
B =y +--In p 

1 p 2ak2 l+coskXp' 
( 4-54) 

The continuity equation (4-48) can be integrated to yield 
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If div·q dA = r q·n dS = If 1/J dA , 
A p JS p PAP 

p p p 

( 4-55) 

where div = (8/fJx, 8/8(y/1/J)), Ap is a given area, Sp is the closed curve 

surrounding Ap and np is a unit outward vector normal to Sp' If Ap is defined to 

be the area APBO shown in Figure 4-5, the discharge crossing OA, PB and BO 

vanishes, and (4-55) reduces to 

The A (x ,y ) can be expressed as p p p 

( 4-56) 

(4-57) 

where xb is the x coordinate of the point B where the streamline crosses the x axis. 

This value can be derived from (4-53) and (4-54) at y = 0; that is 

1 1 cos kxb 1 1 cos kxp 
--2 In 1 + cos kXb = Y P + --2 In 1 + cos kX . 
2ak 2ak p 

(4-58) 

Substituting (4-57) into (4-56) and taking the derivative with regard to x ,q is 
P Y 

obtained as 

(4-59) 
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With the aid of (4-58), (4-59) reduces to 

2 

( k2 1 l-<:oskxp) 
l+exp 2a y + nI+ sk p co xp 

ak s in kxp 

( 4-60) 

The above equation is of considerable interest. Note that q (0, 0) = 0, but 
y 

q (0, y ) is equal to infinity for any y > O. Since the point x = 0 corresponds to y p p 

the trough, it follows that infinite discharge gathers in the indentations in the 

absence of friction or backwater effects. It is this feature of the normal flow 

approximation applied to the topography of (4-1) that led to the failure to obtain 

finite wavelength selection in Lowenhertz (1991). She was able to overcome this 

difficulty only at the expense of introducing an ad-hoc "smearing" function. Here, 

however, it will be found that the problem can be resolved satisfactorily by properly 

including the backwater and friction terms. 

If y is large enough, q converges to the simple form p y 

(4-61) 

4.4.2 Linear analysis including the backwater and the Reynolds stress terms 

In this analysis, a perturbation technique using a, 'IjJ and E as small 

parameters is employed. As seen in (4-19), (4-20) and (4-21), the small 

parameters 'IjJ and E scale the magnitude of the streamwise backwater effect and the 
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transverse Reynolds stress, respectively. While 7jJ and € are characteristic 

parameters of each system, bed amplitude a is a parameter which can be chosen 

arbitrarily. Here the following composite expansions are introduced in order to 

allow for a linear analysis in a. 

u = aU I + O(a2) 

2 2 2 = a[u lOO + '¢uno + €li IOI + O(7jJ ,7jJ€,€)] + O(a), 

2 
v = va + aVI + O(a ) 

( 4-62a) 

2 2 3 2 2 3 
= vooo + 1/NOIO + €Vaal + 7jJ v020 + 7jJ€VOll + E v002 + 0(1j; ,1j; E,1j;E ,E ) 

2 2 2 + a[vIOO + 1/N1l0 + EV IOI + 0(1j; ,1j;E,E )] + O(a ), (4-63a) 

2 
h = hO + ahl + O( a ) 

2 2 3 2 2 3 = hOOO + 7jJhOlO + EhOOI + 7jJ h020 + 7jJEhOll + E h002 + O(1j; ,7jJ E,1j;E ,E ) 
2 2 2 + a[hlOO + 1j;h110 + EhlOI + O(1j; ,7jJE,E)] + O(a). (4-64a) 

Some elaboration is in order concerning the nature of these expansions. 

Terms of O(a2) have been dropped, while terms of 0( 1j;2), O( 7jJE), 0( E2), O(a7jJ) and 

0( aE) have been retained. A necessary condition for the validity of the expansion is 

that a be one order of magnitude below the minimum of 1j; and E. This condition is 

compatible with a linear stability analysis in a. 

In the limit as a -+ 0, the expansions reduce to forms describing the base 

flow; 

u = 0, (4-62b) 
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v = vO(y) 

2 2 = vooo + 1/N010 + EVOOl + 'l/J v020 + 'l/JEv011 + E v002 ' (4-63b) 

(4-64b) 

The base-normal solution for v and h is recovered as 'l/J and E go to zero, i.e. 

vO(y) -t vOOO(y) and hO(Y) -t hOOO(Y)' 

Let y = l denote the dimensionless distance downstream of the ridge at 

which the threshold condition for bed erosion is reached. The normalization 

(4-18d) ensures that l = 1 for the base-normal flow. It can be deduced from 

(4-17a), (4-18d) and (4-63b) that l deviates slightly from unity in the case of the 

base flow. This deviation, however, is not a function of the transverse direction x. 

When transverse bed variation is included according to (4-1), l will be found 

to be a function of x. This variation will prove to be the key in determining the 

characteristic wavenumber of drainage basin spacing. The linear terms in E and 'l/J in 

(4-63b) and (4-64b) will be found to play a role in the variation of l in x up to 

linear order in a in (4-63a, b, c). The nonlinear terms in 1jJ and E in (4-63b) and 

(4-64b) are found not to affect the process of wavenumber selection up to linear 

order in a. As a result, the terms v 020' v 011' v 002' h020 ' h011 and h002 are not 

computed here. 

a) Boundary and integral conditioru; 

In order to solve (4-19) N (4-21) with the use of the above expansions, it is 
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first useful to specify appropriate boundary and integral conditions on the problem. 

According to (4-7), there is to be no water inflow at the divide of Figure 5-2. In 

dimensionless notation, then, 

vh = 0 at y = o. ( 4-65) 

The bed profile specified by (4-1) is periodic in x; here solutions to (4-19) N 

(4-21) that are likewise periodic in x are sought. It follows from conditions of 

symmetry that the transverse discharge uh must vanish at both troughs and ridges 

of Figure 4-2. The presence of uniform rainfall ensures that depth h is nonzero 

everywhere except at y = O. It thus follows that 

7r 7r 
U = 0 at x = 0, ::I: K' :I: 2K,· .. ( 4-66) 

Finally, (4-21) can be integrated over one wavelength from x = - 7r/k to x = + 7r/k 

and reduced with (4-65) and (4-66) to yield the follOwing result; 

b) Solution at 0{ a 0) 

f 
7r/k 

vh dx = 2 f y. 
-7r/k 

(4-67) 

Substituting (4-62), (4-63) and (4-64) into (4-20), (4-21), and (4-65) the 

following equations are obtained at lowest order: 
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with the boundary condition 

2 v 
1 - 000 = a 

hooo ' 

dVOOOhOOO 
dy = 1, 

voooyooo = 0 at y = o. 

Equation (4-69) can be integrated with the aid of (4-70) to yield 

v OOOhOOO = y. 

Equations (4-68) and (4-71) then gi ve the following solutions: 

1 2 

V 000 = y3, hOOO = y3. 

( 4-68) 

( 4-69) 

( 4-70) 

( 4-71) 

(4-72,73) 

These forms can be immediately recognized as the base-normal solution obtained in 

4.3.2. As such, they do not include any of the effects of perturbed bed topography, 

backwater or turbulent diffusion. 

The following equations are found to govern the terms at O( a 0 V} EO) in the 

expansions (4-62) to (4-64): 

( 4-74) 
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(4-75 ) 

with the boundary condition 

(4-76) 

With the aid of (4-72) and (4-73), (4-74) N (4-76) give solutions of the form 

(4-77) 

( 4-78) 

At 0( a ° 'ljJ0 €1) of the expansion, the governing equations yield 

(4-79) 

( 4-80) 

with the boundary condition 

(4-81) 

Equations (4-79) IV (4-81) can be solved with the aid of (4-72) and (4-73), yielding 
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v001 = 0, h001 = O. (4-82, 83) 

Before starting the analysis at the next order, O(a1), it is useful to 

summarize the base solutions at O(aO) as follows: 

(4-84) 

(4-85) 

Calculated curves for Vo and hO are depicted in Figure 4-6 for the case F = 0.5 and 

three values of?jJ. It is readily seen that the base-normal solution is quite accurate 

as long as ?jJ is sufficiently small. 

Note that the base solutions are not carried to O( ?jJ2, ?jJf.,f.2) here, as the 

results do not affect wavelength selection at the linear order in a. 

c) Solution at 0( a 1) 

At O(a1?jJ0f.0) in the expansions, the following equations are obtained: 

( 4-86) 

vOOO vooo 2 
- 2n::::-;::-v 100 + ( n::::-;::-) h100 = 0, 

000 000 
(4-87) 
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Gu 100 
hOOO ax- = 0, ( 4-88) 

with the boundary condition 

u100 = 0 at x = 0, ( 4-89) 

and the integral condition 

( 4-90) 

These relations yield the solutions 

u100 = 0 ( 4-91) 

h100 = cos kx ( 4-92) 

_ 1 -i 
Y100 - '2 y cos kx. ( 4-93) 

At O(a1'¢1€0) in the expansion, the following equations are obtained: 

( 4-94) 

fJv fJv 8h Y Y h 
F2y 100 + F2y 000 + 100 = _ 2 000 ( 010 _ 010)y 

000 &y 100ay- ay- hOOO y 000 hOOO 100 
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y y 2y h y 2 
_ 2 OOOy _ 2( 000) ( 010 _ 010)h + ( 000) h 

hOO~ 110 hOO~ YOOO hOO~ 100 hOO~ 110' 

with the boundary condition 

ullO = 0 at x = 0, 

and the integral condition 

= o. 

With the aid of (4-72) and (4-73), (4-94) N (4-98) give the solutions 

-t 
h llO = - ~ cos kx, 

2k 

At O(a1'lj;0€1), the following equations are obtained: 

82 

( 4-95) 

( 4-96) 

( 4-97) 

( 4-98) 

( 4-99) 

( 4-100) 

(4-101 ) 



( 4-102) 

( 4-103) 

( 4-104) 

with the boundary condition 

u101 = 0 at x = 0, ( 4-105) 

and the integral condition 

= O. ( 4-106) 

The solutions are found to be 

u101 = 0, ( 4-107) 

h101 = 0, ( 4-108) 

k2 
vIOl = - 4 Y cos kx. ( 4-109) 

The solutions at O(a1) can now be summarized as follows: 
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_4 

U1 = [ -1/J ~ + O( 1/J2,1/JE,f.2) ]Sin kx, ( 4-110) 

( 4-111) 

( 4-112) 

Recalling from (4-1) and Figure 4-2 that x = 0 corresponds to the bottom of a 

trough, equation (4-111) is seen to predict intensified flow velocity at indentations 

associated with the bed perturbation. In order to look at the effect of wavenumber 

on the profile of vI for x = 0, calculated results for three different wavenumbers are 

shown in Figure 4-7. It is seen that vII x=o for a wavenumber k = 30 is larger 

than the corresponding value for k = 0.3 for small values of y. This tendency is, 

however, reversed for large values of y. This reversal suggests the existence of some 

finite value of k which maximizes the flow intensification at a certain distance 

downstream of the divide. 

Finally, the complete form of the solutions to the order indicated in (4-62) N 

(4-64) is 

_4 

[ L2 2 2]. 2 u= a -1/J21{+ O(?jJ ,?jJE,f.) smkx+ O(a), ( 4-113) 

1 F2+ 2 2 2 v = y"S -1/J 9 + 0(1/J ,?jJE,E ) 
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2 _I k2 2 2 ] 
Y ~) - € r Y + 0( 1/1 , 1/1€, € ) cos kx 

+ O(a2), ( 4-114) 

h = y1 + 1/1 F2t 2 y-1 + O(1/12,1/1£,€2) 

_5 

+ a[ 1 - 1/1 ;k~ + 0( 1/1
2

, 1/1€, £2) ] cos kx 

+ O(a2). ( 4-115) 

Note that the terms in the expansions (4-62) IV (4-64) of O( ¢2), O( ¢£), and 

0( £2) have not been obtained explicitly here. It suffices to mention that these 

terms are independent of the bed perturbation introduced in (4-1), and thus contain 

no functionality in transverse direction x or transverse wavenumber k. As a result, 

they play no role in the determination of characteristic wavelength. 

4.5 Threshold hypothesis 

According to the scenario of the threshold concept, the wavelength which 

minimizes the distance from the divide to the first point downstream at which the 

threshold condition for bed erosion is attained should dominate, at least in the 

initial stages of bed erosion. Here this wavelength is called the characteristic 

wavelength associated with the threshold concept. To obtain the characteristic 

wavelength, the distance to the point at which the threshold condition is first 

realized must be related to velocity intensification. 

As pointed out in Chapter 2, the appropriate dimensioned form of the Exner 
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relation for the present purely erosional analysis is 

( 4-116) 

where Ap denotes bed porosity, Es is a positive constant, and T denotes the 

magnitude of the bed shear stress vector, given by 

- 2 2 1/2 2 2 
T = (T + T ) = pC.f u + v ). 

x Y i' 
( 4-117) 

It follows from (4-117) that a threshold velocity magnitude Vth can be 

defined as follows: 

( 4-118) 

This threshold velocity was introduced earlier to allow for a nondimensional 

treatment of the governing equations. It follows from (4-18a,b), (4-117), and 

(4-118) that the dimensionless form for the condition describing the attainment of 

threshold conditions is 

2 2 u+v=l. ( 4-119) 

Now let y = l(x) denote the distance downstream of the divide at which the 

threshold condition is attained, as described in Figure 4-2. Substituting the 

expansions (4-62) and (4-63) into (4-119) and reducing, it is found that the 
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threshold condition reduces to 

[vOOO(y) + 1PvOlO(y) + £v001(y) 
2 2 + 1/J v020(y) + 1jJ£vOll (y) + £ v002(y) 

+ av100(x,y) + a1Pv110(x,y) + a£v101(x,y) 

+ O(a
2
)1Iy=L= 1. ( 4-120) 

Comparing (4-72) and (4-120), it is seen that the base-normal solution yields the 

result 

£ = 1. ( 4-121) 

Indeed, the normalizations (4-18) were chosen so as to provide this result. 

The O( 1/J), O( E), O( 1/J2), O( 1jJ£), and 0( £2) terms in (4-120) correspond to the 

deviation of the base flow from the base normal flow, and contain no dependency in 

x. Where lo denotes the distance, independent of x, at which threshold conditions 

are obtained by the base mode, these terms insure that £0 differs slightly from unity. 

Since LO does not depend upon x, these terms play no role in wavelength selection 

here. 

The O(a), O(a~), and O(a£) terms in (4-120), however, depend upon x, as 

seen by a perusal of (4-114). Indeed, it is seen from that equation that as long as 1/J 

and £ are small, flow velocity is maximized in the troughs (e.g. x = 0) near y = 1. 

This in turn implies that the threshold condition is reached in a shorter distance 

from the divide along the troughs (e.g. x = 0) than for any other values of x. The 

question of wavelength selection, then concerns the determination of the 
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wavenumber k that allows for the shortest distance along a trough from the divide 

to the point at which the threshold condition is attained. 

In general, the distance l(x) can be written in terms of its deviation from the 

base normal value: 

l = 1 - .6.l(x). (4-122) 

where .6.1 denotes the deviation from the threshold distance predicted from the base 

normal solution. The negative sign in (4-122) has been introduced so that the 

maximum value of .6.£ corresponds to the shortest distance from the divide to the 

point at which threshold conditions are realized. Substituting (4-122) into (4-120) 

and reducing with the forms of (4-114), it is found that 

.6.1(x) = .6.10 + a .6.~ (x), ( 4-123a) 

where 

F2+ 2 2 2 
.6.£0 = -?jJ 3 + O(?jJ , ?jJE, E ), (4-123b) 

.6.~ (x) 

[ 
1 1 F2 + 2 k

2 
2 2 ] 

= 3 -2- - 'I/J( 2 + 9 ) - E "4 + 0(?jJ , ?jJ€, € ) cos kx 
4k 

+ O(a). (4-123c) 

Here the value .6.lo is associated with the deviation of the base flow from the base 
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normal flow; it is not a function of x. The parameter ~ll (x), on the other hand, is a 

function of both x and k, and thus plays a cruci al role in determining characteristic 

wavenumber. The condition for maximum trough value of ~l takes the form 

8 8 OK ~l(O) = OK ~ll (0) = o. ( 4-124) 

This yields the characteristic wavenumber kc given below; 

( 4-125) 

The nature of the maximum of ~1. (0) in k is explored in Figure 4-8 for the 

case F = 0.5, E = 0.00017, and the values of ¢ of 0.0017,0.017, and 0.17. 

4.6 Discussion 

Recapitulating, 1/J and E are given by the relations 

S2 
E = a--. 

ICf 

Using (4-18e) to relate dimensionless wavenumber k to its dimensioned form k, and 

recalling that k = 27r/'5.. where '5.. denotes the dimensioned wavelength of basin 

spacing shown in Figure 4-2, (4-125) is seen to yield the following result for 

characteristic wavelength \: 
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A threshold shear velocity uth can be defined as follows: 

Using (4-127) and (4-17b), (4-126) can be reduced to 

_ 2 1 9 _5 1 
). = --.?!: ( a )"4 u*T S "4 C"4. 

C g Cf th 

( 4-126) 

( 4-127) 

( 4-128) 

An appropriate value for a is 0.2 (Ikeda, 1991); likewise, a crude but reasonable 

estimate for Cf for overland flow is 0.01 (Yoon et al" 1971; Shen et al., 1973). With 

these values, (4-128) takes the form 

( 4-129) 

It is thus seen that the predicted characteristic wavelength of drainage basin spacing 

is proportional to the threshold shear velocity to the 9/4 power, slope to the minus 

5/4 power, and rainfall intensity to the minus 1/4 power. 

In order to determine the meaning of (4-129), it is useful to have some 

reasonable estimates for uth' S and I applicable to overland flow. It is known that 

the threshold shear velocity over cohesive soils varies from about 5 cm/s for sandy 
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loam to about 15 cm/s for rigid clay (Kikkawa, 1985). Here a value of 10 cm/s is 

taken for a sample calculation. Slope S is assumed to be 0.01. Rainfall intensity is 

assumed to be 100 mm/h, i.e. 2.78 1 10-5 m/s. 

From these estimates, it is found from (4-127), (4-10), and (4-9) that 

Vth = 1.00 mis, Lth = 3670 m, and Hth = 0.102 m. The parameters ¢ and € are 

found from (4-23) and (4-24) to take the respective values 2.78 1 10-3 and 

2.00 x 10-4, justifying the assumption that they are small. Characteristic 

wavelength is computed from (4-129) to be 33.1 m. 

This value of wavelength is of the right order of magnitude, but still 

somewhat smaller than the typical spacing between the smallest tributaries in a 

typical drainage basin (Dietrich, 1993 personal communication), which is often 

found to be of the order of 100 m. It is important to realize, however, that the 

spacing observed in nature is likely the result of a long process of erosion, only the 

earliest stages of which are predicted by the present theory. Both nonlinear and 

long-time effects can be expected to modify the spacing about the value predicted 

by the present theory. In Figure 4-9, a flat, tilted plane with an initial low slope is 

shown, along with the incipient channel heads predicted by the present theory. 

These channel heads would then proceed to migrate upstream, with some incipient 

basins being captured by others. At the same time, the entire plane would be 

eroded into a convex profile, with a much steeper upper reach (e.g. Smith and 

Bretherton, 1974). The initial spacing would provide a base scale for, but not 

precisely determine, the spacing resulting after the passage of geologic time. 

4.7 Conclusions 
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A theoretical model is presented to explain the process of upstream---Driven 

drainage basin inception. 

As a first simple model, normal flow over a tilted bed that is wavy in the 

transverse direction is considered. A linear formulation yields the result that 

maximum flow concentration is realized at infinitely large wavenumber k, or zero 

distance of spacing between adjacent incipient basins. A fully nonlinear treatment 

reveals that the absence of backwater effects leads to infinite concentration of flow 

at the center of indentations, or troughs of the wavy bed. This the reason why the 

normal flow models of both Smith and Bretherton (1974) and Loewenhertz (1991) 

fail to predict a finite incipient spacing of drainage basins. 

In order to perform the analysis so as to include both backwater effects and 

the effect of transverse Reynolds stresses, a perturbation technique involving three 

small parameters a, 1/J, and E is adopted. Here the parameter a characterizes the 

amplitude of the wavy bed, 1/J characterizes streamwise backwater effects, and E 

characterizes the Reynolds stresses. The analysis gives both the velocity and depth 

distributions in explicit form. It is found that effects scaling with the parameter 1/J 

tend to increase characteristic wavelength kc' and effects scaling with E tend to 

decrease it. The model successfully predicts that maximized flow concentration to 

indentations is realized at a finite wavenumber. 

A threshold hypothesis for bed erosion is introduced to predict the 

characteristic wavelength \. According to this model, it is found that kc falls in 

the range = 0.1 N 10, which corresponds to a characteristic wavelength of the order 

of Hth/S. The relation between the characteristic wavelength and the threshold 

shear velocity for bed erosion, the slope of the tilted plane, and rainfall intensity is 

obtained in explicit form. 

92 



RAINFALL INTENSITY 1 
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DIVIDE )( 

Figme 4-1. Schematic diagram showing a plateau. Flow is in the positive Y 
direction. 
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RAINFALL INTENSITY I 

BASIN SPACING 
~--- A --~ 

Figure 4-2. Schematic diagram showing perturbation on the plateau. 
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FLOW 

Figure 4-3. Schematic diagram showing upstream-driven channel inception 

95 



DIVIDE 

SLth 

EROSION STARTS HERE 

Figure 4-4. Definition diagram showing parameter 1jJ = Hth/(SL
th

). 
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A(O, Yp) 

TROUGH RIDGE 

Figure 4-5. Streamline derived from the nonlinear analysis of normal flow 
assumption 
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Velocity and depth profiles for the case F = 0.5, and 'IjJ = 0, 
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Figure 4-9. Schematic diagram showing long-time processes of drainage 
basin development. 
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5. DOWNSTREAM-DRIVEN CHANNEL INCEPTION 

USING A THRESHOLD HYPOTHESIS 

5.1 Introduction 

The downstream-<iriven analysis in the absence of rainfall of Chapter 3 did 

not lead to the selection of a finite wavelength of drainage basin spacing. Here that 

analysis of flow over a step is modified to include both rainfall and the threshold 

hypothesis of the previous chapter. 

5.2 Conceptual model 

Figure 5-1 shows a plateau composed of cohesive material which is flat, but 

which has a slight slope S in the y direction. The downstream edge of the plateau 

terminates in a step-like overfall. It is assumed that uniform rainfall is supplied 

everywhere on the plateau, resulting in a sheet flow that increases in depth and 

velocity in the downstream direction, eventually cascading over the step. As noted 

in the figure, the y coordinate is directed downstream, with its origin located at the 

divide, and the x coordinate is taken to be perpendicular to it. The slope S is 

assumed to be low enough that the flow is subcritical in the Froude sense. 

Due to uniform rainfall, the flow discharge increases linearly in the 

downstream direction. As a result, bed shear stress increases in the downstream 

direction and finally reaches the threshold condition, where erosion starts to occur 

on the surface of the plateau. Only the case for which the threshold is reached 

before the flow cascades over the step is considered here. 

The edge of such a step as seen in nature can never be expected to be 
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straight. The irregular shape of the edge can be described by the superposition of 

Fourier modes with various wavenumbers. At least at the linear level, this fact 

allows the solution of the flow upstream of an irregular step to be described by the 

superposition of solutions upstream of sinuous steps with various wavenumbers. 

Here the flow solution for a sinuous step with specified wavenumber is obtained. 

It is assumed that a small perturbation is given to an otherwise straight step, 

so that its edge is described by the following relation; 

y = LB - a cos kx. (5-1) 

Here LB is basin length shown in Figure 5-1, and a and k denote the amplitude and 

wavenumber of the perturbation, respectively. In the present linear analysis, this 

amplitude is assumed to be infinitesimally small. In the case of subcritical overland 

flow, the indentations should act to attract the flow) causing a gathering of 

streamlines. The protuberances should result in a commensurate repulsion of the 

flow. As a result, boundary shear stress in the vicinity of the overfall can be 

expected to be intensified near the indentations and reduced near the protuberances. 

It is assumed here that downstream-driven channel inception follows:::a. 

scenario similar to that in the upstream-driven case. Once channels are formed, 

each channel gathers more and more water, preventing other channels from being 

formed nearby. The first channel heads to form will tend to dominate on the 

plateau, at least in the early stages of development. In other words, the channels 

formed in the shortest distance downstream from the divide are assumed to 

dominate on the plateau. 

The transverse distance between each drainage basin is given by the spacing 

103 



of the channels, which corresponds to the wavelength ~ of the perturbation (5-1). 

This is illustrated in Figure 5-1. 

The main goal of the present analysis is the prediction of the distance ~ 

between adjacent drainage basins in terms of the proposed threshold hypothesis. 

There should exist a relation between the wavelength of the perturbation (5-1) and 

the distance downstream of the divide where erosion first begins. If there exists a 

specific wavelength at which the distance from the divide to the threshold point is 

minimized, channels with that wavelength should tend to dominate, at least in the 

initial stages of development. 

5.3 Formulation 

5.3.1 Governing relations 

In accordance with Figure 5-1, it is assumed that a flat plateau has a slight 

slope S descending in the positive y direction. Bed elevation in excess of that of the 

upstream end can be expressed as 

(5-2) 

Note that as appeared to the analysis of Chapter 3, the bed is assumed to be 

perfectly flat upstream of the wavy step. In the present case, the backwater effect is 

much larger than the Reynolds stress, especially, in the vicinity of the overfall. The 

Reynolds stress terms are thus neglected in this analysis. Equations (2-20) and 

(2-21) then take the forms 
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-2 v _ 
u, (5-3) 

(5--4) 

Ofih 8Vh -+-=1. 
fJX ay 

(5-5) 

The streamwise discharge per unit width is taken to vanish at the divide; 

that is 

vh = 0 at y = o. (5-6) 

The transverse velocity is taken to vanish there as well; that is 

u = 0 at y = o. (5-7) 

The flow is assumed to be subcritical everywhere over the flow domain. The 

following boundary condition, corresponding to critical flow in the Froude sense, is 

applied at the sinusoidal step at the downstream end: 

-2 
un 
- = 1 at y = LB - a cos ti, 
gh 

where un is the component of velocity normal to the step. 
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The following dimensionless parameters are introduced; 

(ti, v) = Vo(U', v,), h = HOh, x == (HO/S)x, (5-9a, b c) 

(5-9c, d) 

where V 0 and HO are velocity and depth at the point of overfall in the absence of 

any perturbatio~ (a = 0). 

Using the above normalizations, the governing equations reduce to 

where the dimensionless parameter Cs is given by 

and the dimensionless parameter ¢ is defined by 
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,2 
v u' , 

,2 v , v, 

(5-10) 

(5-11) 

(5-12) 

(5-13) 

(5-14) 



Here HO is taken to be much smaller than SLB, allowing 'ljJ to be used as a small 

parameter in this analysis. The justification for this is illustrated in Figure 5-2, it 

is identical to the reasoning used in Chapter 4. As seen in (5-10), (5-11) and 

(5-12), 'ljJ appears as a multiplier on the terms associated with streamwise 

backwater effects. This implies that 'ljJ provides a measure of the strength of 

streamwise backwater effects. 

Here it is useful to specify appropriate boundary and integral conditions on 

the problem. Equations (5-6) and (5-7) can be rewritten in dimensionless form as 

u l = 0, v'h = 0 at y = o. (5-15a, b) 

The condition of no water transfer between adjacent basins leads to the boundary 

condition 

u' = 0 at x = 0, ± f' ± 2 f'···· (5-16) 

Equation (5-12) can be integrated over one wavelength from x = - 7r/k to x = 7r/k 

and reduced with (5-15) and (5-16) to yield the following result: 

(5-17) 

Finally, (5-8) can be rewritten in dimensionless form as 

(5-18a) 
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where 

dYe/dx 
sin e == -;:::========:::;:;: 

j 1 + (dYe/dx)2 
cos 0 == -;:::=====1 ====::;:;: 

J1 + (dYe/dx)2 

Ye == 1 - a cos kx. 

6.4 Solution 

6.4.1 Solution in the outer region 

(5-18b, c) 

(5-18d) 

When terms of O(?/J) are dropped, (5-10), (5-11) and (5-12) reduce to 

Ou'h ax== o. 

Integration of (5-21) with the use of (5-16) yields 

u' == O. 

,2 v , u, 

,2 v , v, 

(5-19) 

(5-20) 

(5-21) 

(5-22) 

This result implies that u' has the magnitude not larger than the order of?/J. With 

this in mind, the following renormalization is introduced: 
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u' = ?j;u". 

This allows the equations to be rescaled as 

,2 
v \I u , 

,2 v , v, 

Dropping terms smaller than 0(1), the governing equations take the form 

8h -ax = 0, 

&u"h av'h ax+ay=l. 

The following expansions are introduced: 

,,- "+ u - aU1 .... , 

v'=v6+ avi+ .... , 
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(5-23) 

(5-24) 

(5-25) 

(5-26) 

(5-27) 

(5-28) 

(5-29) 

(5-30a) 

(5-30b) 



h = hO + ah1 + ..... (5-30c) 

Substitution of (5-30) into (5-27), (5-28) and (5-29) yields the following equations 

at 0(1): 

with the boundary conditions 

v 6ho = 0 at y = 0, 

2 
v 0 = hO = 1 at y = 1. 

Integration of (5-32) with the use of (5-33) yields the result 

Between (5-31) and (5-35), the following solutions are obtained: 

, _ C-1/3 1/3 
Vo - s y , 

h - C1/ 3 2/3 0- s y . 
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(5-31) 

(5-32) 

(5-33) 

(5-34) 

(5-35) 

(5-36) 

(5-37) 



These results should already be familiar as the base normal flow of Chapter 4. 

At the next order) O( a) the governing equations yield the following forms: 

with the boundary conditions 

U
II 

- 0 1 - ) 

Ul = 0 at x = 0) ± f) 2 f) ... ) 

2v i = hI at y = 1 - a cos kx) 

and the integral condition 

Equation (5-38) can be integrated to yield 
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(5-38) 

(5-39) 

(5-40) 

(5-41a) b) 

(5-42) 

(5-43) 

(5-44) 

(5-45a) 



Here fO(Y) is a free function of y. Substituting (5-45a) into (5-39), vi is found to 

take the form 

, _ 1 C-2/3 , -1/3 f ( ) 
vI - 2' s y 0 y . (5-46a) 

Substituting (5-36), (5-37), (5-45a) and (5-46a) into (5-44), it is found that fO(y) 

vanishes. Then the following solutions are obtained: 

(5-45b,46b) 

Substituting (5-36), (5-37), (5-45b) and (5-46b) into (5-40), and applying 

(5-42a), ul is also found to vanish; that is 

U " - 0 1 - . (5-47) 

While the boundary condition (5-33) is satisfied with the solution (5-36) 

and (5-37), (5-34) cannot be satisfied. Obviously, the neglect of terms smaller 

than 0(1) in (5-24), (5-25) and (5-26) is not valid in the vicinity of the step. 

Because of the abrupt change of velocity and depth of flow there, the neglected 

terms are not small. This fact implies the existence of two distinct regions, one of 

which is an outer region where (5-27), (5-28) and (5-29) are valid as the governing 

equations, the other of which is an inner region in the vicinity of the step where the 

gradients of velocity and depth are too large to be neglected. The solutions (5-36), 

(5-37), (5-45b), (5-46b) and (5-47) are seen to correspond to solutions in the outer 

region. As described in the subsequent section, outer, inner and intermediate layers 
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are defined in a context that differs from the above. In order to avoid confusion, the 

word "region" is distinguished from the word "layer" in the following way. The 

entire domain is first divided into the outer and inner regions. The inner region is 

then divided into the outer, intermediate and inner layers, as schematized in Figure 

5-3. 

The small parameter 1jJ is not employed as a formal parameter for 

perturbation analysis here. However, it should be noted that v 6 and hO are of the 

order of a 0 1jJ0, ui, v i and hI are of the order of a I1jJO, and ul is of the order of a I1jJl. 

Since our concern here is how the perturbation provided at the downstream step 

affects on the flow upstream, terms of the order of a 0 1jJl independent of the 

wavenumber k are not computed here. 

5.4.2 Solution in the inner region 

In the inner region near the overfall, the following inner variable is 

introduced: 

L=-.l y' = 7/J . (5-48) 

Substituting (5-48) into (5-10), (5-11) and (5-12), the governing equations in the 

inner region take the form 
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V u' , (5-49) 



&V' &V' 8h j u,2 + 
u'71X - v'oy' = oy' + 1 - Cs h 

Ou'h Ov'h ax - CJY' = 7/J. 

,2 
v , v, (5-50) 

(5-51) 

If terms smaller than 0(1) are neglected again, the right hand side of (5-51) may be 

dropped; that is 

(5-52) 

Equations (5-49), (5-50) and (5-52) are familiar because they are very similar to 

the governing equations used in Chapter 3. Note the lack of rainfall source term in 

(5-52). The implication is that the inner region is sufficiently thin compared to the 

length of the basin that the rainfall source term can be neglected. In other words, 

the effect of rainfall is of the order of 7/J in the thin region near the downstream step 

and the governing equations are reduced to those for the flow without rainfall by 

dropping terms of O( 7/J). Solutions up to the order of 'l/J0 are obtained here, using the 

same strategy as in Chapter 3. As described in the previous section, terms of the 

order of a°'I/J1 have no dependency on the wavenumber k of perturbation; they add 

some correction to the base state solutions. Since the main purpose of this analysis 

is to obtain the relation between the wavenumber k and the flow intensification 

caused by the perturbation, terms of the order of a 0 7/Jl are not computed here. 

The strategy used to derive the solutions in the inner region is substantially 

identical to that used in Chapter 3. Therefore, only a brief explanation is provided 

below. 
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a) Transformation 

It is once again convenient to employ the conformal transformation used in 

Chapter 3. The transformed coordinates are illustrated in Figure 3-8. The 

transformation is expressed as 

-kry -kry 
x = e - ae sin ke, y) = ry + ae cos ke. (5-53a) b) 

The Jacobian of the transformation is 

(5-53c) 

The equations of motion written in the transformed plane now take the form 

u au v au uv fjJl/2 v2 fjJl/2 
Jl/2 or, - Jl/2 Oil - J Oil - J or-

1 8h ake-krysin ke C j u2 + v2 

= - Jl/2 or, + Jl/2 - s h u) (5-54) 

u 8v v 8v uv fjJl/2 u2 fjJl/2 
Jl/2 ~- Jl/2 Oil + Jar + J Oil 

!§ 8h 1 - ake -k7]cos ke C j u2 + v2 

= Jl/2 71rj + Jl/2 - s h v, (5-55) 

(5-56) 

where u and v are the velocities in the e and 7] directions, respectively. 
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Here a is taken as a small parameter; the following expansions in powers of 

a are introduced: 

2 
u = aU I + a u2 + .... , 

2 v=vO+avI +a v2 + .... , 

At leading order, i.e. O(aO), (5-55) and (5-56) give 

( 5-57a) 

(5-57b) 

(5-57c) 

(5-58) 

(5-59) 

For the sub critical flow considered here, (5-58) and (5-59) describe a simple 

M2 backwater curve. Since v 0 = hO = 1 at the step, (5-59) can be integrated to 

yield 

(5-60) 

Between (5-58) and (5-60), the following ordinary differential equation for Vo is 

obtained: 
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(5-61 ) 

This describes the base flow in the absence of perturbations. 

At the next order, O(a), the governing equations give 

(5-62) 

(5-63) 

(5-64) 

The first order equations (5-62) IV (5-64) admit solutions of the form 

(5-65a, b) 

(5-65c) 

Substituting (5-65) into (5-62), (5-63) and (5-64), and reducing with the aid of 

(5-58) and (5-60), the following equations are obtained: 
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( 5-{)6) 

(5-{)7) 

(5-{)8 ) 

Equations (5-{)6), (5-{)7) and (5-{)8) can be written in compact matrix form 

as 

d a ( ) -k7] ili7 = if 7] a + m( 7])e (5-{)9a) 

where 

* ul 
* (5-{)9b) a= vl 

h* 
1 
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and 

Ll1 L12 L13 

;!( '7) = L21 L22 L23 ' 

L31 L32 L33 

(5-69c) 

(5-69d) 

Note that ;!('TJ) and ~ ('TJ) are functions of 'TJ via the parameter Vo and its first 

derivative. 

b) Solution in the outer layer. 
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As shown in figure 5-3, the inner region, which corresponds to a zone near 

the overfall, is further divided into three layers. The inner layer is an extremely 

thin zone near the edge, at which singularities appear in the derivatives of v and h. 

The outer layer is a much larger zone of near-normal flow, the deviations from 

which are modest. The inner and outer solutions are joined in the intermediate 

zone. This treatment is completely analogous to that of Chapter 3. 

The outer layer is attained as 'fl approaches infinity, at which Vo approaches 

C!/3 and dVo/d.TJ approaches O. In the outer layer, then, the governing equations 

reduce to 

where 

;11= 
N 

and 

0 
/I'll. 

do 0 j:J 0 -k'fl 
-:r=- = .,;c' a + I77f, e , U'fl N 

c 2/3 
s 0 _ c 1/3 

s 

kC s 
2c2/3 

s 1 
1 - C s 1 - C s 1 - C 

kC 2 / 3 
s 

2C4 / 3 
s 

C2/ 3 
s 

1 - C s 1-C s 1 - C 

_ (k2C;1/3 + kC!/3) 

k2C 2 I 3 
s - 1 - C s 

k2 C 1 13 
s 

1 - C s 
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(5-70b) 
s 

s 

(5-70c) 



Sol ving the above differential system, the following solution is obtained: 

kC1/ 3 
kC 1/ 3 s 

C2 / 3 _ A s 
s / 1 

1 + C1 3). 
e-Al17 + -k7] 0 = AO 

s 1 0 (5-71) a 
2C 2/ 3 _ ). 

e 

s 1 

1 0 

Here Al is a negative real root of the follOwing equation: 

(5-72) 

c) Solution in the inner layer 

In the inner layer, then, 7] is renormalized as 

(5-73) 

where 0 is a small parameter appropriate to capture the singularity of the edge. The 

governing equations (5-54) N (5-56) thus take the form 

(5-74) 
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(5-75) 

(5-76) 

where 

J = 1 - 2ak cos ke (1 - ko'Tj* + .... ) + (ak)2(1 - 2ko'Tj* + .... ) 

(5-77) 

The following expansions are introduced: 

(5-78a) 

(5-78b) 

(5-78c) 

Substituting (5-78) into (5-74), (5-75) and (5-76), and after manipulations similar 

to those performed in Chapter 3, the following solutions are obtained as the final 

form: 
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u = aA 1 sin k~) (5-79a) 

1/2 v = 1 - M17 + aA2 cos k~ + .... ) (5-79b) 

1/2 h = 1 + M17 + 2aA2 cos k~ + .... ) (5-79c) 

where 

(5-79d) 

d) Solution in the intermediate layer 

The full differential system (5-69) is then solved numerically in the 

intermediate layer. The outer solution contains the one free constant A
O

) which 

provides the basis for a shooting method. A guess for the value of AO is made; the 

Runge-Kutta method is then used to step the solution downstream of the point 17. 
1 

of matching with the outer solution. Here the point 17i defining the interface 

between the outer and intermediate layer can then be defined such that v 0 is 

sufficiently close to unity. At the point 17 = 0) matching with the inner solution is 

performed. In particular) the parameters Al and A2 are estimated as 

(5-80a) 

(5-80b) 
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(5-80c) 

A Newton-Raphson technique is used to improve the successive guesses for A
O

' 

The method is continued until all three unknown constants AO' A1, and A2 are 

successfully evaluated, 

5.4.3 Composite solution 

Let the variables III the outer and inner regions be denoted by the 

superscripts 0 and I, respectively, Composite solutions which are valid in both the 

outer and inner regions take the form 

o I l' 0 ( l' I) u = u + u - 1 m u or 1 m u , 
y-+ 1 'fJ-I (!) 

(5-81) 

o I l' 0 ( l' I) v = v + V-I m v or 1 m v (5-82) 
y-+ 1 'fJ-I (!) 

h = h 0 + hI - lim h 0 (or Ii m hI) 
y-+ 1 'fJ-I (!) 

(5-83) 

where the outer solutions up to O(a) are given as 

(5-84a, b) 

(5-84c) 
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Note that terms of O(a) do not appear in the outer solutions, The inner solutions 

up to O(a) take the form 

(5-85a) 

(5-85b) 

(5-85c) 

h *1 I *1 hI d h*I l' , h' 'b ' d' 5 4 2 were ul ' vo' vI' 0 an I are so utlOns In t e Inner regIOn 0 tame In , , , 

Substituting y = 1 into (5-84) and taking the limit as 'fI ---t 00 of (5-85), the 

following results are obtained: 

I , ° I' I 0 1m u = 1m u = , (5-86a) 
y-d rr+m 

l ' ° l' I C-1/3 lmv = 1mv= , 
S 

y-; 1 rr+m 
(5-86b) 

1 ' hO - l' hI - C1/ 3 1m - 1m - , 
S y-; 1 rr+m 

(5-86c) 

The outer solutions are written in the outer variable y and the inner 

solutions are written in the transformed, inner variable 'fI' In order to obtain 

convenient forms for the solutions, it is necessary to unify these variables, Since the 

flow of concern here is in the vicinity of the step and coordinates of physical plane 

are more convenient to use, the non-transformed, the inner variable y' is used for 
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the common variable in both regions. 

Equations (5-84a, b, c) are rewritten as 

o 2 
u = 0 + 0('IjJ ), (5-87a) 

(5-87b) 

h 0 = C1/ 3(1 _ 7j;y,)2/3 + O( 'IjJ). 
s (5-87c) 

Within the region 0 ~ y' ~ I, (5-87b, c) can be expanded in powers of 'IjJ as follows: 

o = C-1/ 3 _ '!!!. C-1/ 3 , + 0(.1.) 
V s 3 s y 'f/, (5-87d) 

(5-87e) 

From (5-53), the following relations are obtained: 

-k ' e = x + ae y sin kx, -ky' 
7J = y' - ae cos kx. (5-88a, b) 

Substituting (5-88) and applying Taylor's expansion, the inner solutions can be 

rewritten as: 

(5-89a) 

1 
1 I [ *1 [}YO -ky'] v = vO(y') + a vI (y,) -ayre cos kx + O('IjJ), (5-89b) 
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(5-89c) 

Substituting (5-87) and (5-89) into (5-81) N (5-83), and using (5-86), the 

composite solutions are finally found to take the forms 

u = au~I(y') sin kx + 0( 'l/J), (5-90) 

I 

·v = v6(y') + a[ v~I(y') - :; ?e-ky '] cos kx + O( 'l/J), (5-91) 

(5-92) 

Because terms of O( 'l/J) have no dependency on the wavenumber k of perturbation, 

they are dropped hereinafter. 

5.5 Threshold hypothesis 

According to the scenario of the threshold concept, the perturbation with the 

wavelength which minimizes the distance from the divide to the threshold point 

should dominate. This wavelength is called the characteristic wavelength associated 

with the threshold concept. To obtain the characteristic wavelength, the distance 

where the threshold condition is realized is related to the degree to which velocity is 

intensified by the overfall. 

Bed shear stress T is normalized as 
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Dimensionless shear stress 7 is then expanded in the small parameter a: 

2 7=70 +a71 +O(a). 

With the aid of (2-28) and (5-91), 70 and 71 are expressed by the relations 

(5-93) 

(5-94) 

(5-95) 

(5-96) 

Suppose that the threshold condition is realized at y' = f as the result of the 

perturbation; that is 

(5-97) 

where 7th = 7th/ pCfV6 and 7t h again denotes the threshold shear stress for bed 

erosion. The distance of the threshold point f upstream from the base mode edge is 

expanded as 

2 
f = fO + ail + 0( a )) (5-98) 

The location of the threshold point fO in the absence of a perturbation is defined by 

the relation 

128 



(5-99) 

The relation between La and Tth can be found as follows. The inner solution of the 

base state v6(y') can be calculated using (5-61), which can be rewritten in the 

common variable y' and integrated to yield 

(5-100) 

The parameter TO can be evaluated from (5-95) and (5-100) with y' set equal to lO. 

With the aid of (5-99), it is found that 

( 5-101a) 

where 

(5-101b) 

The relation between La and 'th is shown in Figure 5-4 for the cases Cs = 4 and 25. 

Applying Taylor's expansion, the shear stress T at y = l up to the order of a 

is given by 

(5-102) 
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Between (5-97), (5-99) and (5-102), the following relation is obtained: 

(5-103) 

With the use of (5-95) and (5-96), (5-103) can be written as 

(5-104) 

The parameter ~ is thus seen to be maximized when x = O. It is seen from Figure 

5-1 that the line x = 0 corresponds to the center of an indentation. Equation 

(5-104) thus implies that the distance £ is maximized along lines in the y' direction 

that originate at the center of indentations. The result is 

(5-105) 

Now the distance 11 (0) is measured upstream from the base mode edge. As 

shown in figure 5-1, maximum ~ (0) corresponds to the minimum distance from 

divide to the point at which threshold conditions are reached. In analogy to 

Chapter 4, then, the characteristic wavenumber kc is the one that maximizes £1 (0). 

Figure 5-5 shows ~ versus k and lO' The value of Cs (= Cf/S = F-2) is . 
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taken to be 4 in Figure 5-5a. It is found that t1 is maximized for k = 0.8 N 4 over 

the computed range. This corresponds to a characteristic wavelength ~ of the c 
order of HO/S, The figure also shows that while the absolute value of [1 decreases 

for larger values of lO' which corresponds to a threshold location farther from the 

edge, the characteristic wavenumber kc increases as lO increases. According to 

Figure 5-4, larger values of to correspond to smaller values of 7 th, Since when 7 th 

is small, the shear stress at the edge is much larger than the threshold value, it is 

found that a larger shear stress results in a smaller characteristic wavenumber k , . c 
i.e. a longer characteristic wavelength of drainage basin spacing. 

The case Cs = 25 is depicted in Figure 5-5b. Comparing this figure with 

Figure 5-5a, for the same value of lO' it is seen that 11 is maximized at larger 

wavenumbers in this case than in the previous one. This implies that the 

characteristic wavelength decreases as either the Froude number or slope decreases. 

Roughly speaking, the magnitude of the inertial forces scales with the Froude 

number. It may be noted by way of explanation that a larger inertial force prevents 

flow from concentrating at small values of k. 

The velocity V 0 and depth HO at the downstream step are related to the 

rainfall intensity I and the basin length LB by the following continuity relation: 

(5-106) 

The condition of a Froude number of unity at the downstream step yields the 

relation 

(5-107) 
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Between (5-106) and (5-107), V 0 and HO are obtained as 

(5-108a, b) 

The normalized threshold shear stress is then expressed as 

(5-109) 

The characteristic wavelength 5.c can be obtained as follows. Specifying uth' Cf' I 

and LB, the normalized shear stress 7th is calculated by (5-109). By further 

specifying S, Cs can be calculated, and the corresponding value of fa can be obtained 

from (5-101). The characteristic wavenumber kc can be calculated with the use of 

(5-105). Finally, the characteristic wavelength of drainage basin spacing is 

obtained from the following relation: 

(5-110) 

In order to clarify the implications of the above result, it is useful to specify 

some possible values for uth' Cf, I, LB and S applicable to the present case. As 

noted in Chapter 4, the threshold shear velocity over cohesive soils varies from 

about 5 cmls for sandy loam to about 15 cmls for rigid clay. Here a value of 

10 cm/s is taken for a sample calculation. A crude but reasonable estimate for Cf is 

0.01 (Yoon et al., 1971; Shen et al., 1973). The rainfall intensity I is assumed to be . 

100 mm/hour; i.e. 2.78 x 10-5 m/s. The basin length LB is assumed to be 7900 m. 
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The slope S is assumed to be 0.0025) corresponding to Cs = 4. 

From these estimates) it is found from (5-108a) b) and (5-109) that V 0 = 

1.29 mis, Ho = 0.17 m) 'I/J = 8.61 x 10-3 and 7 th = 0.6. With the aid of Figure 5-4) 

the parameter fa is found to take the value 0.05, so that the dimensional distance of 

the threshold point from the downstream step is 3.4 m. It is found from Figure 

5-5a that kc = 0.8. Using the relation (5-110), the characteristic wavelength of 

drainage basin spacing \ is found to be 534 m. 

In order to compare with the upstream-{].riven case analyzed in the previous 

chapter, the corresponding characteristic wavelength of drainage basin spacing 

predicted by the upstream-{].riven model for the same values of uth' S, Cf, and I is 

calculated here. According to (4-129), Ac is found to be 188 m. In addition, with 

the use of (4-17c), Lth can be calculated to be 14700 m. The upstream-driven 

theory predicts a smaller characteristic wavelength than the downstream-driven 

theory. It is also found for this case that the upstream-{].riven process requires a 

longer basin length than the downstream-{].riven process. The downstream-{].riven 

process is characterized by the existence of a step at the downstream end) which 

accelerates the flow approaching the step. Because of this flow acceleration, the 

shear stress in the downstream-{].riven process can reach the threshold value in a 

shorter distance downstream of the divide than that for the upstream-{].riven 

process. This fact may allow for the following categorization by basin length of the 

three models presented in this study by basin length. If there is no step, the 

upstream-{].riven process should dominate. If the basin length is terminated by a 

step in a distance shorter than Lth' the downstream-{].riven process should 

dominate. If the dimensionless threshold shear stress is larger than unity (7th > 1), 

which corresponds to the following criterion: 
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(5-111) 

the shear stress everywhere on the plateau is below the threshold value, resulting in 

no erosion on the surface. If this is the case, only the step foot erosion model is 

applicable. The predicted characteristic wavelength would be infinitesimally small. 

Categorization is also possible in terms of basin slope. If the basin slope S is 

smaller than the .friction factor Cf, which corresponds to a Froude number less than 

unity, either the downstream-driven or upstream-driven process could dominate. 

If the basin slope S is larger than the friction factor Cfl the flow is supercritical and 

only the upstream-driven process can dominate. 

5.6 Conclusions 

The threshold hypothesis proposed in Chapter 4 has been applied to the 

process of downstream-driven channel inception. Although this problem was 

analyzed in Chapter 3 using the "step foot erosion model'\ here a model based on 

surface erosion is formulated. 

It is found that the distance from the downstream step to the threshold 

point, ~ is maximized at wavenumber k = 0.1 IV 10. This implies that the 

characteristic wavelength \ is such that S~c/HO is in the range 0.1 IV 10. 

The characteristic wavenumber kc maximizing ~ decreases as fa increases or 

7 th decreases. That is, if the shear stress at the downstream step increases, 

resulting in a longer distance from the downstream step threshold point, the 

characteristic wavelength ~c is correspondingly longer. The analysis predicts that a 
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larger Froude number corresponds to a longer characteristic wavelength ~c' 

It is found that the model of downstream-driven channel inception predicts a 

longer characteristic wavelength than the upstream-driven one. 

It is suggested that the upstream-driven process should dominate when the 

basin length is sufficiently long or the basin slope is large enough for the flow to be 

supercritical. The downstream-driven process should dominate when the basin is 

terminated by a step in a distance shorter than Lth' and when the slope is small 

enough for the flow to be subcritical. 
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Figure 5-1. 

RAINFALL INTENSITY I 

DIVIDE x 

Schematic diagram showing a plateau with a sinuous step at the downstream end. Note that the plateau is tilted but absolutely flat. Flow is in the positive y direction. 
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FigUIe 5-2. Definition diagram parameter 't/J = HO/(SLB)· 

137 

SLB 



x 

F 
DIVIDE 

y 

y' ~--------------------------~ 
OUTER 

y 
INTERMEDIATE 
LAYER 

LAYER 

STEP 

~ 
INNER 
LAYER 

OUTER 
REGION 

INNER 
REGION 

Figure 5-3. Schematic diagram showing the outer and inner regions, and 
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Figure 5-4. Dimensionless threshold shear stress 7th versus to and es' 
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Figure 5-5a. Perturbed threshold distance ~ versus k and iO for the case 

Cs = 4 (F = 0.5). 
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Figure 5-5b. Perturbed threshold distance ~ versus k and iO for the case 

Cs = 25 (F = 0.2). 
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6. SUMMARY AND CONCLUSIONS 

Theoretical models for explaining the process of drainage basin inception are 

presented. The models proposed here are clasified into three distinct kinds, the step 

foot erosion model, the upstream-driven threshold model, and the downstream

dri ven threshold model. The common concept of these three models is that 

channelization is caused by erosion due to a sheet flow on a plateau. 

The first model analyzed is the step foot erosion model. A sheet flow over a 

flat but tilted' plateau which has a perturbed step at the downstream end is 

considered. A perturbation technique is adopted to obtain the velocity distribution 

and water surface profile near the sinuous step. The analysis predicts that flow 

intensification is maximized near indentations, where it is a function of wavenumber 

and the Froude number. In this model, bed shear stress is assumed to be below the 

threshold value for erosion everywhere over the plateau. The surface is thus not 

subject to fluvial action, and the erosion can be assumed to be concentrated at the 

foot of the step. By relating the retreat speed of the step with discharge per unit 

width at the downstream end, a simple linear stability analysis is performed to 

obtain the wavenumber maximizing the growth rate of the perturbation. The 

analysis predicts that the growth rate is maximized for infinitely large wavenumber. 

The implication is that perturbation with infinitesimally small wavelength grows 

fastest, resulting in infinitesimally small basin spacing. It is concluded that the 

simple assumptions of the step foot erosion model cannot explain the process of 

drainage basin inception. 

As a first attempt to include surface erosion, which was not considered in the 

step foot erosion model, a threshold hypothesis is introduced to explain the process 
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of upstream-driven channel inception. In this model, there is assumed to be a 

uniform rainfall. The resulting sheet flow on the plateau surface is characterized by 

an increasing bed shear stress toward the downstream end. A small wavy 

perturbation provided on the plateau surface results in a tendency for the flow to 

gather in the indentations. A perturbation technique is again used to obtain the 

velocity distribution and water surface profile over the wavy bed. When the 

streamwise backwater effect is small, it is found that the transverse Reynolds stress 

plays an important role in reducing flow intensification in the troughs for large 

values of k. The analysis predicts that the flow intensification is maximized when 

the wavelength is of the order of flow depth divided by slope. Performing a linear 

analysis with the use of the results obtained by the perturbation analysis, the 

distance from the upstream end to the threshold point is obtained. In accordance 

with the threshold hypothesis, it is found that a basin spacing of the order of flow 

depth divided by slope is predicted to dominate on the plateau. 

The threshold hypothesis is finally applied to explain the process of 

downstream-driven channel inception. A plateau with a step-like overfall at the 

downstream end subject to a uniform rainfall is considered. It is found that when 

the streamwise backwater effect is sufficiently small, a boundary layer is formed in 

the vicinity of the step, in which the effects of rainfall and the Reynolds stress are 

both negligible. A perturbation analysis is brought to bear to obtain the velocity 

distribution and water surface profile near the sinuous step. It is found that in a 

certain zone near the step, flow intensification occurs upstream of indentations. 

Following the threshold hypothesis, the upstream shift of the threshold point caused 

by flow intensification is assumed to provide a criterion for channelization. Using a 

linear analysis, the magnitude of the shift is obtained as a function of wavenumber, 

143 



the distance from the downstream end of the plateau to the point where the base 

flow attain the threshold condition and the Froude number. The characteristic 

basin spacing is again found to be the order of flow depth divided by slope. 

It should be emphasized that both threshold models predict a finite value of 

wavenumber which characterizes the preferential wavelength of perturbations 

associated with incipient channlization. A finite value of this characteristic 

wavenumber has never been obtained theoretically before. The observed basin 

spacing appears to be somewhat larger than that predicted in this study. This is 

perhaps due to both nonlinear and long-time processes, which cannot be adequately 

represented in the present linear analysis. 
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